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Abstract 
The study investigated the effect of the angular position of the head on the 
blood flow in the jugular vein of giraffes. The vein considered is elastic and 
collapsible such that its cross-sectional area is not uniform. Transmural pres-
sure causes the blood to move along the vein. Mathematical equations de-
scribing the flow were developed, and the vein was considered to be inclined 
at an angle φ  to the horizontal. A finite-difference scheme was used to solve 
the equations of motion for the flow. The results are presented via relevant 
tables and plots. Our findings show that a change in the position of the head 
causes variation in the external pressure, which in turn causes variation in the 
cross-sectional area of the vein. Moreover, a drop (or increase) in the inertial 
pressure of the blood may cause the vein to collapse (or distend), which again 
triggers a change in the pressure. 
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1. Introduction and Mathematical Formulation 

Many fluid-conveying vessels in animal bodies are highly elastic, and in most 
cases, deform substantially as they respond to the traction (i.e., pressure and 
viscous stress) exerted by the fluid. Therefore, the study of flows in elastic vessels 
is of considerable interest and importance for many biomedical and bio-mechanical 
applications [1]. Moreover, it is an extremely challenging fluid-mechanical 
problem. For instance, the flow of blood to the neck and brain of a standing gi-
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raffe is of particular interest. Although several experiments have been conducted 
and theoretical explanations been provided, the issue still remains unresolved. [2] 
studied the physiology and biophysics of fluid circulation in human bodies and 
found that “it is no harder in the circulation for the blood to flow uphill than 
downhill” and that “differences in the level of different parts of the vascular bed 
do not in any way affect the forces for the flow and hence do not affect directly 
the circulation.” Their study also showed that a continuous column of blood in 
both the arterial and venous limbs of the loop is a prerequisite for the vascular 
siphon mechanism [3].  

Veterinarians use mathematical modeling to explain how blood flows in and 
out of the brains of upright animals. The internal jugular veins are the primary 
venous drain for human brain; however, these veins tend to collapse because 
they are positioned above the heart level [4]. Consequently, cerebral blood flow 
in the upright posture would be endangered by a high outflow resistance in the 
case of no alternative cerebral venous outflow pathways. To address this issue, 
they attempted to provide an insight into the hemodynamics of the jugular vein 
in giraffes [5] and [6]. This is because the giraffe has an extremely elongated 
neck, which also helps them overcome competition from other browsers, for 
example, in the African savanna [7]. The long neck also plays an important role 
during fights between young males as well as in courtship rituals. The long neck 
(2 m in length) necessitates physiological adaptations, especially for the cardi-
ovascular and respiratory systems and for thermoregulatory mechanisms. The 
cardiovascular system of a giraffe consists of a large range of intravascular pres-
sures caused by the gravitational pressure gradient in an upright state. The heart 
pumps blood, which then flows through the veins and arteries throughout the 
body. However, the most interesting aspect of this is the flow of blood to the 
body parts that are located above the heart, for example, the head. The flow is 
facilitated by the difference between the atmospheric and internal fluid pressures. 
For the giraffe, the systolic blood pressure ranges between 280 and 350 mmHg, 
while the diastolic blood pressure ranges between 200 and 300 mmHg. Con-
versely, for a domestic mammal, the systolic blood pressure ranges between 125 
and 145 mmHg, while the diastolic blood pressure ranges between 80 and 90 
mmHg. Compared to the giraffe, these values are significantly lower for other 
domestic animals; this may be attributed to the considerable height of the giraffe. 
Moreover, this implies that the heart must generate a very high pressure for the 
blood to reach the head [8]. However, when the right arterial pressure was 
measured in a standing, sedated giraffe, it was lower than the pressure in a 
standing column of blood of the same height as the giraffe’s neck. The above 
phenomenon has motivated several experimental studies to better understand 
the morphology and structure of a giraffe’s neck [9]. However, most of these 
studies have posed more questions than answers. While using both rigid and 
collapsible tube models, [10] observed that the siphon mechanism still operates 
within these vertically oriented models even when the descending limb is partly 
collapsed and flexible. [11] owing to the presence of a continuous column of 
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fluid, the partially collapsed descending veins do not interrupt the siphon me-
chanism. [10] also emphasized the importance of the interaction between the 
viscous and hydrostatic components during the measurement of pressure in a 
vessel. A pressure gradient of 13 to 4 mmHg down the jugular veins of a stand-
ing giraffe was attributed to this interaction, as shown by [11] and [12]. [3] ob-
tained a pressure gradient of approximately −93 to −27 mmHg based on the 
prevailing hydrostatic gradient, which is related to the sum of the gravitational 
and viscous pressures. Furthermore, more recent studies have shown that the 
heart only needs to overcome the viscous resistance of the blood vessels but not 
the weight of the blood pumped to the head of the giraffe [6] [13] [14]. In this 
work, we present a mathematical model describing a long straight tube that can 
collapse as the fluid flows through it, and hence has a variable cross-sectional 
area [15] and [16]. The tube was considered to be elastic and made of a uniform 
material, and the flow was assumed to be nonconducting. The tube was assumed 
to be inclined at angle φ  to the horizontal, such that the total distance moved 
by the fluid was sinL φ , where L is the length of the tube. The flow was consi-
dered to be along the x-axis, and the full time-independent Navier-tokes equa-
tion was solved, in which the length of the tube (L) was considered to be much 
larger than its radius (r), such that L r  [17]. 

Continuity Equation 

In this section, we present the continuity equation, which is also called the mass 
conservation equation. It is derived from the law of conservation of mass, which 
states that the mass remains constant in a steady-state flow (i.e., the stored mass 
in a controlled volume does not change). In a steady flow, the flow rate does not 
change with time, implying that the inflow into the controlled volume is equal to 
the outflow. The continuity equation can be written as  

0.i

i

u
t u

ρρρ
∂∂

+ =
∂ ∂

                       (1) 

where ρ  is the fluid density, t is time, u is fluid velocity. For an incompressible 
flow,  

0,
t
ρ∂
=

∂
                           (2) 

and thus the continuity equation reduces to  

0,i

i

u
u
ρ∂

=
∂

                          (3) 

which represents the rate of change of volume of a moving fluid element per unit 
volume.  

2. Momentum Conservation Equation 

The momentum conservation equation is derived from the law of conservation 
of momentum, which states that the rate of change of momentum in a controlled 
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volume is equal to the sum of the momentum flux into the control volume and 
any external forces acting on the control volume. This implies that the total 
momentum of a closed system is constant. Thus, the change in momentum of a 
small volume element of a fluid is equal to the sum of the dissipative viscous 
forces, pressure gradient, gravity, and other forces acting on the fluid. The gen-
eral momentum conservation equation can be written in the tensor form as  

, ,i ji i
i i

i i

u u
U f

t x x
σ

ρ ρ
∂   ∂ ∂  + = +    ∂ ∂ ∂     

                (4) 

where 1, 2,3i =  and 1,2,3j =  are the summation variables along the x, y, and 
z directions, respectively. The term ifρ  represents the body forces acting on 
the fluid, which in this study are considered to be the pressure and gravitational 
forces. The first and second terms on the left side of Equation (4) represent the 
local and convective accelerations, respectively. For the purpose of this study, the 
momentum equation can be written in the form:  

2 2

2 2 ,u u u p u uu v gz
t x x x x y

ρ ρ µ
 ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + +  ∂ ∂ ∂ ∂ ∂ ∂   

          (5) 

where z is the distance between the end points of the jugular vein, µ  is blood 
viscosity, g is the gravitational forces and x, y are space variables. If the origin is 
fixed, then the muscles exert a force on the vein, which creates an upward pres-
sure. To determine the pressure gradient, the momentum equation was eva-
luated at the edge of the boundary layer, where ρ ρ∞→ . When the fluid is in 
equilibrium, the upward pressure gradient due to the vein muscle is balanced by 
the downward pressure gradient due to the variation in the fluid density. Thus, 
we can write  

.pp g z
x

ρ∂
∇ = − −

∂
                        (6) 

The body force term in the momentum equation along the x-axis can be ex-
pressed as 

pp g z
x

ρ∂
∇ = − −

∂
                         (7) 

By using Equation (6), Equation (7) can be expressed as  

.p g gzρ ρ∞∇ = −                          (8) 

However, 
( )1 2 ,g gz T Tρ ρ ρβ∞ − = −                       (9) 

where 
1

p

p
T

β
ρ

∂ =  ∂ 
 is the coefficient of thermal expansion. 

By combining Equations (7), (8), and (9), we get  

( ) ( )1 21 .p gz g z T Tρ ρ β−∇ + = + + −                 (10) 

Equation (10) represents the total pressure gradient term in the momentum 
equation along the x axis, such that the momentum equation can now be written 
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as  

( ) ( )
2

1 2 2 21 .
uu u u uu v g z T T

t x y x y
ρ ρ β µ

  ∂ ∂ ∂ ∂ ∂
+ + = + + − + +  ∂ ∂ ∂ ∂ ∂   

    (11) 

The momentum equation governing the flow is nondimensionalized for con-
venience, such that 

, , , , ,xU p u tU yUX P U T Y
L U U L Lρ

= = = = =             (12) 

where U is the characteristic velocity and L is the characteristic length of the 
system. The derivatives of Equation (12) can thus be written as 

( )
2 2

2 2

1 11 .o
r e

U U U U UU V z Gr
T X Y F R X Yθ

 ∂ ∂ ∂ ∂ ∂
+ + = + + + + ∂ ∂ ∂ ∂ ∂ 

      (13) 

The shape of the vein is given by sinz L φ= , and hence Equation (22) be-
comes  

( )
2 2

2 2

1 11 sin .o
r e

U U U U UU V L Gr
T X Y F R X Yθφ

 ∂ ∂ ∂ ∂ ∂
+ + = + + + + ∂ ∂ ∂ ∂ ∂ 

    (14) 

Equation ((14)) is used to analyze the effect of inertia on the steady flow in a 
collapsing vein. 

2.1. Discretization 

The system of nonlinear equations obtained for the flow problem in this work, 
that is, Equation (14), was solved using the numerical method of finite differ-
ences, where the derivatives in the governing equations are replaced by their 
corresponding finite difference approximations. 

Equation (14) was discretized using the central difference approximation for 
the partial derivatives with respect to space, while the forward difference ap-

proximation was used for the partial derivatives with respect to time. Term U
X
∂
∂

  

can be approximated at discrete node points using the Taylor series expansion of 

,
k
i jU . The Taylor series expansion of 1,

k
i jU +  and 1,

k
i jU −  can be expressed in 

terms of ,
k
i jU  and its higher-order derivatives as  

( ) ( )2 3

1, , , , ,2! 3!
k k k k k
i j i j i j i j i j

x x
U U xU U U+

∆ ∆
′ ′′ ′′′= + ∆ + + +          (15) 

and 

( ) ( )2 3

1, , , , ,2! 3!
k k k k k
i j i j i j i j i j

x x
U U xU U U−

∆ ∆
′ ′′ ′′′= − ∆ + − +           (16) 

By subtracting Equation (15) from Equation (14) we get  

1, 1,
, . . .

2

k k
i j i jk

i j

U U
U H O T

x
+ −−

′ = +
∆

                  (17) 

The addition of Equations (14) and (15) gives 
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( )
1, , 1,

, 2

2
. . .

k k k
i j i j i jk

i j

U U U
U H O T

x
+ −− +

′′ = +
∆

               (18) 

Note that the derivatives in Equations (15)-(17) are with respect to x. Similarly, 
if the derivatives are taken with respect to y, the following equations are ob-
tained:  

, 1 , 1
, . .

2

k k
i j i jk

i j

U U
U H O T

x
+ −−

′ = +
∆

                  (19) 

and 

( )
, 1 , , 1

, 2

2
. . .

k k k
i j i j i jk

i j

U U U
U H O T

y
+ −− +

′′ = +
∆

               (20) 

The corresponding time derivative can be written as  
1

, ,
1, .

k k
i j i jk

i j

U U
U

t

+

+

−
′ =

∆
                      (21) 

Finally, Equation (14) is discretized using a finite difference scheme on a uni-
form mesh, which consists of a plane divided into a network of uniform rectan-
gles of width x∆  and height y∆ , as shown in Figure 1. 

After neglecting the higher-order terms and assuming 

( )1 1 sin
r

K L Gr
F θφ= + +                    (22) 

to obtain after letting let x y∆ = ∆ ; then, the equation becomes 
 

 
Figure 1. Flow velocity as a function of the distance along the vein at various head 
position angles, for T = 0.5, Mx = 25, My = 25, N = 10, Re = 500, Gr = 1, Fr = 10, L = 2, and 
vo = 0.05. 
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( )

1

2
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e

tr
x
tr
y
tr

R x

∆ = ∆
∆ = ∆


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                        (23) 

to obtain 

( ) ( )
( )

1
, 1 1, 1, 0 2 , 1 , 1

1, , 1, , 1 , 1 ,4

k k k k k
i j i j i j i j i j

k k k k k k
i j i j i j i j i j i j

U r U U V r U U K t

r U U U U U U

+
+ − + −

+ − + −

= − − − − + ∆

+ − + + + +
         (24) 

The boundary conditions used to solve Equation (24) are as follows:  

( )0 , , 0 , ,0x y t U x y= = , ( )0 , , 0U x y t = , ( ) 0, ,f fU x y t Ux Ux= = . 

( )0 0, , 0U x y T Uy= = , ( ) ( ), , sinf fU x y t y Uyπ= = . 

2.2. Results and Discussions 

Equation (24), along with its boundary conditions, was solved using MATLAB 
to obtain the numerical solutions of the flow variables. According to Figure 2, 
the velocity of the blood increases up to a distance of 0.2 m along the vein. Next, 
the blood flows at a constant velocity up to a distance of 0.875 m, following 
which the velocity drops slightly before increasing sharply up to a distance of 0.9 
m. Subsequently, the velocity increases till discharge. Figure 2 also shows that 
the velocity of the blood flow depends on the angular position of the head. For 
instance, we observe that the velocity is higher for more upright head positions. 
 

 

Figure 2. Flow velocity as a function of the distance along the vein at different Re, for μ = 
T = 0.5, Mx = 25, My = 25, N = 10, Gr = 1, Fr = 10, L = 2, νo = 0.05, and ϕ = 45θ. 

https://doi.org/10.4236/wjm.2021.118012


R. O. Amenya et al. 
 

 

DOI: 10.4236/wjm.2021.118012 172 World Journal of Mechanics 
 

Figure 3 shows the velocity profiles at different Reynolds numbers (which is 
defined as the ratio of the inertial forces to viscous forces in the fluid). Accord-
ing to Figure 3, we observe that the velocity increases with decreasing Reynolds 
number (i.e., with the appearance of viscous forces). The velocity profiles for 
different Reynolds numbers exhibit the same trend as a function of the distance 
along the vein. First, the velocity increases sharply with distance, then remains 
constant, and finally, increases sharply again. The viscous forces between the 
vein muscles affect the blood as it flows through the vein and consequently re-
tard its motion. Fluctuations in the vein diameter also cause the blood to speed 
up or slow down accordingly. The Reynolds number was found to be directly 
proportional to the density and velocity of the blood as well as diameter of the 
vein. Therefore, increasing the Reynolds number implies increasing the magni-
tude of any of these three parameters, which can make the blood flow turbulent. 

Figure 4 shows the velocity profiles of the blood flow at various angular posi-
tions of the head. For all position angles, the velocity of blood starts at zero, then 
increases sharply until some distance where it slows down, and finally, increases 
again. For example, when 90φ =  , the velocity increases from 0 to 0.2 m/s for a 
distance of 0 - 1.4 m along the neck, then it increases from 0.2 to 0.4 m/s be-
tween 1.4 and 1.8 m, and finally, the velocity increases sharply to 0.8 m/s be-
tween 1.8 and 1.9 m. When 45φ = −  , the velocity changes from 0 to 0.2 m/s 
within a distance of 0.3 m along the neck, and then it increases sharply to 0.7 
m/s within a distance change of 0.1 m, and finally, slows down to 0.8 m/s within 
a further distance change of 0.1 m. When the angle made by the head is zero (i.e., 

0φ =  ) or the head is in the vertically upright position, the velocity of blood in-
creases from 0 to 0.3 m/s within a distance of 1 m, following which it increases 
significantly to 0.7 m/s at a distance of 1.15 m. 
 

 

Figure 3. Velocity as a function of the distance along the vein at various head position 
angles, for T = 0.1, Mx = 15, My = 15, N = 10, Re = 50, Gr = 10, Fr = 0.25, L = 2, and ν0 = 
0.05. 
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Figure 4. Transmural pressure time along the vein at various head position angles, for T 
= 0.1, Mx = 15, My = 15, N = 10, Re = 50, Gr = 10, Fr = 0.25, L = 2, and ν0 = 0.05. 
 

According to Figure 4, the blood tends to flow faster as the neck of the giraffe 
shifts from a vertically downward to a vertically upright position. This is a result 
of the variation in the gravitational acceleration with time. This also implies that 
there is a reduction in the cross-sectional area of the vein as the head is raised 
(i.e., the vein changes from a collapsed to a distended state). This finding con-
firms the results obtained by Mitchell and Skinner (1993), who showed that the 
venous flow resistance increases at a constant rate as the head is raised up from a 
downward position. Brook and Pedley (2002) also showed that the blood flow 
tends to increase as the giraffe raises its head. 

We observe that when the head is at an angle of 90˚, the velocity of blood 
changes slowly with distance along the vein. This implies that when the head is 
in the horizontal position, the neck muscles relax and the vein assumes an ellip-
tical shape (i.e., the cross-sectional area of the vein is at its maximum), which 
consequently slows down the blood flow. As the angle decreases further (e.g., 

45φ = −  ), the velocity starts to increase again see Figure 5. 
Figure 5 shows the variation of blood pressure with distance along the vein at 

different angular positions of the head. We observe that for short distances along 
the vein, the pressure does not vary significantly, which is true for all head posi-
tions. The pressure changes at a larger distance along the vein, and the pressure 
decreases faster when the angle of inclination of the head is higher. At large val-
ues of the transmural pressure, the cross-sectional area of the vein decreases, re-
sults in pressure change. The pressure change observed is possibly owing to the 
stretching of the neck muscle as the head changes positions. This change in head 
position causes a variation in the external pressure, which in turn causes the 
cross-sectional area of the vein to expand or contract. Moreover, a drop (or in-
crease) in the inertial pressure of the blood may cause the vein to collapse (or 
distend), again triggering a change in pressure. 
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Figure 5. Variation in the pressure as a function of the distance along the vein at different 
inclination angles of the head with respect to the horizontal, for Gr = 500, Re = 1000, V0 = 
0.05, and Fr = 8. 

3. Conclusions 

In this work, we showed that the angular position of the head affects the blood 
flow in the jugular vein of the giraffe. The following conclusions can be drawn 
from our study.  

1) Blood flow velocity is higher when the head is in an upright position than 
in the horizontal position. 

2) The Reynolds number is inversely proportional to the viscosity of blood. 
Hence, the blood flow becomes more laminar with increasing viscosity; this in 
turn decreases the velocity. 

3) Conversely, a more viscous and turbulent flow results from a decrease in 
the blood viscosity. Hemodynamic studies show that any change in the hemato-
crit value results in a change in the blood viscosity.  

4) An increase in the angle of inclination of the head reduces the blood pres-
sure in the vein and vice versa. 
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