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Coal gangue-based geopolymer concrete is an environmentally friendly material made from coal gangue, solid waste from the coal
mine. Compressive strength is one of the most important indexes for concretes. Different oxide contents of coal gangue will affect
the compressive strength of the geopolymer concrete directly. However, there is little study on the relationship between oxide
contents and compressive strength of the geopolymer concrete. Experiments are commonly used methods of determining the
compressive strength of concretes, including geopolymer concrete, which is time-consuming and inefficient. -erefore, in the
work here, a support vector machine and a modified cuckoo algorithm are utilized to predict the compressive strength of
geopolymer concrete. An orthogonal factor is introduced to modify the traditional cuckoo algorithm to update new species and
accelerate computation convergence.-en, the modified cuckoo algorithm is employed to optimize the parameters in the support
vector machine model. -en, the compressive strength predictive model of coal gangue-based geopolymer concrete is established
with oxide content of rawmaterials as the input and compressive strength as the output of the model. -e compressive strength of
coal gangue-based geopolymer concrete is predicted with different oxide contents in raw materials, and the effects of different
oxide contents and oxide combinations on compressive strength are studied and analyzed. -e results show that the support
vector machine and the modified cuckoo algorithm are valid and accurate in predicting the compressive strength of geopolymer
concrete. And, coal gangue geopolymer concrete compressive strength is significantly affected by oxide contents.

1. Introduction

In order to overcome the shortcomings of high energy
consumption and heavy pollution of traditional concrete,
the authors have successfully made coal gangue-based
geopolymer by mixing coal gangue, fly ash, and standard
sand [1, 2]. Compressive strength is a very important in-
dicator for evaluating the performance of geopolymer
concrete. Many factors affect the compressive strength of
coal gangue-based geopolymer concrete. Wang et al. [3]
proved that PS concretes have comparable compressive

strengths with PC ones at 180 days. Sheng et al. [4] discussed
the effect of calcium carbonate hydrate on the mechanical
properties of cement-based materials. Fan Bo et al. [5]
demonstrated the accuracy of the support vector machine
model for accident risk prediction under Gaussian Kernel:
the accuracy rate is 73.20%, and the classification of normal
traffic flow is 91.44%. Jianbin Li et al. [6] verified the ef-
fectiveness of establishing TBM construction control pa-
rameters based on Support Vector Regression. Wang et al.
[7] used 29Si MAS NMR and microhardness to study the
C-S-H microstructure and micromechanics of cement paste
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under NH4NO3 dissolution. Khatib Zada Farhan et al. [8]
assessed important parameters involved in geopolymer
materials. Raw materials such as coal gangue and fly ash
contain oxides with different compositions and contents.
Since the polymer process of geopolymers is the dissolving of
Al and Si elements in the raw materials in an alkaline en-
vironment, and finally forming Al-O-Si and Si-O-Si crystals
[9], the oxide composition and its content in raw materials
will have an important impact on the compressive strength
of the geopolymer concrete. At present, the most commonly
used method for determining the compressive strength of
concrete tests, which is early curing, is long (usually 28 days
for maintenance) and a lot of manpower, material, and fi-
nancial resources are needed. -erefore, finding an intelli-
gent algorithm to replace part of the test content can predict
the compressive strength of geopolymer concrete as soon as
possible after pouring, which can reduce the consumption of
manpower, material resources, financial resources, and time,
which is of great theoretical value and practical significance
for improving the progress and quality of construction. In
fact, the prediction of compressive strength of cement and
other cementitious materials and concrete has also received
the attention of relevant researchers in recent years. But the
artificial neural network prediction method also has obvious
problems, artificial neural network learning algorithm has
good function approximation ability and self-learning
ability, but it is based on the theory of large sample and
minimum empirical risk, and these shortcomings limit its
application to some extent. -erefore, it is of great im-
portance to study appropriate intelligent algorithms to
predict the compressive strength and reveal the effects of
different oxide contents on the compressive strength of coal
gangue-based geopolymer concrete.

Support Vector Machine (SVM for short) is a new
model based on statistical theory, which shows many
advantages and superiority in solving small sample, highly
nonlinear, and high-dimensional pattern recognition
problems. -ere are still problems to be solved in the
support vector machine, and how to optimize the kernel
function which is suitable for the given problem is a
difficult problem to be studied in depth.-is paper uses an
intelligent cuckoo algorithm to optimize the kernel
function and related parameters in the support vector
machine. In order to overcome the shortcomings of the
traditional cuckoo algorithm, such as large search range
and low search efficiency, this paper proposes to introduce
the orthogonal crossover operator into the traditional
cuckoo algorithm to obtain the improved cuckoo algo-
rithm to quickly find the optimal solution.

In this paper, the compressive strength of coal gangue-
based geopolymer concrete is predicted based on a support
vector machine and improved cuckoo algorithm. An or-
thogonal crossover operator is introduced to improve the
traditional cuckoo algorithm, and then the improved cuckoo
algorithm is used to optimize the parameters of the support
vector machine. -e prediction model and algorithm of
compressive strength of coal gangue-based geopolymer
concrete are established. In the prediction model of com-
pressive strength, the important factors that affect the

compressive strength of geopolymer concrete based on coal
gangue are discussed. -e oxide content in raw materials is
used as the input parameter; the compressive strength of coal
gangue-based geopolymer concrete is used as the output
parameter. -e prediction model between the compressive
strength of coal gangue-based geopolymer concrete and the
oxide content of raw materials was established. -e existing
data are used to train the prediction model; after meeting the
accuracy requirements, the compressive strength of coal
gangue-based geopolymer concrete with different oxide
content in rawmaterials and oxide combination is predicted.
-e influence of oxide content on the compressive strength
of coal gangue-based geopolymer concrete is studied and
analyzed.

2. Preparation of Coal Gangue-Based
Geopolymer Concrete

In this paper, coal gangue-based geopolymer concrete has
been successfully made using coal gangue, fly ash, and sand
as raw materials. -e coal gangue selected in this paper is
from spontaneous combustion coal gangue in Fuxin City,
Liaoning Province.-emain chemical components of Fuxin
spontaneous combustion coal gangue are SiO2, Al2O3,
Fe2O3, CaO, and other elements. -e main chemical con-
stituents of coal gangue are shown in Table 1 [10]. -e main
chemical components of fly ash are shown in Table 2.
Technical indicators of standard sand are shown in Table 3.

It can be seen from Table 1 that the main chemical
compositions of coal gangue after spontaneous combustion
will not change significantly, SiO2 and Al2O3 are still the
main components, and the content of SiO2 slightly increases.

-e main equipment used in the test includes a jaw
crusher, sealed sample preparation crusher, desktop electric
drying box, standard constant temperature, and humidity
curing box, universal testing machine, etc. In order to study
the influence of curing temperature on the compressive
strength of geopolymer concrete, four of the test blocks are
cured in the natural room temperature environment (20–25
°C), and the other four specimens are bonded with plastic
film as a group of curing in the oven. In order to compare the
effects of different curing temperatures on the performance
of geopolymer concrete, different curing temperatures are
used in the oven. After curing different ages (3d, 7d, 28d), the
compressive strength and flexural strength of all specimens
were tested after 1d in the room. -e final compressive
strength and flexural strength were taken as the average
value of the same group.

-e process of making geopolymer concrete test blocks is
as follows:

(1) Firstly, sodium hydroxide (SH) solution was mixed
with calcium carbonate (CC) powder to generate
alkaline excitation powder composed of calcium
hydroxide (CH), sodium carbonate (SC), and pirs-
sonite (P), which was dried in an oven at 80° for
8 hours.

(2) -en, it was crushed to fixed particle size, and finally
the activator powder particle size of less than
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0.03mm powder was taken, as an activator for the
preparation of coal gangue based geopolymer
concrete.

(3) -en, the (spontaneous combustion) coal gangue
block is crushed by a sledgehammer and repeatedly
crushed into small particles in a crusher and sieved to
obtain a powder with a particle size of 0.01–0.09mm.

(4) Sands and stones were poured into the mixer, with
stirring for about 140s, then the coal gangue powder
and fly ash were poured, with stirring for about 20s,
and finally the dry powder activator powder was
added, with stirring for about 120s.

(5) After the final mixing is completed, the geopolymer
concrete is poured into the mold, vibrated and
compacted, and finally smoothed to make the geo-
polymer concrete test blocks.

-e process and the specimens are shown in Figure 1
[10].

2.1. -e -eory of Support Vector Machine. -e support
vector machine model can be expressed for [11]

min
w,ξ,α

1
2
‖w‖

2
+ C 􏽘

i�1
ξi + ξ∗i( 􏼁,

s.t.

f(x) − yi ≤ ε + ξi,

yi − f(x)≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0,

i � 1, 2, . . . , l.

(1)

Among them, xi, yi􏼈 􏼉, i � 1, 2, . . . , l are training samples,
xi ∈ Rd is a d-dimensional of samples input, and yi ∈ Rc is a
c-dimensional of samples’ output. f(x) � (ω∗x) + b,
where ω and b are weight factor and deviation, respectively.
ξi, ξi ≥ 0 is relaxation coefficient. C> 0 is penalty coefficient,
which is used to coordinate the gliding property of the fitting
error and the fitting function.

-e optimization of the above support vector machine
can be achieved by K(xi, xj) � 〈φ(xi),φ(xj)〉; this can
effectively avoid complex inner product operations in high-
dimensional space calculations. -e mode structure can be
written as

f(x) � 􏽘
l

i�1
αi − α∗i( 􏼁K xi, xj􏼐 􏼑 + b,

s.t. 0≤ αi, α
∗
i ≤C,

i � 1, 2, . . . , l.

(2)

Among them, the deviation b can be obtained from the
support vector obtained for solving. According to the above
formula, the value of αi, α∗i can be solved; among them, when
αi, α∗i are nonzero, the corresponding sample is called the
amount of support. -e specific form depends on the type of
kernel function; this paper uses the RBF kernel function to
study SVM.

RBF kernel function is for

K xi, xj􏼐 􏼑 � exp
− xi − xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, (3)

where σ is nuclear bandwidth.
-en the determination of kernel function is mainly the

determination of penalty coefficient C and the nuclear
bandwidth σ. -e value of parameter C is related to the
tolerance error, a larger value of C allows a smaller error, and
a smaller value of C allows a larger error. In order to select
the appropriate parameter C and nuclear bandwidth σ, this

Table 1: Analysis results of main chemical components of coal
gangue (%).

Composition Content (%)
SiO2 65.09
Al2O3 16.86
K2O 2.67
CaO 2.07
MgO 1.98
Fe2O3 6.15
Na2O 1.64
TiO� 0.74
S 0.53
Loss on ignition 1.49

Table 2: Main chemical components of fly ash (%).

Compositions Contents (%)
SiO2 62.02
Al2O3 11.29
CaO 6.07
K2O 1.63
Na2O 0.13
MgO 1.56
Fe2O3 5.19
TiO2 1.00
SO3 1.04

Table 3: Technical indicators of standard sand.

Particle sizes range
Size of screen mesh (mm) Cumulative sieve residue (%)
2.0 0
1.6 7
1.0 33
0.5 67
0.16 87
0.08 99
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paper will use the improved cuckoo search algorithm to
optimize the C and σ, so as to better optimize the support
vector machine classification and obtain the optimal C and
σ.

2.2. Joint Parameter Optimization Based on Improved Cuckoo
Algorithm and Support Vector Machine

2.2.1. -eoretical Basis of Traditional Cuckoo Algorithm.
Firstly, a brief introduction to Lévy flight: Lévy flight is a
typical randommechanism of migration, which represents a
kind of non-Gaussian random process and is related to the
stable distribution of Lévy. It was originally proposed by
Paul Pierre Lévy, a French mathematician. -e Lévy stable
distribution is expressed by scale σ, characteristic index α,
displacement μ, and skewness coefficient β. -e continuous
Fourier transform of its characteristic function ϕ(t) can be
used to define the Lévy distribution [12]:

pα,β(k; μ, σ) � F pα,β(x; μ, σ)􏽮 􏽯 ≡ 􏽚

∞

−∞

dxe
i,k,x

Pα,β(X; μ, σ)

� exp iuk − σα|k|
α 1 − iβ

k

|k|
􏼠 􏼡ϖ(k, α)􏼢 􏼣.

(4)

Among them, ω(k, α) � tan πα/2, if α≠ 1, 0< α< 2.
Lévy is stable distribution of probability density func-

tion, Pα,β(x) has no unified form, and in three special cases,
Pα,β(x) can be expressed by the following basic function:

(1) Gaussian Distribution: when α � 2,

Lévy(λ) ∼ u � t− λ
, (1< λ< 3). (5)

On account of tanπ � 0, in the system of Gaussian
distribution β with it is independent.

(2) Cauchy Distribution: when α � 1, β � 0,

p1,0(x) �
1

π 1 + x
2

􏼐 􏼑
. (6)

(3) Lévy Distribution: when α � 1/2, β � 1,

P(1/2),1(x) �
1
�
2

√
π

x
(− 3/2) exp(−1/2x), x≥ 0,

p(1/2),1(x) � 0, x< 0.

(7)

-e probability density function λ(x) of jumping step
size distribution of Lévy flight decays as follows:

λ(x) ≈ |x|
− 1− α

, 0< α< 2. (8)

-en the traditional cuckoo algorithm is that, for any
given initial population N, the control variable x of the
optimization problem is generated and initialized between
the maximum and minimum limits,

x
t
j,i � xj,min + Ri,j · xj,max − xj,min􏼐 􏼑, (9)

where j represents the control variable of the i-th population
in the t-th iteration, where Ri,j ∈ [0, 1] is a uniformly dis-
tributed random number.

When the cuckoo i produces a new solution xt+1, a Lévy
flight is performed:

(a) (b)

(c)

Figure 1: Process of making geopolymer concrete. (a) Raw materials for experiment. (b) Coal gangue-based geopolymer concrete. (c) Curing.
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x
t+1
i � x

t
i + α⊕L(λ). (10)

-e formula shows that the current position (the first
term in the formula) and the transition probability (the
second term in the formula) jointly determine the position of
the next iteration. In the formula, α> 0 represents the step
size of the control variable, in which ⊕ represents point-to-
point multiplication. L(λ) represents the path of random
search.

Lévy operator can be written as

Levy(λ) �
Γ(1 + λ) × sin(π × λ/2)

Γ(1 + λ/2) × λ × 2(λ−1/2)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (11)

Among them, λ is the distribution coefficient, and
0.3< λ≤ 1.99Γ(•) is the Gammer distribution function.

-en the ith population at the (t+1)th iteration can be
expressed as

x
t+1
i � x

t
i + Sj,i × α⊕L(λ). (12)

Among them, Sj,i � (xt
j,i − xt

best) is a step size adjustment
coefficient, j � 1, 2, . . . , m is total of control variable,
i � 1, 2, . . . , N, xt

best is the global optimal solution for the t-th
iteration. -e step length is α, according to the scale of the
problem, and α> 0; in most cases, we can take α � 1. ⊕
represents the multiplication operator.

2.2.2. Modified Cuckoo Search Algorithm. -e traditional
cuckoo algorithm is introduced above. It can be seen that the
Lévy flight operator in the traditional cuckoo algorithm can
control the search of the solution, but it usually has search
diversity; that is, the search range is large, which will reduce
the search efficiency. Only more iteration steps can get the
final optimal solution. To improve the searchability of the
cuckoo algorithm, speed up the search speed, and quickly
find the optimal solution, this paper will introduce an or-
thogonal crossover operator to the traditional cuckoo al-
gorithm, to update the new population and accelerate the
calculation convergence.

Consider a system whose cost depends on K factor,
and each factor can take one of the Q levels. To find out the
optimal level of each factor and minimize the system cost,
if the K and Q are small, each factor level combination can
do an experiment, and then you can select the best one.
-e number of all Qk combinations is K. -erefore, in the
case that Q and Q are large, it is impossible or ineffective to
test all combinations. -e test design method can be used
to test a representative combination of a small number of
samples. Orthogonal design is one of several very popular
experimental design tools. It provides a series of or-
thogonal arrays to accommodate different numbers of
factors and different levels. Orthogonal arrays of Quality
Factors Q and M combined with K-factors are often
expressed as LM(QK). For example, L9(34) can be
expressed as

L9 34􏼐 􏼑 �

1111

1222

1333

2123

2231

2312

3132

3213

3321

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Each row in this array represents a combination of levels,
that is, an experiment. For example, the last line represents
an experiment in which factor 1 is at level 3, factor 2 is at
level 3, factor 3 is at level 2, and factor 4 is at level 1. Based on
this array, we can conduct 9 trials to estimate a good
combination of factor levels.

-e orthogonality of an orthogonal array means that, in
each column, each layer of the element occurs the same
number of times, and the possible level combination of any
two given factors in the array occurs the same number of
times.

-is section is based on the theory of orthogonal
crossover and introduces the orthogonal crossover (OC)
operator to modify the traditional cuckoo algorithm and
derive the revised formula. -e main idea of the orthogonal
crossover (OC) operator is that each attempt to solve the
search algorithm can be regarded as an experiment and the
genetic operator (crossover and mutation, etc.) is defined as
a representative of the upper solution from a sample of
multiple representatives, point procedure; therefore, or-
thogonal design or any other experimental design tool can
make genetic operators more statistically significant. Leung
and Wang [13] introduce the quantization technique to OC
and propose a new version of OC, which we call NOC, to
deal with numerical optimization. In this article, we will use
NOC in our algorithm.

Based on LM(NK) to explain the working process of
NOC: given two upper-level solutions e � (e1, . . . , eD) and
g � (g1, . . . , gD). e and g determine variable xi to ensure the
minimum searching range (ei, gi) and the maximum
searching range (ei, gi). NOX first quantifies the searching
range in order xi to define the N level: li1, li2, liN as follows:

li,j � min ei, gi( 􏼁 +
j − 1
N − 1

· max ei, gi( 􏼁 − min ei, gi( 􏼁( 􏼁, j � 1, . . . N.

(14)

-e search space defined by e and g will have ND points
after quantization because each factor has N possible ones.
Suppose we have two parents e � (1.0, 3.0) and
g � (3.0, 1.0) in the two-dimensional search space; this
search space is defined by two parents [1.0, 3.0] × [10, 3.0]. If
Q � 3, after quantization, this search space will containQD �

32 � 9 points, because each factor is quantized into three
layers.
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Because D is usually much larger than K, it cannot be
directly applied to LM(QK). To overcome this difficulty,
QOC divides (x1, . . . , xD) into K subvectors like other OC
factors:

H1
∗

� x1, . . . , xt1( 􏼁,

H
→

1 � xt1+1, . . . , xt2( 􏼁,

⟶

H
→

1 � xtx−1+1, . . . , xD􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(15)

In here, integers of t1, t2, . . . , tK−1 are randomly
generated, such as 1< t1 < t2 < · · · < tK−1 <D, and QOC
treats each Hi as a factor and defines the following Q level
for Hi:

Li1
�→

� lil−1+1,1, lil−1+2,1, . . . , lil ,1􏼐 􏼑,

Li2
�→

� lil−1+1,2, lil−1+2,2, . . . , lil ,2􏼐 􏼑,

⋮

LiQ

��→
� lil−1+1,Q, lil−1+2,Q, . . . , lil,Q􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(16)

-en, QOC used LM(QK) existing in H1, . . . , HK to
establish M solution (that is, the Merge layer).

Note that if D is much smaller than K, then the first
column ofD of LM(QK) can be used directly to design QOC.
For example, when adopting L9(34), the nine products
produced by QOC are nine quantized points.

According to the characteristics of the cuckoo algorithm,
the update formula of the cuckoo algorithm with orthogonal
crossover operator can be written as

X
t+1(updated)
j,i � (1 − ω) × x

t
best + ω × x

t+1
j,i , (17)

where ω is any number between 0 and 1.
After calculating the new population using formula (9),

use formula (11) to modify the population.-en, the optimal
solution is searched from the revised population, and the
new Lévy flight operator is calculated from the set number of
iterations using formula (12). -is completes the calculation
of the improved cuckoo algorithm.

Figure 2 shows the flowchart of the improved cuckoo
algorithm.

-e flowchart of the support vector machine optimized
by the modified cuckoo algorithm is shown in Figure 2. -e
procedures are summarized as follows:

(1) Collect samples in a training test and pre-
conditioning the training set samples to obtain SVM
learning samples.

(2) Determine the value range of SVMparameter C, σ, etc.
Based on experience and the nature of the problem,
initialize the parameters of the geopolymer concrete
strength prediction problem, and use formula (9) to
generate the initial population of control variables.

(3) Update the data of the new population, estimate the
objective function, and use it as the local optimal
solution.

(4) Calculate the Lévy flight operator using formula (9)
and update the population using formula (12).

(5) Use formulas (15) and (16) to calculate the crossover
operator, and then use formula (17) to calculate the
revised new population.

(6) Repeat steps (3)-(5) for each iteration step to obtain
the global optimal solution.

(7) When the result meets the convergence criterion, the
optimal solution and control variables are output.

(8) Use formula (2) to calculate the parameters in the
optimized kernel function and calculate the kernel
function.

(9) -e support vector machine model is optimized and
calculated using the obtained kernel function to
obtain each support vector and the prediction result.

3. Prediction of Compressive Strength of Coal
Gangue-Based Geopolymer Concrete

In coal gangue based geopolymer concrete, the main raw
material for preparing coal gangue is mainly composed of
SiO2, Al2O3, Fe2O3, Na2O, K2O, and CaO. Among them,

Start

Initialize bird nest positions

Calculate the value of the objective function each nest
position

Change nest positions by Lévy flight

To update part of the nest with a certain probability

The new position was obtained by using QOC factor
correction

Stisfied with termination conditions

Output optimal solution

End

Yes

No

Figure 2: Flowchart of modified cuckoo algorithm.
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90% is contributed by SiO2, Al2O3, CaO, and Fe2O3, and
other oxides are relatively low. Studies have shown that
these oxides have a great influence on the compressive
strength of geopolymer concrete. However, the current
studies on the compressive strength of oxides in raw
materials and geopolymer concrete are mostly qualitative
conclusions. In this section, based on the proposed pre-
diction algorithm, the compressive strength of oxides in
raw materials and coal gangue based geopolymer concrete
is established in mathematical model, to study the basic
rules of different oxides on the compressive strength of coal
gangue based geopolymer concrete, give quantitative re-
sults, and provide a reliable and useful reference for the
practical application of coal gangue based geopolymer
concrete.

3.1. Data Training of Prediction Model. In this section, the
existing experimental data will be used to train the
compressive strength prediction model proposed in
Chapter 4: the content of each oxide in the raw materials
was taken as the input parameter of the prediction model,
and the compressive strength of coal gangue based geo-
polymer concrete was taken as the output parameter and
the results of the traditional cuckoo algorithm were
compared with the prediction results of the improved
cuckoo algorithm proposed in this paper. Calculation tool
is MATLAB 7.0, processor Pentium 3.0 GHz, memory
8.0 GB.

-e range of values used for each oxide in the training
data is shown in Table 4.

In this paper, 56 groups of data of fly ash-based geo-
polymer concrete in literature [14–22] were collected, of
which 50 groups of compressive strength data are used as
training data to train the support vector machine system,
and the remaining 6 groups of data are used as a comparison
of prediction results. Table 5 shows some training data.
Tables 6 and 7 give the comparison of 7d and 28d com-
pression strength prediction results of geopolymer concrete
with different oxide content.

It can be seen from Tables 6 and 7 that the compressive
strength of geopolymer concrete predicted by the prediction
model proposed in this paper when the oxide content of 7d
and 28d is different is close to the measured value, and the
improved cuckoo algorithm results are similar to traditional
cuckoo. -e results of the bird algorithm are also very close,
indicating the correctness of the prediction model proposed
in this paper and the accuracy of the proposed improved
cuckoo algorithm.

To explain the accuracy and superiority of the im-
proved cuckoo algorithm proposed in this paper, the
comparison between the calculation results of the tradi-
tional cuckoo algorithm and the improved cuckoo algo-
rithm and the measured value includes the relative error
and the root means square error. -e relative error is the
evaluation -e prediction model tests each test sample,
and the root means square error is the prediction model’s
test of the overall effect. -e calculation formulas are as
follows:

Error(n) �
|x(n, true) − x(n, pre)|

|x(n, true)|
,

MSE � Sqrt
1
N

􏽘

N

n�1
x((n, true) − x(n, pre))2⎛⎝ ⎞⎠.

(18)

Among them, x(n, true) and x(n, pre) are the measured
value and predicted value of the nth test sample, respectively,
implemented in Matlab 2010.

-e relative errors predicted by using the traditional
cuckoo algorithm and improved cuckoo algorithm are
shown in Tables 8 and 9.

It can be seen from Tables 8 and 9 that the relative error
of the compressive strength predicted by the improved
gravitational search algorithm is much smaller than the
predicted by the traditional gravitational search algorithm,
whether it is 7d or 28d. -e average relative error of 7d
compressive strength predicted by the traditional gravita-
tional search algorithm is 9.68%, and the average relative
error of 7d compressive strength predicted by the improved
gravitational search algorithm is 4.02%, which is 58.47%
higher than the traditional gravitational search algorithm.
-e relative error of the compressive strength predicted by
the improved gravitational search algorithm is much smaller
than that predicted by the traditional gravitational search
algorithm. -e average relative error of 28d compressive
strength predicted by the traditional gravitational search
algorithm is 9.03%, and the average relative error of 28d
compressive strength predicted by the improved gravita-
tional search algorithm is 3.69%, which is 59.14% higher
than the traditional gravitational search algorithm. It can be
seen that the prediction accuracy of the improved gravita-
tional search algorithm is greatly improved.

To further illustrate the computational efficiency of the
improved gravitational search algorithm, the calculation
convergence of the traditional gravitational search algorithm
is compared with that of the traditional gravitational search
algorithm. Table 10 shows the comparison of the calculation
residuals of the two calculation methods at the same time
step in the process of seeking the optimal solution.

It can be seen that when using the same iteration step, the
calculation residual of the improved gravitational search
algorithm is smaller than the traditional gravitational search
algorithm, and with the increase of iteration steps, the re-
sidual error of the improved gravitational search algorithm
decreases faster than that of the traditional gravitational
search algorithm. It indicates that the improved gravitational
search algorithm accelerates the calculation convergence
rate, and the calculation efficiency is higher than that of the
traditional gravitational search algorithm.

Table 4: Value range of different oxide content in coal gangue for
training data.

-e name of oxide Minimum (%) Maximum (%)
SiO2 40 60
Al2O3 20 35
Fe2O3 0 20
CaO 0 15
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3.2. -e Influence Laws of Oxide Contents on Coal Gangue
Based on Geopolymer Concrete. In this section, based on the
above-trained prediction model, the mapping relationship
between the compressive strength of coal gangue based on
geopolymer concrete and the oxide content in the raw
materials is established, and the compressive strength of coal
gangue based on geopolymer concrete is predicted.
According to the prediction results, the variation of com-
pressive strength with the oxide content in the raw materials
was studied.

According to the characteristics of each raw material of
coal gangue based on geopolymer concrete configured in
this paper, the common range of the main common oxides
or oxide combination content obtained by calculation is
shown in Table 11.

According to the improved gravitational search algorithm
optimization method proposed above, the compressive
strength of 7d and 28d of coal gangue based on geopolymer
concrete in the range of common oxide content was predicted,
and the compressive strengths of coal gangue based on geo-
polymer with single oxide content and common oxide mixture
are given, respectively. Analysis of the influence of single oxide
content and different oxide combinations on coal gangue based
on geopolymer concrete provides the basis for preparing high-
strength coal gangue based geopolymer concrete.

Figures 3 and 4 show the variation of 7d and 28d com-
pressive strength of coal gangue based on geopolymer concrete
with single oxide content, respectively, and the prediction
results of the improved gravitational search algorithm and the
traditional gravitational search algorithm are compared.

Table 5: Training data.

Training data serial numbers Oxide content (%) Compressive strength (MPa)
7d 28 d

1

SiO2 48.21

11.2 66.1Al2O3 25.01
Fe2O3 1.3
CaO 15.2

2

SiO2 51.11

38 48Al2O3 25.56
Fe2O3 12.48
CaO 4.3

3

SiO2 60.02

25 37Al2O3 24.61
Fe2O3 8.56
CaO 0.15

4

SiO2 49.37

9.7 26.7Al2O3 29.23
Fe2O3 2.71
CaO 6.63

5

SiO2 56.01

43.26 48.2Al2O3 29.8
Fe2O3 3.58
CaO 2.36

6

SiO2 65.77

16 18Al2O3 26.72
Fe2O3 1.32
CaO 0.05

7

SiO2 63.18

17 15Al2O3 25.22
Fe2O3 3.36
CaO 0.07

8

SiO2 73.05

7 21Al2O3 23.22
Fe2O3 0.89
CaO 0.07

9

SiO2 80.43

7 20Al2O3 14
Fe2O3 3.57
CaO 0.04

10

SiO2 36.02

17 34Al2O3 20.58
Fe2O3 15.91
CaO 18.75
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It can be seen from the analysis of Figures 3–4 that the
prediction of the 7d and 28d compressive strength of coal
gangue based on geopolymer concrete using the improved

gravitational search algorithm is consistent with the trend
of the results obtained by the traditional gravitational
search algorithm. -e correctness and effectiveness of the

Table 6: Comparison of 7d compressive strength for different oxide proportions.

Serial
number

Oxide
content(%)

Measured compressive strength value
(MPa)

Traditional CSA predicted value
(MPa)

Improved CSA predicted value
(MPa)

1

SiO2 80.43

7 6.33 6.72Al2O3 14
Fe2O3 3.57
CaO 0.04

2

SiO2 36.02

17 18.78 16.10Al2O3 20.58
Fe2O3 15.91
CaO 18.75

3

SiO2 43.7

52 57.30 54.00Al2O3 21
Fe2O3 22.5
CaO 4.85

4

SiO2 48.21

11.2 9.92 10.52Al2O3 25.01
Fe2O3 1.3
CaO 15.2

5

SiO2 56.01

43.26 39.56 44.79Al2O3 29.8
Fe2O3 3.58
CaO 2.36

6

SiO2 50.5

66 60.44 68.85Al2O3 26.57
Fe2O3 13.77
CaO 2.13

Table 7: Comparison of 28d compressive strength for different oxide proportion.

Serial
number

Oxide
content (%)

Measured compressive strength value
(MPa)

Traditional CSA predicted value
(MPa)

Improved CSA predicted value
(MPa)

1

SiO2 80.43

20 22.02 19.51Al2O3 14
Fe2O3 3.57
CaO 0.04

2

SiO2 36.02

34 30.24 35.96Al2O3 20.58
Fe2O3 15.91
CaO 18.75

3

SiO2 43.7

65 59.30 61.89Al2O3 21
Fe2O3 22.5
CaO 4.85

4

SiO2 48.21

66.1 61.03 64.57Al2O3 25.01
Fe2O3 1.3
CaO 15.2

5

SiO2 56.01

48.2 44.58 46.50Al2O3 29.8
Fe2O3 3.58
CaO 2.36

6

SiO2 50.5

69 75.23 66.68Al2O3 26.57
Fe2O3 13.77
CaO 2.13
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Table 9: Comparison of 28d predictive compressive strength for different oxide proportions.

Serial
number

Oxide content
(%)

Measured compressive strength value
(MPa)

Relative error of traditional CSA prediction
(%)

Improve
the relative
error of
CSA

prediction
(%)

1

SiO2 80.43

20 10.12 2.44Al2O3 14
Fe2O3 3.57
CaO 0.04

2

SiO2 36.02

34 11.05 5.76Al2O3 20.58
Fe2O3 15.91
CaO 18.75

3

SiO2 43.7

65 8.77 4.78Al2O3 21
Fe2O3 22.5
CaO 4.85

4

SiO2 48.21

66.1 7.66 2.32Al2O3 25.01
Fe2O3 1.3
CaO 15.2

5

SiO2 56.01

48.2 7.52 3.53Al2O3 29.8
Fe2O3 3.58
CaO 2.36

6

SiO2 50.5

69 9.04 3.36Al2O3 26.57
Fe2O3 13.77
CaO 2.13

Table 8: Comparison of 7d compressive strength relative error for different oxide proportions.

Serial
number

Oxide
content (%)

Measured compressive strength
value (MPa)

Relative error of traditional CSA
prediction (%)

Improve the relative error of CSA
prediction (%)

1

SiO2 80.43

7 9.01 4.03Al2O3 14
Fe2O3 3.57
CaO 0.04

2

SiO2 36.02

17 10.47 5.32Al2O3 20.58
Fe2O3 15.91
CaO 18.75

3

SiO2 43.7

52 10.2 3.86Al2O3 21
Fe2O3 22.5
CaO 4.85

4

SiO2 48.21

11.2 11.4 6.06Al2O3 25.01
Fe2O3 1.3
CaO 15.2

5

SiO2 56.01

43.26 8.55 3.54Al2O3 29.8
Fe2O3 3.58
CaO 2.36

6

SiO2 50.5

66 8.42 4.32Al2O3 26.57
Fe2O3 13.77
CaO 2.13
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improved gravitational search algorithm are proved once
again, and the variations of compressive strength of coal
gangue based on geopolymer concrete with oxide content
are as follows:

(1) -e 7-day compressive strength and 28-day com-
pressive strength of concrete increased first and then
decreased with the increase of SiO2 content, and the
change is more dramatic. For the compressive
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Figure 3: Variation of 7d compressive strength with different oxide proportion. (a) Compressive strength vs. SiO2. (b) Compressive strength
vs. Al2O3. (c) Compressive strength vs. Fe2O3. (d) Compressive strength vs. CaO.

Table 10: Comparison of computation residuals by different methods.

Iterative step 20 80 100 150 180
Traditional CSA 10° 10–2 10–2 10–2 10–3

Modified CSA 10–1 10–3 10–4 10–4 10–5

Table 11: Range of common oxide combination for geopolymer concrete.

Name of oxide Minimum (%) Maximum (%)
SiO2 50 70
Al2O3 20 40
Fe2O3 0 30
CaO 0 20
Al2O3 + SiO2 55 90
Fe2O3 +Al2O3 + SiO2 65 95
CaO+Fe2O3 +Al2O3 + SiO2 80 97
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strength of 7 days, when the SiO2 content is between
about 50% and 60%, the compressive strength in-
creases with the increase of the SiO2 content, and the
increase is larger; when the SiO2 content is between
about 60% and 70%, the compressive strength de-
creases rapidly with the increase of the SiO2 content;
for the compressive strength of 28 days, when the
SiO2 content is between about 50% and 55%, the
compressive strength increases with the increase of
the SiO2 content; when the SiO2 content is between
about 55% and 70%, the compressive strength de-
creases with increasing SiO2 content; it can be seen
that the optimal content of SiO2 corresponding to
the compressive strength of 7 days and 28 days is
55% and 60%, respectively.

(2) -ere is no obvious change in compressive strength of
concrete with Al2O3 content in 7days and 28days, but
the change of compressive strength with Al2O3 content
is severe. For 7-day compressive strength, when the
Al2O3 content is about 23% and 40%, the compressive
strength reaches the maximum; and when the Al2O3
content is about 28%, the compressive strength is the

smallest. For 28-day compressive strength, when the
Al2O3 content is about 23%, the compressive strength
reaches the maximum; and when the Al2O3 content is
about 30%, the compressive strength is the smallest. It
can be seen that the preferred content of Al2O3 is about
23%.

(3) -e 7-day compressive strength and 28-day com-
pressive strength of concrete increased first and then
decreased with the increase of Fe2O3 content. For 7-
day compressive strength, when the Fe2O3 content is
between 0 and 15%, the compressive strength in-
creases sharply with the increase of the Fe2O3
content; when the Fe2O3 content is between 15% and
40%, the compressive strength decreases sharply
with the increase of Fe2O3 content. For 28-day
compressive strength, when the Fe2O3 content is
about 5%, the compressive strength is the smallest,
and when the Fe2O3 content is about 10%, the
compressive strength is the largest. It can be seen that
the optimal content of Fe2O3 corresponding to the
compressive strengths of 7 days and 28 days is 15%
and 10%, respectively.
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Figure 4: Variation of 28d compressive strength with different oxide proportion. (a) Compressive strength vs. SiO2. (b) Compressive
strength vs. Al2O3. (c) Compressive strength vs. Fe2O3. (d) Compressive strength vs. CaO.
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(4) -e 7-day compressive strength and 28-day com-
pressive strength of concrete increased first and then
decreased with the increase of CaO content. For the
7-day compressive strength and 28-day compressive
strength, when the CaO content is between 0 and
10%, the compressive strength increases with in-
creasing CaO content; when the CaO content is
between 10% and 20%, the compressive strength
decreases with increasing CaO content. It can be seen
that the preferred content of CaO is 10%.

4. Conclusions

Based on the prediction model and algorithm proposed in
the previous chapter, this chapter studies and establishes the
mapping relationship between the oxides in raw materials
and the compressive strength of coal gangue based geo-
polymer concrete. To study the basic law of different oxides
on the compressive strength of coal gangue based geo-
polymer concrete, the main conclusions are as follows:

(1) -e proposed support vector machine and the
modified cuckoo algorithm are valid and accurate in
predicting the compressive strength of coal gangue-
based geopolymer concrete.

(2) Regardless of the compressive strength prediction re-
sults of 7 days or 28 days, the relative error of the
compressive strength predicted by the improved
gravitation search algorithm is much smaller than
predicted by the traditional gravitation search algo-
rithm, and the prediction accuracy of the improved
gravitation search algorithm is greatly improved.

(3) -e compressive strength of concrete for 7 days and
28 days increased first and then decreased with the
increase of SiO2 content, and the change was more
dramatic. -e optimal contents of SiO2 corre-
sponding to the compressive strength of 7 days and
28 days are 55% and 60%, respectively. -e optimal
contents of Al2O3 corresponding to the compressive
strength of 7 days and 28 days are about 28% and
23%, respectively. -e optimal contents of Fe2O3
corresponding to the compressive strength of 7 days
and 28 days are 15 and 10%, respectively. -e op-
timal contents of CaO corresponding to the com-
pressive strengths of 7 days and 28 days are 10%.
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