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In this article, an effective method is given to solve nonlinear two-dimensional Volterra integral equations of the second kind, which
is arising from torsion problem for a long bar that consists of the nonlinear viscoelastic material type with a fixed elliptical cross
section. First, the existence of a unique solution of this problem is discussed, and then, we find the solution of a nonlinear two-
dimensional Volterra integral equation (NT-DVIE) using block-by-block method (B-by-BM) and degenerate kernel method
(DKM). Numerical examples are presented, and their results are compared with the analytical solution to demonstrate the

validity and applicability of the method.

1. Introduction

The equations of the torsion problem were derived in
detail with analytical solutions, by Muskhelishvili [1],
Frank and Mises [2], Nowinski [3], and Sneddon and
Berry [4]. The problem can be formulated as a boundary
value problem of the Laplace equation. In [5], boundary
element method was developed for the nonuniform tor-
sion of simply or multiply connected cylindrical bars of
arbitrary cross section, where the bar is subjected to an
arbitrary distributed twisting moment while its edges are
restrained by the most general linear torsional. In [6],
nonlinear inelastic uniform torsion of bars by BEM was
studied. Sapountzakis and Tsipiras in [7] used the bound-
ary element method solution to the nonlinear inelastic
uniform torsion problem of composite bars. El-Kalla and
AL-Bugami in [8] discussed the nonlinear Volterra-
Fredholm integral equation and torsion problems. Shesh-
tawy and Ghaleb in [9], discussed approximate solution
to the problem of torsion by a boundary integral method.
Assari, in [10], discussed the numerical solution of T-
DFIE of the second kind on nonrectangular domains. Fat-
tahzadeh, in [11], solved two-dimensional linear and non-
linear Fredholm integral equations of the first kind based

on Haar wavelet. Authors, in [12], solved two-
dimensional integral equation of the first kind by a multi-
step method. Alturk, in [13], solved two-dimensional Fred-
holm integral equations of the first kind using
regularization-homotopy method. In this work, effective
numerical methods are proposed to obtain the solution
of nonlinear two-dimensional Volterra integral equations
of the second kind and study the values of absolute errors.

2. Basic Formulas

While one end of the bar, of length b, is prevented from rotat-
ing, the other end is rotated about the z-axis. So that a section
at distancezfrom the fixed end turns through angle0, the var-
iation of anglefwithz,z € [0, ], is taken as

0 =za(x, ). (1)

« is a twist angle. The displacement u, of a particle in a
tangential direction is given by

ug =10, (2)
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where r is the radius of the particle. Then, we get

=
X
e G
From (1), (2), and (3), we obtained

= —yza(x, t),
u, = xza(x, t), (4)
Dy (x.)-

u, = a(x,

Hence, we get

_ (% _
O, = <a y) Ga, ©6)

oy >
o, =|=— +x)Gua.
g (W

The stress equilibrium equations are now examined:

do, s do,, . do,, 0
0x dy oz
do, 0o
99y 9%z Ty _
oy "oz T ox 0 )
do, 0o, 00,
= 0,
0z ox dy
O, = 2—¢ Ga,
a; (®)
zy = aG(x.

Advances in Mathematical Physics

A comparison of (6) and (8) now gives

0 _ov _
oy  0x % )
9 _ov
ox 0y

The functions 6 and y must satisfy the relations

Vi=-

(10)
Viy =0.

Stresses are derived from scalar ¢ in (6) in such a way that
rectangular axes with any orientation may be used.

Let the origin of coordinate axes (n, s) be situated on the
boundary of the section, direction n being normal to the
boundary and directions being tangential to it. Local values
of stresses are now given by

zn = ?Ga’
a; (11)
0,,= $Ga.

The force p, acting on a vertical strip of width dx is given
by

0

ay —dy. (12)

B
Py = erchJ

It can be seen that the torque on the section is given by

T=[fq(x

where T is the moment of torque.

0,y = Y0, ) dxdy, (13)

3. Solution in the Form of NTVIE

The deviator strain of nonlinear elastic material is as follows:

E _=e,,
yz yz (14)
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The strain deviator tensor is defined as

1 ..
Ej=¢e;- ekk&], e =t ey e, Lj=XY,2
1 ..
Sij :0 3Gkk811’ Ok = Oxx +0yy T0. L]=X%),2.

(16)

The second invariant of strain and stress tensor is as fol-
lows:

1
E’= €ij€ij™ 3 CkkCik: (17)
Using (5) in (17), we get
E=2 [eiz + eﬁx] . (18)

Using (17) again, we get

#7575

—y> ] o (x,t).
(19)

Therefore, for the stress components, we find thato ., 0,

are the only nonvanishing components of stress; thus, we
find

0y =0,,=0,=0,=0. (20)
Also,
S;=0,
Sy =00 (21)
Syz 0

In addition, the principal cubic theory is given by

trx tpx
SijZZGEij"'JOJO](t_T’x )E; dyd‘r+J Jok(t—‘r,x ¥)E’E; dydr,

(22)

where G is the shear modulus of the material and J(t — 7, x
-9), k(t =1, x — y) are the kernel functions.
From (21) and (22),

torx

trx
0.,=S.,=2GE_ + J J J(t-1,x-y)E, dydt + j J k(t - 7,x - y)E°E,dydr,
oJo 0Jo

(23)

X

torx t
0,,=S,,=2GE, + JJ J(t—=7,x-y)E, dydr + LJ k(t-1,x —y)EzEyzdydT.

0

(24)

Using (15) and (19) in (22), (23), and (24), we obtain

_ (v Loy N[, .
sz—G(a y>oc(x,t)+§<a y)JJ](t 7, x = y)a(y, T)dydt

0J0

il )

3P [em—
2 t rx
i {(Z—Z —y) + (?j_l)/j + x) } [0 Lk(t -T,X —y)ocS(y, 7)dydr.
Using (25) and (26) in (34), we have

(26)

(ﬂR[ hd —yg— +x 4y }dxdy)
. {Goc(x, 0+ %Jt J Tt 1% y)ocdydr} N

Js ;
(U;{ 5 vy +x2+y2} [(%j +x)2+ (3_1/ —yﬂ dxdy)

: (J.;J:k(t ~T,x-y)a’(y, T)dydf) :

Let

(27)

A ﬂ [ +x +y }dxdy, (28)
0 0 0 0 2
A=1f, {xa—z —ya—li +x +yz} [a—z}/ +x)2 + (a—i —y) }dxdy.
(29)
Then, equation (27) becomes

1 trx
T=A,(Ga(x,t) + —J J J(t =1, x = y)a(y, T)dydt
2J)oJo
(30)
1 t rx
+ —A2J J k(t—1,x—y)o’dydr.
4 "Jolo

Then, we get

a2 + b?

Vo) = xy(b > (31)

where a and b are the semimajor axis of the ellipse.



By calculatingoy/0x and dy/dyfrom equation (31) and
introducing the result in (29), we find

1 5 na’b’
A= mHR(azy2 +b°x*)dxdy = EREE (32)
Also,
2 4b*x? 4a*y?
A= Va2 + a2y? dxdy.
2 u2+b2.|-J-R( x +6l)/> (a2+b2)2 (a2+b2)2 xay
(33)
Then, we have
4ana’b’
A, = Lbz_ (34)
3(a? + bz)

Here, A, is the torsional rigidity and A, is the polar
moment of inertia of the cross section of the bar.
Write formula (27) in the form

tox ot opx
Ga(x,t) + lj J J(t =1, x-y)a(y, T)dydT + ij J k(t-7,x-y)’dydr = z,
2Jo 441 JoJo Ay

0
2Gv
(1-2v)’
Ko 2G(1+v) .
3(1-2v)

(35)

Here, v is the Poison ratio, and then, we obtain

a(x, t) + AIJ Jx](t -7, x—y)a(y, T)dydt
t xO ’ (36)
+ AZJ J k(t—T,x—y)oc3dydT:f(x, 1),

0Jo

where A, (A/2G), A,(A,K/4A,G), and f(x, t) = (T/A,G).
Formula (36) represents NTVIE of the second kind, J(|¢
-1/, |x = y|) is the kernel of linear term, and k(|t — 7|, |x — y
|) is the kernel nonlinear term.
If the bar is a linear and viscoelastic materi-
alk(|t — 7|, |x — y|), then we get

a(x, t) + )Lljt r](t -1, x—-y)a(y, T)dydr =f(x,t). (37)

0J0

If the bar is a nonlinear and viscoelastic material, we get
J(|[t = 7|, |x = y|) = 0; then,

a(x, t) +)LZJt Jxk(t—r,x—y)oc3dyd1'=f(x, t). (38)

0Jo
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The general form of formula (36) is

t X
pa(x, t) +/\1J J J(t -1, x = y)a(y, T)dydr

0Jo0

' AZJ OJ:"“ 1%~ y)y(T 3, a(y,7))dydr = (3, 1),

(39)

where-

A =AR2p, Ay = A,K/4A p,and f(x, t) = TIA, - y(0, T, a(y, T
), f(x,t) € L,[0, b] x C[0, T}, are given continuous functions
and a(x, t) is an unknown function. A, A, known constants,
which have many physical meaning, may be complex. J(|¢
-1, |x—y|) and k(|t - 7|, |x — y|) are continuous.

4. The Existence of a Unique Solution of T-DVIE

To discuss the existence and uniqueness solution of equation
(39), we write it in the integral operator form

Qu(x )= fe )+ Quls ) (u#0).  (40)

where

Qa(x 1) = Qua(n 1) + Qalx 1) (u#0),  (41)

t

Qua(x, ) = Alj j J(1t = 7] | - yl)a(y, 7)dyd,

0J0
t

Qua )= Jxkut — 2y ey (53 @y, ) dydr

0J0 (42)

In addition, we assume the following conditions:

(1) J(|t =], |x = y|) and k(|t = 7|, |x = y[) € L,[0, b] x C[0
, TJand satisfies] (|t — 7|, |[x — y|) <M,
andk(|t — 7|, |[x — y|) < M,, M, M, constants, M >
M, M>M,Vt, T €0, T],x y€[0,b]

(2) f(x,t), with its partial derivatives with respect to x
and t, is continuous in L, [0, b] x C|[0, T|], and its norm
is defined as

[If(x 1) = max

=G (Gisaconstant)
0<t<T

[

(43)

(3) The known continuous functiony(y, 7, a(y, 7)) sat-
isfies, for the constants A > A;, A > P, the following
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conditions:

a- |yt a(nt))| <A a0,

b=ly(xt a(x 1)) = y(% t ay (. 1)) | <N (8 x) oy (% ) =

J.;{J:NZ(T, x)dx}md‘r

a(x 1),

[IN(t %), max =P<oo

[0.6xClo.T] = 0<t<T

(44)

(4) The unknown function a(x, t) satisfies the Lipchitz
condition for the first argument of position and Ho
Ider condition for the second argument of time,

where
t(opx 12
J{J |oc(x,t)|1/2dx} dr
o lJo

(5) The kernels satisfies the Lipchitz condition with
respect to position and Holder condition with respect
to time, where

[la(26, £)]| = max (45)

0<t<T

(=2l e =) =Tt =] |22 =) < Lillxy =3[ = %2 = 2>
k(1 =, |2y =) = k(It = 2]s [, =D < L[y = yi | = %2 =yl
Ut =7l [ =y = J([ta = 7ol x=yD| < Loty = 7| = |2 = 755
k([ty =71 |s [ = y1) = k(|t2 = 7ol [x =y < Lof [ty = 71| = [E2 = 72|

(46)

Theorem 1. If conditions (1)-(3) are satisfied, then an equa-

tion has a unique solution in the Banach space L,[0, b] x C[0
, T

Lemma 2. Under the conditions (1)-((3)-a), the operator Q
maps the space L,[0, b] x C[0, T into itself.

Proof. In the light of the two formulas (40) and (42), we have

JQa(s )] = 51t o)+ 2 Pl

Ll
|ul

Huw ol = y)) |y, 7) [y

||
_L_L"‘(\f‘ Tl |x =y lly(T. > a(y, 7)) || dydr].

(47)

d

Using conditions (1) and (2), then applying Cauchy-
Schwarz inequality, we get

~ G A
Qua(x, t)||< =+ 1M
Qe 1) T

LY

|u]

J;J]oc(y, 7)|dydr

M, J;j:||y<r,y,«x<y,r>>||dydr |
(45)

In view of condition (3-a), the above inequality takes the
form

5 G A el

Qa(x, t)|| < — + =M, T||a(x, t)|| + — M,AT||ae(x, t)|,

Qa0 <+ LM Tlats )] + T3 MoAT ol )

||Qa(x,t)||s§+0H(x(x,t)\| (a—“Tl‘MIT ||/L‘|M2AT) T=52te;)§t.
(49)

Inequality (49) shows that the operator Q maps the ball
S ) into itself, where

G
[l = |M M, T + A | M,AT]

p= (50)

Since p > 0 and G > 0, therefore we have o < 1. Moreover,
the inequality (49) involves the boundedness of the operator
Q of equation (42), where

1Qa(x, 1) < of|a(x, £)]]. (51)

In addition, the inequalities (49) and (51), define the
boundedness of the operator Q.

Lemma 3. Assume that the conditions (1) and (3-b) are veri-
fied, and then, Q is a contraction operator in the space L,|0,

b] x C[0, T.

Proof. For a;(x,t) and a,(x, t) in the space L, [0, b] x C[0, T
and from equations (40) and (42), we find

[|Qa, (x, £) = Qay (x, 1) ||_ P |

j j (1t = e = )l 05 7) - (3 7) dyde

o [ J ([t = 7l [x = 1) [y( 2 0, (7))

=y(t. 3, 0y, 7)) |dydr]|.

(52)
0

With the aid of conditions (1) and (3-b), the above
inequality becomes

05 )= Qo) < L3, [ [0 )= )t
B2y [[[ Wiy 0v7) - s e
(53)
Then, we get
Qe (3. 1) ~ Q. 1) < oo () = e ) (54)

From inequality (54), we see t[lat Q is continuous in the
space L, [0, b] x C[0, T], and then, Q is a contraction operator
under the condition o < 1.
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TaBLE 1: The approximate values and the absolute relative error values using B-by-BM for linear case (k= 1).
N , v=021 V=027 v=0.33
Approx.gy Errorgy, Approx.g Errorgy, Approx.g Errorgy,
0.2 1.31402E-07 2.90025E-08 1.49416E-07 4.70166E-08 1.80146E-07 7.77464E-08
0.2 0.6 2.26330E-04 2.38155E-06 2.27809E-04 3.86090E-06 2.30333E-04 6.38472E-06
1.0 8.02121E-03 2.12185E-05 8.03440E-03 3.44078E-05 8.05692E-03 5.69251E-05
0.2 5.13803E-06 2.37323E-06 6.61209E-06 3.84729E-06 9.12666E-06 6.36186E-06
10 0.6 0.6 6.25662E-03 2.10002E-04 6.38706E-03 3.40451E-04 6.60961E-03 5.63002E-04
1.0 2.17971E-01 1.97126E-03 2.19196E-01 3.19676E-03 2.21289E-01 5.28929E-03
0.2 3.14827E-05 1.86827E-05 4.30869E-05 3.02869E-05 6.28823E-05 5.00823E-05
1 0.6 2.98837E-02 1.89016E-03 3.10579E-02 3.06430E-03 3.30610E-02 5.06746E-03
1.0 1.0208E+00 2.08810E-02 1.0338E+00 3.38655E-02 1.0560E+00 5.60418E-02
0.2 1.31402E-07 2.90026E-08 1.49416E-07 4.70166E-08 1.80146E-07 7.77464E-08
0.2 0.6 2.26322E-04 2.37323E-06 2.27796E-04 3.84729E-06 2.30310E-04 6.36186E-06
1.0 8.01883E-03 1.88375E-05 8.03053E-03 3.05385E-05 8.05049E-03 5.04999E-05
0.2 5.13803E-06 2.37323E-06 6.61209E-06 3.84729E-06 9.12666E-06 6.36186E-06
20 0.6 0.6 6.25636E-03 2.09746E-04 6.38664E-03 3.40023E-04 6.60887E-03 5.62261E-04
1.0 2.17893E-01 1.89313E-03 2.19069E-01 3.06904E-03 2.21075E-01 5.07511E-03
0.2 3.14827E-05 1.86827E-05 4.30869E-05 3.02869E-05 6.28823E-05 5.00823E-05
1 0.6 2.98822E-02 1.88869E-03 3.10554E-02 3.06180E-03 3.30565E-02 5.06297E-03
1.0 1.0203E+00 2.03892E-02 1.0330E+00 3.30540E-02 1.0546E+00 5.46597E-02
TaBLE 2: The approximate values and the absolute relative error values using B-by-BM for nonlinear case (k = 2).
N , v=0.21 v=0.27 v=0.33
Approx.g Errorgy, Approx.g Errorgy, Approx.g Errorgy,
0.2 1.02402E-07 2.89760E-12 1.02403E-07 3.83470E-12 1.02405E-07 5.43320E-12
0.2 0.6 2.23988E-04 3.99838E-08 2.24001E-04 5.29166E-08 2.24023E-04 7.49807E-08
1.0 8.01059E-03 1.05942E-05 8.01402E-03 1.40251E-05 8.01988E-03 1.98833E-05
0.2 2.77120E-06 6.40799E-09 2.77328E-06 8.48029E-09 2.77681E-06 1.20153E-08
10 0.6 0.6 6.06303E-03 1.64133E-05 6.06834E-03 2.17224E-05 6.07739E-03 3.07804E-05
1.0 2.16985E-01 9.85292E-04 2.17304E-01 1.30451E-03 2.17849E-01 1.84975E-03
0.2 1.30339E-05 2.33973E-07 1.31096E-05 3.09638E-07 1.32387E-05 4.38713E-07
1 0.6 2.86493E-02 6.55769E-04 2.88614E-02 8.67894E-04 2.92234E-02 1.22981E-03
1.0 1.0352E+00 3.52274E-02 1.0466E+00 4.66473E-02 1.0661E+00 6.61596E-02
0.2 1.02402E-07 2.92220E-12 1.02403E-07 3.86720E-12 1.02405E-07 5.47920E-12
0.2 0.6 2.23955E-04 6.40800E-09 2.23957E-04 8.48030E-09 2.23960E-04 1.20154E-08
1.0 8.00086E-03 8.66158E-07 8.00114E-03 1.14629E-06 8.00162E-03 1.62419E-06
0.2 2.77120E-06 6.40866E-09 2.77328E-06 8.48118E-09 2.77681E-06 1.20166E-08
20 0.6 0.6 6.06202E-03 1.54093E-05 6.06701E-03 2.03926E-05 6.07551E-03 2.88934E-05
1.0 2.16668E-01 6.68128E-04 2.16884E-01 8.84218E-04 2.17252E-01 1.25286E-03
0.2 1.30339E-05 2.33976E-07 1.74931E-06 3.09642E-07 1.32387E-05 4.38719E-07
1 0.6 2.86437E-02 6.50129E-05 2.88539E-02 8.60376E-04 2.92126E-02 1.21903E-03

1.0 1.0332E+00 3.32083E-02 1.0439E+00 4.39488E-02 1.0622E+00 6.22722E-02
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TaBLE 3: The approximate values and the absolute relative error values using DKM for linear case (k= 1).
N ¢ X v=0.21 v=0.27 v=0.33
AppProxX.prm Errorpinv Approx.pm Errorpinv Approx.pm Errorpinm
0.2 1.31400E-07 2.90000E-08 1.49413E-07 4.70130E-08 1.80140E-07 7.77400E-08
0.2 0.6 2.26287E-04 2.33900E-06 2.27741E-04 3.79300E-06 2.30223E-04 6.27500E-06
1.0 8.01120E-03 1.12000E-05 8.01863E-03 1.86300E-05 8.03201E-03 3.20100E-05
0.2 5.13839E-06 2.37359E-06 6.61170E-06 3.84690E-06 9.12583E-06 6.36103E-06
10 0.6 0.6 6.25352E-03 2.06910E-04 6.38227E-03 3.35660E-04 6.60223E-03 5.55620E-04
1.0 2.17224E-01 1.22400E-03 2.18091E-01 2.09100E-03 2.19685E-01 3.68500E-03
0.2 3.14808E-05 1.86808E-05 4.30829E-05 3.02829E-05 6.28735E-05 5.00735E-05
1 0.6 2.98581E-02 1.86450E-03 3.10193E-02 3.02570E-03 3.30035E-02 5.00990E-03
1.0 1.0141E+00 1.41000E-02 1.0244E+00 2.44000E-02 1.0431E+00 4.31000E-02
0.2 1.31400E-07 2.90000E-08 1.49413E-07 4.70130E-08 1.80140E-07 7.77400E-08
0.2 0.6 2.26287E-04 2.33900E-06 2.27741E-04 3.79300E-06 2.30223E-04 6.27500E-06
1.0 8.01120E-03 1.12000E-05 8.01863E-03 1.86300E-05 8.03201E-03 3.20100E-05
0.2 5.13783E-06 2.37303E-06 6.61170E-06 3.84690E-06 9.12583E-06 6.36103E-06
20 0.6 0.6 6.25352E-03 2.06910E-04 6.38227E-03 3.35660E-04 6.60223E-03 5.55620E-04
1.0 2.17224E-01 1.22400E-03 2.18091E-01 2.09100E-03 2.19685E-01 3.68500E-03
0.2 3.14808E-05 1.86808E-05 4.30829E-05 3.02829E-05 6.28735E-05 5.00735E-05
1 0.6 2.98581E-02 1.86450E-03 3.10193E-02 3.02570E-03 3.30035E-02 5.00990E-03
1.0 1.0416E+00 4.16000E-02 1.0244E+00 2.44000E-02 1.0431E+00 4.31000E-02
TaBLE 4: The approximate values and the absolute relative error values using DKM method for nonlinear case (k = 2).
N ¢ X v=0.21 v=0.27 v=0.33
Approx.pxm Error pxy Approx.pxm Errorpinm Approx.pxym Errorpinv

0.2 1.02397E-07 3.00000E-12 1.02396E-07 4.00000E-12 1.02395E-07 5.00000E-12
0.2 0.6 2.23831E-04 1.17000E-07 2.23801E-04 1.47000E-07 2.23756E-04 1.92000E-07
1.0 7.97493E-03 2.50700E-05 7.96913E-03 3.08700E-05 7.06090E-03 9.39100E-04
0.2 2.77078E-06 5.98000E-09 2.77274E-06 7.94000E-09 2.77611E-06 1.13100E-08
10 0.6 0.6 6.05367E-03 7.06000E-06 6.05706E-03 1.04500E-05 6.06346E-03 1.68500E-05
1.0 2.14910E-01 1.09000E-03 2.14854E-01 1.14600E-03 2.14879E-01 1.12100E-03
0.2 1.30309E-05 2.30900E-07 1.31058E-05 3.05800E-07 1.32339E-05 4.33900E-07
1 0.6 2.85827E-02 5.89100E-04 2.87835E-02 7.89900E-04 2.91304E-02 1.13680E-03
1.0 1.0195E+00 1.95000E-02 1.0286E+00 2.86000E-02 1.0450E+00 4.50000E-02
0.2 1.02397E-07 3.00000E-12 1.02396E-07 4.00000E-12 1.02395E-07 5.00000E-12
0.2 0.6 2.23831E-04 1.17000E-07 2.23801E-04 1.47000E-07 2.23756E-04 1.92000E-07
1.0 7.97493E-03 2.50700E-05 7.96913E-03 3.08700E-05 7.96090E-03 3.91000E-05
0.2 2.77078E-06 5.98000E-09 2.77274E-06 7.94000E-09 2.77611E-06 1.13100E-08
20 0.6 0.6 6.05367E-03 7.06000E-06 6.05763E-03 1.10200E-05 6.06346E-03 1.68500E-05
1.0 2.14910E-01 1.09000E-03 2.14854E-01 1.14600E-03 2.14879E-01 1.12100E-03
0.2 1.30309E-05 2.30900E-07 1.31058E-05 3.05800E-07 1.32339E-05 4.33900E-07
1 0.6 2.85827E-02 5.89100E-04 2.87835E-02 7.89900E-04 2.91304E-02 1.13680E-03
1.0 1.0952E+00 9.52000E-02 1.0286E+00 2.86000E-02 1.0450E+00 4.50000E-02
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F1GURE 2: The values of errors by B-by-BM and DKM at T'=0.6, N = 10, and k=1 for v =0.21,0.27, 0.33.

5. Solution of NT-DVIE

We consider the bar in the nonlinear case; then, the integral
equation (39) with continuous kernel reduced to

X

pate 1) =F68)=A| [ k(= [e=yDp(e a0y,
(55)
where y(y, 7, a(y, 7))and f(x, t) € L,[0, b] x C[0, T] are given

continuous functions. A, which have many physical meaning,
may be complex. The kernel k(|t — 7|, |x — y|) is continuous.

5.1. The B-by-BM. In this section, we use the B-by-BM for
solving the NT-DVIE of the second kind.

The interval [0, b] is divided into steps of width h, x; = j
h,j=0,1,---,n,and h = (b — a)/n. The approximate solution
of a;(x) will be defined at mesh points x; and denoted by
%5 j=0,1, -5 1, such as «;; is an approximation to oci(xj).

To solve the NT-DVIE,

U(t)=F(t) - /\Jt JXG(t, 7, %y, U(y, T))dydr, (56)
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FIGURE 3: The values of errors by B-by-BM and DKM at T'=1, N =10, and k=1 for v =0.21,0.27, 0.33.
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FIGURE 4: The values of errors by B-by-BM and DKM at T'=0.2, N =20, and k=1 for v=0.21,0.27,0.33.
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F1GURE 6: The values of errors by B-by- BM and DKM at T =1, N =20, and k=1 for v=0.21, 0.27,0.33.
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EDKM, v=0.21

F1GURE 8: The values of errors by B-by-BM and DKM at T = 0.6, N = 10, and k =2 for v =0.21, 0.27, 0.33.
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v=0.21

DKM

FIGURE 9: The values of errors by B-by-BM and DKM at T'=1, N = 10, and k = 2 for v =0.21,0.27, 0.33.

F1GURE 10: The values of errors by B-by-BM and DKM at T'=0.2, N =20, and k =2 for v=0.21,0.27, 0.33.
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FIGURE 12: The values of errors by B-by-BM and DKM at T' =1, N =20, and k =2 for v =0.21,0.27, 0.33.
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where

U(t) = (o) (1), -
F(t) = (fy(8), = f1(8)
G(t, 7%y, U(y, 7)) = G(£, 7, %, y)y(1. 3, U (), 7))

911 (67, U(7)) 91,5(6: 7, U(7))
G(t, 1, U(T)) = :
g1 (67, U(7)) 9es(t: 7, U(7))
(57)
Then, we get
t rx
o, + AJ J G(t, 7, %, U(y, 7))dydr. (58)
0J0
Rewrite equation (58) as follows:
tpm Xpm
an(t) = £t =] " [ 7 91lt 0503 U )y
0o Jo

tﬂ XYI
A" [ g0t 750, U0 )y

(59)

Here, p is some integer and mis (|k/p|),s=1,2, ---. If the
values a;, &, @, ,,,» are known, then the first integral is
obtained by a quadrature rule using values of the integrand

atr= tpm > tpm+1’ s tp(m+1) 3V = Xpm s Xpma1> " ;andxp(mﬂ)'
Then,

mp
ap=fi(x) -2 {h Z WiiGis (tk’ Tjp Xjo Y jp Upjp =+ ulj):|

Jj=0

(m+1)p

X

_A{h Z wkjgi,s<tk’ Tinp+j> X Vmp+j> ul,mp+jj""’ul,mp+j>:|>
j=mp

(60)

for n=mp+1l,mp+2,---,(m+1)p,m=0,1,---,(N-1),
where wy;, w*); depend on the quadrature rule used.

5.2. Modified Method of Two Blocks. For this method, we take
p =2; the integration over [a, t,,] can be accomplished by
Simpson’s rule, and the integral over[t,;, t,]can be accom-
plished by using a quadratic interpolation of the integrand
at the point t,,,, t,,,.1> thmsz; then, equation (58) becomes

(2m+1)hJ«(2m+1)h

%1 = fi(tomer) = ’\J 9is(tamat> T X5 > U (D, 7))dydr,

(61)

a b

Advances in Mathematical Physics

((2m+2)h p(2m+2)h
J gi,s(t2m+2’ T Xom+20 Vs U(}” T))dydT’

%oz = fi(tamea) = AJ

b

a

(62)

wherei=1,2,---,L,m=0,1, ---.
On the other hand, from (59), equations (61) and (62)
can be written as

2mh

2mh
Xidm+1 =fi(tyms1) — AJ Jb gi,s(t2m+1> T, Xoma1> > U (9, T))dydr

a

(2m+1)h p(2m+1)h
_AJ N J N gi,s(t2m+1>T’ Xom+1>)> U()/, T))dydT’
2m, 2mi

2mh

2mh
Uiomer = i(famez) = AJ Jb 9is(tamez> T Xomans 1> U1, T) ) dydT

a

(2m+1)h p(2m+1)h
- )‘[ : J , 9is(tamiz> T Xapi > Uy, 7)) dydr.
J2m 2m

(63)

Therefore, by equation (60), the approximate solution is
computed by

2m

h
Xiomer = i(tomer) = A [g Z W;g;s (t2m+1’ T Xome1> Vjp Urjp s Mlj)
=0

h
+A 12 [SQi,s(tzmn» T Xams1> Yamo Wiom> = iom)
+ 89, (Bamet> Tams 1> Xamats Yame1> Wi ome1> * > Wiome1)

= 9 (Famet> Tama> X > Yamss Wiomet> 5 “1,2m+z)} |3

(64)

2m+2
!
%omez = fi(bamiz) = A 3 z wjgi,s(t2m+2’ Ti» Xome2r Yo Urjp =5 “Ij) >
0

(65)

where &, o = f;(t,).
Thus, replace the second term in equation (64) by formu-
las (62) and (64), and then, we get

h 2m
Xigmer = fi(tamer) =2 {gz W;g;s (t2m+l’ Tis Xome1>Vjp Xpjp " “Zj)
j=0

++A{g [gi,s(t2m+l’ Tom> Xome1> Yo K1omo > Xam)
+49; (s> Tame12> Xomet> Yame1/20

3 3 1
: g“l,zm + Zai,2m+1 - §“1,2m+2 >

3 3 1
"3 Ao 1 Xlom+1” 3 X1 2m+2

+ Gis(Bamat> Tomat> Xame1> Yama 1> Flomets =5 0‘1,2m+1)] I8

(66)
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2m+2

!
Xiomi2 = fi(tamez) = A [g Z wjgi,:(t2m+2’ Tjp Xomes Vjp K1jp 5> ‘ij),
=0
(67)
or
Xidm+2 =filtymr) —A |:§gi,s(t2m+2’ To> Xamazs Yo (F1gs " » )
+4g; (fam2To> Xamr> Yoo (M11> 5 0g1)
oot g (Bmeas Tamss X2ma2> Yomszr (1 mazs 5 0‘1,2m+2))} >
(68)
where
Wy =Wy, = 1,
w;=3-(-1, j=12-2m-1,
(69)

Finally, we construct 2I linear equations from (67) and

(68) to find the unknown functionsu; ,,,, 1> U; 342-

5.3. The DKM. In this part, we replace the given kernel g(|¢
—1llx—y|) approximately by a degenerate ker-
nelg,(|t — 7l,lx — y | ), that is,

M:

gi(|t—‘r|,|x—y|)=A B/j(x)cj(y) Bi(t)Cy(t),  (70)

n
j=1 i

1

such that

¢t 12
{JJ\g(lt—rl,lx—yl)—gi(lt—rl,lx—y|)|2dtdr} —0 asl— 0.

oJo
(71)

Hence, the solution of equation (55) associated with the
kernel g,(|t — 7|,lx — y | ) takes the form

pa(s )+ A [[gl1t=cblx=y Dy a0 )y =10

(72)

Using (70) in (72), we have
pa(x, t) + A Z zAi,jBi(t)B’j(x) =f(x1), (73)
where

A, J rcxr)cj(y)y(r, y BorT)dydr.  (74)

0J0

Here, A, ; are constants to be determined from the follow-

15
ing formula:

A= [ a0 (y HESEED iA,-,,-B,(r)B’,-(y)) dyd,

0

where (j=0,1,2,---n;m=1,2,---1). If we define

t X

Hm,m (Alm,’AZm,’ ""Alm,> :J J Cm(T)Cm’(y)V
0J0

i=1 j=1

: (T’)’» éf(y’ 7) - %i ZAi,jBi(T)B’j(y)> dydr,
(76)

m=1,2,---1, then can be solved

numerically.

equation (75)

6. Numerical Applications

Consider

x=y)(a(y, 7)) dydr, (u=1).

(77)

>

a(x, t)=f(x,t) - AJ;Ek(V -7

We consider equation (77) in the linear and nonlinear
case, where if k=1, we obtain the LTVIE, so in this case,
we take A =1"/2G and A" =2Gv/(1 - 2v) also when k>2.
We obtain the NTVIE, and in this case, we take A = A,K/4
GA, and K=2G(1+v)/3(1-2v),and we find A, and A,
from equations (32) and (34); a =4 and b =2 are the major
and the minor axes of the ellipse, respectively. In addition,
we study three materials: plutonium A steel v=0.27, and
Copper v =0.33, where v is the Poisson ratio 0 <v < 1/2.

Consider

0= (501 f(l 1)y (a(y 7)) dydr, (u=1),

oJo -

where the exact solution a(x, t) = x*#*,; B-by-BM and DKM
are used to obtain the approximate numerical solutions and
corresponding errors for materials: plutonium, steel, and
copper, respectively, N =10 and 20 and time #=0.2 and
0.6, 1, respectively. Table 1 shows the approximate and the
absolute relative error values for linear case. Table 2 shows
the approximate and the absolute relative error values for
nonlinear case. The codes were written in Maple 10 program.

In Tables 1 and 2, Approx.,; —approximate solution of
B-by-BM and Errorg,, — the absolute error of B-by-BM. In
Tables 3 and 4, Approx.px, —approximate solution of
DKM and Errorpg,, — the absolute error of DKM.

7. The Conclusions

This paper deals with a new computational method for
approximate solution of NT-DVIE of the second kind with
continues kernels. For this purpose, B-by-BM and DKM
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has been presented to solution the problem. These methods
have proven to be effective in solving an equation NT-
DVIE. Error analysis and some numerical examples are pre-
sented for different materials to illustrate the effectiveness
and accuracy of the methods.

From the previous results in Tables 1 and 2 and
Figures 1-12, we notice the following:

(1) When the values of v and A are fixed in the linear and
nonlinear case, then the error value increases with the
time x,t=0.2, 0.6, 1

(2) In the linear and nonlinear case, when the values of
time are fixed, the error value increases with the
increase of v and A

(3) When the values of v, A, and time ¢ are fixed, the error
value decreases with N which is increasing, for the
linear and nonlinear case and for each material (plu-
tonium, steel, and copper)

(4) As x is increasing and t is fixed, the errors are also
increasing for the linear and nonlinear case and for
each material

(5) The approximate solutions calculated by B-by-BM
and DKM are best methods for LT-DVIE and NT-
DVIE

(6) In general, the maximum value of the errors by B-by-
BM and DKM in the linear case is less than the max-
imum value of the errors in the nonlinear case, for all
materials, and the minimum value of the errors in the
linear case is larger than the minimum value of the
errors in the nonlinear case

(7) The previous numerical experiments illustrate the
accuracy of the proposed methods to solve the
problem

Data Availability

All the data are available within the article and also as the ref-
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