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ABSTRACT 
 
Due to their high inhibitory action against Escherichia coli (E. coli), the rise of multidrug-resistant 
strains of the bacteria necessitates the testing and development of a new set of Schiff bases as 
anti-E. coli agents worldwide. In this study, the Genetic function approximation (GFA) Quantitative 
structure-activity relationship (QSAR) analyzes selected Schiff bases with anti-E. coli activity. This 
was done using different molecular descriptors and Hansch's approach, which results in the 
production of one statistically significant hepta parameter model as the strongest model with a 
squared correlation coefficient (R

2
) = 0.828, adjusted squared correlation coefficient (R

2
adj) = 

0.775, cross-validated correlation coefficient (Q
2
) = 0.691, Difference between R

2
 and Q

2
, Q

2
 (R

2
 - 

Q
2
) = 0.137, external prediction (R

2
pred.) = 0.751 and lack of fit (LOF) of 0.067 value were selected 

as the best model based on its sound statistical parameters. The development model demonstrated 
the predominance of the descriptors Minimum H E State (Hmin) and Valence path order 6 (VP-6) in 
influencing the observed anti-E. coli activity of Schiff bases. Insilico techniques can certainly provide 
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a quick, inexpensive and safe quantitative risk assessment for this class of compounds. It is 
envisaged that the QSAR results discovered in this work will provide crucial structural insights 
towards the design of effective anti-E. coli drugs based on Schiff bases 
 

 
Keywords: Escherichia coli; schiff bases; hansch's approach; QSAR; descriptor. 
 

1. INTRODUCTION 
 
“Schiff bases are characterized by an imine 
group –N=CH, which helps to elucidate the 

mechanism of transamination and racemization 
in biological systems” [1]. In terms of biological 
capabilities, it has an antibacterial and antifungal 
effect. In recent years, Schiff bases have 
received significant attention because of their 
physiological and pharmacological activities [2]. 
In both animals and people, antimicrobial drugs 
serve a key role in lowering illness and death 
caused by infectious diseases. However, 
selective pressure applied to existing 
antimicrobial drugs has hampered the 
development and spread of drug-resistance 
characteristics among disease-causing and 
commensal bacteria [3]. “Escherichia coli or E. 
coli are gram-negative bacilli of the family 
Enterobacteriaceae” [4]. E. coli is a common 
bacterium found in the large intestine of humans 
(it is a bacterium commonly found in the 
intestines of humans and animals). Of serious 
concern is the development of resistance by 
Escherichia coli or E. coli strains to the current 
antibiotics such as ampicillin, sulfonamide, 
gentamicin, streptomycin, ciprofloxacin, 
trimethoprim, amoxicillin [5-6]. E. coli is a 
common commensal bacterium in people and 
animals, but pathogenic forms can cause 
gastroenteritis, urinary tract infection, meningitis, 
peritonitis, and septicemia, among other illnesses 
[3]. This trend of resistance exhibited by this 
organism poses serious threat to human and 
animals health, necessitating the search for 
newer antibiotics [7]. This class of organic 
compounds have also demonstrated significant 
inhibitory activity against the growth of E. coli [8-
11] making them a viable drug candidate in 
man's fight to combat the pathogenic microbe's 
alarming trend of multi-drug resistance [12]. 

 
Conventional drug discovery and development is 
characterized by a method based on a trial and 
error [13]. This is time-consuming, costly due to 
the enormous expense of failures of candidate 
drugs late in their development and a threat to 
green chemistry due to enormous waste 
released into the environment. “QSAR offers 
important structural insight into the design of 

novel anti-microbial drugs by exploring and 
harnessing the structural requirements 
controlling the observed anti-microbial activities 
as well as a providing predictive model for bio-
activities of potential drug candidates, reducing 
the requirement for lengthy, costly and 
hazardous laboratory test” [14]. QSAR is based 
on the conception that there exists a close 
relationship between bulk properties of 
compounds and their molecular structure [15]. As 
a result, identifying these presumed correlations 
and then quantifying them is a key principle of 
chemistry, establishing a clear connection 
between the macroscopic and microscopic 
properties of matter [16]. 
 
By examining the correlations between the 
experimental pMIC of the compounds and their 
calculated molecular descriptors, this work aims 
to develop a statistically robust, predictive, and 
rational Genetic function approximation (GFA) 
based QSAR model for inhibitory activity of Schiff 
bases against E. coli. 
 

2. MATERIALS AND METHODS 
 
H.P 2000/computer system (Intel Pentium), 
1.30GHz processor, 4GB RAM size on Microsoft 
Windows 13 Ultimate Operating System, Spartan 
14 V.1.1.0, chem draw 12.0.1V, Padel descriptor 
tool kit, and Microsoft office Excel 2016 version 
Statistical software, Material Studio (modeling 
and simulation software) version 7.0, DTC are 
the materials used in this study [17]. QSAR 
investigations were carried out in this work using 
Hansch's method. According to Hansch's 
method, structural properties of compounds are 
determined in terms of several physicochemical 
parameters, and these parameters are then 
associated with biological activity using a 
regression analysis equation [18]. In Image 1, the 
many processes are depicted in a flowchart. 
 

2.1 Data Collection 
 
A data set comprising of series of 41 schiff bases 
Escherichia coli derivatives was taken from 
literature [8-11,19]. Table 1 shows the chemical 
structures and experimental minimum inhibitory 
concentration (pMIC) values of Schiff bases' 



 
 
 
 

Juliet et al.; AJOCS, 11(4): 44-56, 2022; Article no.AJOCS.88032 
 

 

 
46 

 

inhibitory activity against Escherichia coli. 70% of 
the data (31 compounds) was utilized as training 
set in model building, with the remaining 30% (14 

compounds) serving as a test set for external 
validation of the most statistically significant 
QSAR model [20]. 

  
 

 
Image 1. QSTR Methodology flow chart (Source: [7]) 

 
Table 1. Chemical structures and experimental pmic values of anti-escherishia coli inhibitory 

activity 
 

S/n Structure  pMIC S/n Structure  pMIC 

1.  
 

1.342 2.  
 

1.255 
 

3.  
 

1.556 4.  
 
1.079 

5. 
 

 
 

1.806 6.  
 

1.415 



 
 
 
 

Juliet et al.; AJOCS, 11(4): 44-56, 2022; Article no.AJOCS.88032 
 

 

 
47 

 

S/n Structure  pMIC S/n Structure  pMIC 

7.  
 

1.806 8.  
 

2.093 

9.  
 

2.301 10.  
 

2.301 

11.  
 

2.398 12.  
 

2.000 

13.  
 

2.301 14.  
 

1.362 

15.  
 

1.322 16.  
 
1.380 

17.  
 

1.623 18.  
 

1.301 
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S/n Structure  pMIC S/n Structure  pMIC 

19.  
 

1.591 20.  
 
1.342 

21.  
 

1.204 22.  
 

1.602 

23.  
 

1.255 24.  
 

1.342 

25.  
 

1.301 26.  
 

1.322 

27.  
 

1.380 28.  
 
1.230 
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S/n Structure  pMIC S/n Structure  pMIC 

29.  
 

1.362 30.  
 

1.301 

31.  
 

1.204 32.  
 

1.301 

33.  
 

1.279 34.  
 

1.342 

35.  
 

1.415 36.  
 

1.204 

37.  
 

1.255 38.  
 

1.230 
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S/n Structure  pMIC S/n Structure  pMIC 

39.  
 

1.279 40.  
 

1.322 

41.  
 

1.431 42.  
 

1.255 

43.  
 

1.279 44.  
 

1.279 

45  
 

1.000    

 

2.2 Molecular Optimization 
 

Chemdraw ultra V12.0 was used to draw the 
chemical structure of each compound in the data 
sets, which was then identified and stored as a 
*cdx file. Chem 3D Pro's molecular mechanics 
(MM) technique was used to optimize the 
compounds. The goal of optimization was to 
discover the molecule's equilibrium or lowest 
energy geometry. “For each molecule, the lowest 
energy structure was employed to calculate its 
physicochemical parameters (molecular 
descriptors)” [18]. 
 

2.3 Descriptors Calculation 
 
The (Pharmaceutical Data Exploration 
Laboratory) PaDEL descriptor tool kit [21] was 

utilized to calculate the molecular descriptors 
used in this QSAR modeling. For this project, 
almost 1000 descriptors ranging from 0D through 
1D, 2D, and 3D were used [18]. 
 

2.4 Data Normalization  
 

Table 1 shows the chemical structures of the 
compounds as well as their experimental pMIC. 
Data normalization was performed on the 
dependent variable (MIC) by converting the 
experimental MIC values to logarithmic scale 
[pMIC = log10 MIC]. This was done to get a more 
linear response and reduced data dispersion. 
 

2.5 Learning Process 
 

Using the Microsoft Excel package in Microsoft 
Office 2016, the correlation between biological 
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activities (pMIC) of the compounds and the 
computed descriptors was achieved during this 
approach. In order to pick the appropriate 
descriptors for this regression study, Pearson's 
correlation matrix was employed as a model. To 
create QSAR models, the selected descriptors 
were subjected to regression analysis [12] using 
Genetic Function Approximation (GFA) in 
material studio software [22] with empirically 
determined activities as the dependent variable. 
The models were evaluated using a "lack of fit" 
(LOF) score, which was calculated using a 
modest version of Friedman's original formula, 
with the best model receiving the highest fitness 
score [23,24]. The original Friedman formula is 
used to calculate the LOF [25] shown in equation 
1.  
 

‘LOF = SSE(1-c+dp/m)2----------------------- (1) 
 

SSE stands for sum of squared errors, while 'c' 
stands for the number of terms in the model 
(excluding the constant term), 'd' stands for the 
user-defined smoothing parameter, 'p' stands for 
the total number of descriptors contained in all 
model terms (ignoring the constant term), and'm' 
stands for the number of samples in the training 
set’ [26]. In contrast to the commonly used least 
squares measure, the LOF measure cannot 
always be decreased by adding more terms to 
the regression model [27]. The LOF measure 
prevents overfitting by minimizing the tendency 
to simply add more terms [28].  

2.6 Model Validation 
 
Internal and external validation factors were     
used to assess the best models' fitting ability, 
stability, dependability, and predictive ability. 
Table 2 shows a comparison of the                    
validation parameters to the lowest required 
value for a generally acceptable QSAR model 
[29]. 
 

2.7 Internal Validation Parameters  
 
This validation was carried out using the same 
data that was used to develop the model [30]. 
The square of the correlation coefficient (R

2
), 

Adjusted R
2
 (R

2
adj), Q

2
 (Leave one out cross 

validation coefficient, Validation ratio (F value)) 
are some of the internal validation metrics used 
in this study [31]. 
 

2.8 External Validation Parameters  
 
Internal validation is a crucial phase in the 
creation of a QSAR model. The model's internal 
validation findings suggest that it has a higher 
level of stability and predictability. However, it 
shows no genuine capacity to predict molecules 
in an external test set. As a result, the best 
model's external forecasting power and 
extrapolation should be assessed [23]. R

2
pred is 

the external prediction parameter employed in 
this study. 

 
Table 2. Validation metrics for a generally acceptable QSAR model [22] 

 

S/N Symbol Name  Threshold  

1 R
2
 Coefficient determination  >0.6 

2 Q
2 

Cross validation coefficient  >0.5 
3 R

2
pred. External test set’s coefficient of 

determination 
>0.6 

4 R
2
 - Q

2
 Different between R

2 
andQ

2 
<0.3 

5 F value Validation ratio High  
6 P95%  Confidence interval at 95% confidence 

level.  
< 0.05  

Sources : [22,23] 

 
3. RESULTS AND DISCUSSION 
 
Model 1 Equation; 

 
                                                                                    

 
Friedman LOF = 0.073, R

2 
=0.828, R

2
adj =0.775, Q

2
=0.691, S.R = yes, Fvalue =15.777, C.Exp.error 

=0.069, Minimum error = 0.000. 
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Table 3. Definition of various descriptors used 
 

S/N Descriptor Symbol Definition 

1 X1 VPC-4 Valence path cluster, order 4 
2 X2 VP-6 Valence path, order 6 
3 X3 maxsCH3 Maximum atom-type E-State:-CH3 
4 X4 Hmin Minimum H E-State 
5 X5 ETA_Eta Composite index Eta 
6 X6 WT.eneg Non-directional WHIM, weighted by 

Mulliken atomic electronegativites 
7 X7 WK.eneg  Non-directional WHIM, weighted by 

Mulliken atomic electronegativites  

 

3.1 Plot of Experimental Versus Predicted 
pMIC of Model 1  

 

The optimization model's agreement between 
experimental and predicted pMIC values for 
molecules employed in the training and validation 
set compounds is shown in Fig. 1 and Fig. 2, 
respectively. 
 

3.2 Residual Plot of Model  
 

The measure of the dispersion of residual pMIC 
values from the predicted pMIC values is shown 
in Fig. 3. 

3.3 Comparison of Actual and Predicted 
pMIC 

 
Table 4 shows the comparison of the model's 
predicted pMIC with their experimental values 
[32]. 

 
3.4 External Validation of the Model  
 
Table 5 shows the actual, predicted and               
residual pMIC values of the test set compounds 
[33]. 

 

 

 

Fig. 1. Plot of actual versus predicted pMIC (Training set) 
 

 

 

Fig. 2. Plot of actual versus predicted pMIC (Test set) 

y = 0.8276x + 0.2547 
R² = 0.8276 

-2 

-1 

0 

1 

2 

3 

4 

5 

-4 -2 0 2 4 6 

A
ct

u
al

 p
M

IC
 

Predicted pMIC 

R² = 0.7509 

y = 1.0306x 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

-3 -2 -1 0 1 2 3 4 5 A
ct

u
al

 p
M

IC
 

Predicted pMIC 



 
 
 
 

Juliet et al.; AJOCS, 11(4): 44-56, 2022; Article no.AJOCS.88032 
 

 

 
53 

 

 

 
Fig. 3. Residual plot of model 

 
Table 4. Actual, predicted and residual pMIC of model (training set) 

 

Compound Actual pMIC Equation 1: predicted 
values 

Equation 1: 
residual values 

1 1.342 1.182 0.160 

2 1.255 1.324 -0.069 

4 1.079 1.308 -0.229 

5 1.806 1.754 0.052 

7 1.806 1.682 0.124 

8 2.093 2.049 0.044 

10 2.301 2.165 0.136 

11 2.398 2.165 0.233 

13 2.301 2.231 0.070 

14 1.362 1.303 0.059 

16 1.380 1.536 -0.156 

17 1.623 1.624 -9.090e-004 

19 1.591 1.898 -0.307 

20 1.342 1.593 -0.251 

22 1.602 1.268 0.334 

23 1.255 1.171 0.084 

25 1.301 1.342 -0.041 

26 1.322 1.421 -0.099 

28 1.230 1.054 0.176 

29 1.362 1.376 -0.014 

31 1.204 1.384 -0.180 

32 1.301 1.212 0.089 

34 1.342 1.416 -0.074 

35 1.415 1.404 0.011 

37 1.255 1.172 0.083 

38 1.230 1.055 0.175 

40 1.322 1.374 -0.052 

41 1.431 1.497 -0.066 

43 1.279 1.400 -0.121 

44 1.279 1.264 0.015 

45 1.000 1.187 -0.187 
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Table 5. Actual, predicted and residual pMIC of model (test set) 
 

Compound 
 

pMIC VPC-4 VP-6 Maxs 
CH3 

hmin ETA_ 
Eta 

WT. 
eneg 

WK. 
eneg 

pred. 
Pmic 

3 1.556 0.854 0.541 2.083 0.097 11.356 16.271 -0.247 1.348 
6 1.415 0.846 0.615 0 0.072 15.826 12.251 -0.150 2.693 
9 2.301 0.412 0.298 0 0.144 7.991 10.182 0.327 2.546 
12 2 0.890 0.648 0 0.129 11.982 13.415 -0.082 1.879 
15 1.322 0.964 0.720 1.575 0.100 13.230 16.858 -0.125 1.196 
18 1.301 1.383 1.039 0 0.065 16.168 13.818 -0.072 1.848 
21 1.204 1.522 1.064 0 0.076 17.585 14.045 -0.071 1.968 
24 1.342 1.349 1.049 0 0.100 16.126 15.912 0.349 1.620 
27 1.38 1.830 1.330 2.078 -5.95E-04 28.200 18.322 -0.181 1.766 
30 1.301 1.730 1.427 1.715 0.028 27.871 21.432 0.171 1.170 
33 1.279 2.177 1.562 2.084 -0.017 32.487 15.928 0.009 2.144 
36 1.204 1.830 1.330 2.078 -5.95E-04 28.201 18.322 -0.181 1.766 
39 1.279 1.191 0.899 0 0.069 16.509 20.789 -0.250 1.472 
42 1.255 0.610 0.442 2.065 0.105 10.737 18.325 -0.246 1.146 

 

3.5 Molecular Optimization and 
Descriptor Calculation  

 

The molecules used for this study were 
successfully optimized at each stage. The 
optimization time for each level of theory follows 
Molecular mechanics. The molecular properties 
(descriptors) computed from each optimized 
structure include the Chemdraw 12.0.1V 
software, PaDEL descriptor toolkit listed above. 
The successful optimization of the studied 
molecules indicates that their structures 
correspond to their real or natural geometry. 
Thus, all the descriptors derived from these 
structures are reliable. 

 
3.6 GFA Derived QSAR Model for SCHIFF 

Bases Against Escherichia coli  
 
Model-1 was chosen as the best model for 
estimating the pMIC of Schiff bases molecules 
based on the model with the best statistical 
parameters [12]. To anticipate the inhibitory 
activity of Schiff bases against E. coli, Model-1 
was created. The GFA QSAR model's result is 
consistent with the standard stated in Table 2, as 
R

2
 = 0.828, R

2
adj =0.775, Q

2
 = 0.691, R

2
pred. = 

0.751. This demonstrates the model's strength. 

 
The coefficient of determination (R

2
) being near 

to 1.0 indicates that the model described a 
significant portion of the response variable 
(descriptor), which is sufficient for a robust QSAR 
model [18]. “The model's strong adjusted R

2
 

(R
2
adj) value and closeness in value to R

2
 

indicates that it has excellent explanatory power 
for the descriptors in it. In addition, the high and 
close proximity of Q

2
 to R

2
 indicated that the 

model was not overfit. The model's high R
2
pred. 

indicates that it can make accurate predictions 
for novel compounds that fall within its 
applicability domain” [34]. The overall 
significance of the regression coefficients is 
determined by the F value The model's high F 
value indicates that the regression coefficients 
are significant. Table 3 shows a comparison of 
the compounds' observed and expected 
inhibitory actions. The low residual values in the 
Table demonstrate the predictability of model 1. 
The comparison of observed pMIC vs projected 
pMIC (Fig. 1) also has a strong linearity (R

2
 = 

0.828), indicating the model's high predictability 
[18]. ‘The measured pMIC was plotted against 
the residual pMIC to see if there was a 
systematic error in the model construction (Fig. 
3). The absence of systemic error in model 
development was evidenced by the propagation 
of residuals on both sides of zero’ [12].  

 
3.7 The Significance of Descriptors in 

Model 1  
 
The positive coefficients of the descriptors X1, 
X5, and X7 imply that as the values of these 
descriptors rise, so does the magnitude of the 
pMIC of these compounds against E. coli. As a 
result, the lower the biological activity of these 
compounds against E. coli, and vice versa, the 
higher the values of these descriptors in these 
molecules. 
 
Molecular electronegativity descriptors X6 and 
X7 (Non-directional WHIM, weighted by Mulliken 
atomic electronegativites (WT.eneg), Non-
directional WHIM, weighted by Mulliken atomic 
electronegativites (WK.eneg)). The E. coli 
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inhibitory activity of the compounds increases as 
the electronegativity of the compounds 
decreases, according to the QSAR optimization 
model. 
 
X1 and X2 (Valence path cluster, order 4(VPC-4), 
Valence path, order 6(VP-6)) is a descriptor of 
molecular size. Its correlation with pMIC of the 
molecule as shown in the model indicate that the 
biological activity of the studied compounds 
against E. coli increases with a decrease in the 
size of the compounds. Therefore, for an 
enhanced biological activity from Schiff bases 
against E. coli, the size of molecules should be 
minimal.  
 

3.8 Summary of Findings 
 
The model above represents the developed 
optimum QSAR models used to investigate the 
structural requirements influencing the reported 
biological activities of Schiff bases. This model 
gives the best predictive model for pMIC of Schiff 
bases against E. coli. The observed pMIC of the 
compounds against E. coli was found to be 
heavily influenced by X2 and X4. These 
descriptors account for roughly 61.16 percent of 
the compounds' anti-E. coli inhibitory action. The 
negative correlations of the descriptors indicate 
that the lesser the value of such descriptors in 
such a molecule, the greater the pMIC and the 
lesser the molecule's biological activity against E. 
coli, and vice versa. 
 

4. RECOMMENDATIONS 
 

Based on this research, it is suggested that in the 
prospective discovery and development of new 
Schiff bases as anti-E. coli drugs, the 
compounds be made as small as possible 
because the molecular size is negatively 
associated with the bioactivity of the compounds, 
as shown in the GFA derived model. In order to 
produce a reasonable anti-E. coli activity, the 
amount of hydrogen atoms in the constituent or 
parent structure should be high. In addition, more 
QSAR work on the pharmacokinetic aspects of 
these drugs is needed. Because drug treatment 
may not only be a product of its action, but also 
of how the human body will react to the 
medication, it must be safe and effective. 
 

5. CONCLUSION 
 

The produced QSAR models were used to 
investigate the structural requirements governing 
the antibacterial characteristics reported. The 

objectives of the study have been met. Internal 
and external validation procedures have shown 
the QSAR models' resilience and usefulness. It 
was discovered that the structural characteristics 
X1, X2, X3, X4, X5, X6, and X7 (Valence path 
cluster, order 4 (VPC-4), Valence path, order 6 
(VPC-6) were important for the inhibitory effect of 
Schiff bases against E. coli (VP-6), The dominant 
structural characteristics responsible for the 
studied inhibitory activity of the molecules 
against E. coli were Maximum atom-type E-
State: CH3 (maxsCH3), Minimum H E-State 
(Hmin), Composite index Eta (ETA Eta), Non-
directional WHIM, measured by Mulliken atomic 
electronegativites (WT.eneg) as well as Non-
directional WHIM, measured by Mulliken atomic 
electronegativites (WK.en). Furthermore, the 
amount of knowledge contained in these models 
is expected to enable a quick, cost-effective, and 
environmentally friendly means of developing 
novel and less hazardous bioactive Schiff base 
chemicals to combat the growing trend of 
multidrug-resistant E. coli strains. 
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