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As the water pipe cooling system is widely applied to controlling temperature in
mass concrete structures, the precise simulation of the temperature field in mass
concrete with cooling pipes embedded is meaningful. This paper presents an
isogeometric analysis (IGA) with NURBS for heat transfer in mass concrete with
consideration of the cooling pipe. The proposed method not only achieves the
same level of accuracy with fewer nodes but also eliminates the time-consuming
process of mesh in the traditional FEM. The coarsest parameter space which
depicts small pipe and large concrete precisely is constructed to create an
efficient model for numerical computation. In addition, the unique
k-refinement in IGA is supposed to be the most appropriate encryption
mechanism, and the knot insertion vector for effective refinement is
calculated by considering the characteristics of temperature gradient
distribution around the cooling pipes. In addition, a different calculation
parameter has been discussed to show the stability and flexibility of the IGA.
The obtained numerical results demonstrate the accuracy and efficiency of the
proposed scheme in the simulation of transient temperature fields in concrete
structures with cooling systems.
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1 Introduction

The embedded cooling pipe has been extensively used in engineering structures with mass
concrete due to the significant effect on heat removal and crack control. It can effectively reduce
the temperature difference between the surface and inner of the concrete structures, especially in
the early stage of cement hydration [1–3]. However, the temperature gradient around the small
pipes cannot be neglected. It generates remarkable thermal stress and increases the possibility of
cracking [4]. Therefore, it is necessary to predict the temperature gradient and thermal field in
concrete with cooling pipes.

How to improve efficiency in thermal field numerical simulation while maintaining
accuracy? Various numerical methods have been developed to solve this problem, including
the finite element method (FEM) [5–8], virtual element method (VEM) [9], composite element
method (CEM) [10–12], boundary elementmethod (BEM) [13], and singular boundarymethod
(SBM) [14]. Among the methods mentioned earlier, the finite element method is the most
widely applied method to simulate the cooling system. It is generally employed to discretize the
calculation domain into non-overlapping elements and take the polynomial basis functions as
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unknown fields. As a result, it is hard to exactly represent the small pipes
in the large size of concrete. In addition, the dense grids in the FEM
around the tiny pipes lead to a computationally intensive process and
are time-consuming. Research workers create numerous improved
approaches based on the FEM. Zuo [15] proposed an extended
finite element method (XFEM) which is only used in the two-
dimensional water pipe cooling problem. To avoid intensively
meshing the small pipes, Kim [16] and Liu [17] chose to simply
neglect the practical size and shape of the pipes by using a line
element; as a consequence, the location of the pipes needed to leech
on the node inconveniently. Liu considered the cooling pipe as a line
element, and Chen [18] meshed the concrete by neglecting the location
of the pipes and treated the pipes as an inner negative heat source after
that. However, the accuracy of the temperature field still depends on the
size of the element around the cooling pipe. To improve the
effectiveness of calculations while ensuring accuracy, it is necessary
to consider the typical temperature gradient distribution around the
pipes and refine the grids selectively. In other words, dense elements are
needed in regions with sharp temperature gradients, whereas sparse
elements are suitable for other regions. However, the process of element
partitioning is extremely time-consuming in methods like the FEM.

Instead of the FEM, this study introduces the isogeometric
analysis (IGA) method to simulate the heat transfer process in
mass concrete with cooling pipes. The IGA method, first
introduced by Hughes [19], employs smooth and higher-order
splines (such as non-uniform rational B-splines, T-splines [19],
and LR-splines [20]) as basis functions to represent both the
geometric space and approximation of solution fields. In the IGA
context, the non-uniform rational B-splines (NURBSs) are most
widely adopted to solve partial differential equations. There are
several attractive characteristics [21] in NURBS-based IGA, such as
great geometric accuracy, higher-order continuity, sparse matrix, and
automatic mesh generation. Consequently, the IGA has been
successfully applied in many research fields, for example, elasticity,
shape optimization, crack propagation, and fluid flows [22–28]. In
addition, many research workers utilize the IGA in heat conduction
areas. Attracted by the unique quality, R. Duvigneau [29] summarized
the advantages of the IGA by comparing it with the traditional FEM
through the thermal conduction test case. Chen [30] solved the
Dirichlet boundary processing error caused by the lack of
interpolation of the NURBS basis function. Yu [31] improved the
accuracy of the steady-state heat conduction problem with locally
refined adaptive IGA, and An [32] combined IGA and BEM to solve
the same problem. To reduce the problem dimension and obtain
highly accurate results for the flux values on the boundaries, Özgür
applied the IGA-BEM to the steady-state heat conduction with
volumetric heat source and non-linear boundary conditions [33].

To the best of the author’s knowledge, the IGA has not been used in
the temperature simulation of mass concrete with cooling pipes. This
work attempts to simulate themass concrete temperature fields with the
IGA method for the following reasons: first, the tiny pipes and large
concrete can be accurately represented, even with a coarse grid. Second,
the higher-order basis functions are more suitable for the non-linear
temperature gradient than the traditional polynomial interpolation [34].
Third, it is convenient that there are nomore efforts needed formesh or
pretreatment. Finally, the flexible refinement of IGA is appropriate for
the different grid density requirements of complex temperature
gradients and complicated surrounding conditions.

In this paper, IGA based on the NURBS is exploited to simulate the
temperature field of two-dimensional mass concrete with one cooling
pipe, as the preparation for cubic with multiple cooling pipes. The
parameter space which describes small pipe and large concrete precisely
is presented to generate an efficient model for calculation. The
advantages of the suggested parameter space are shown by
comparing it with others. Taking the correspondence between
temperature gradient and distance from the pipe into account, the
area in which temperature gradient changes dramatically around the
cooling pipe is suggested, and the knot insertion vector for grid
encryption is proposed. Furthermore, the situations with different
calculating parameters such as water temperature, pipe thickness, and
time step are investigated. The environmental conditions around
concrete are also considered to demonstrate the flexibility of IGA.

The contents of this paper are as follows: Section 2 introduces
the fundamental equations for transient heat conduction. Section 3
describes the IGA method and presents the parameter space utilized
in mass concrete. Section 4 demonstrates the accuracy and
performance of the simulation with several numerical examples.
Finally, the conclusion is presented in Section 5.

2 Governing equation

The simplified mathematical model for the typical two-
dimensional mass concrete with cooling pipes embedded is
shown in Figure 1.

As can be seen in Figure 1A, there is a cooling pipe assumed as a
negative heat resource [18] at the center of the concrete domain Ω,
and the inner boundary Γ1 is in contact with the pipe. In addition,
the boundary Γ2 denotes the concrete surface in contact with air, and
the boundary Γ3 is treated as absolute heat insulation at the bottom.
It is supposed that the concrete is isotropic and homogeneous, and
the governing equation in this problem is given below:

∂T x, τ( )
∂τ

� α∇2T x, τ( ) + ∂θ τ( )
∂τ

, x ∈ Ω. (1)

In Eq. 1, T(x, τ) represents the unknown temperature in any
location x at τ time, α � kc

ρccc
is the concrete thermal diffusivity, and

cc, ρc, kc are the specific heat capacity, density, and the heat
conductivity, respectively. θ(τ) is the given function of adiabatic
temperature rise. Moreover, the initial conditions and boundary
conditions are shown in the following formulations.

T x, 0( ) � T0, x ∈ Ω, (2)
∂T x, τ( )

∂n
� β1
kc

Tw − T x, τ( )( ), x ∈ Γ1, (3)
∂T x, τ( )

∂n
� β2
kc

Ta − T x, τ( )( ), x ∈ Γ2, (4)
∂T x, τ( )

∂n
� 0, x ∈ Γ3, (5)

where the initial temperature of concrete T0 is supposed to be a
known function as Eq. 2 and Tw, Ta represent the temperature of
cooling water and air, respectively. Based on Chen [18], β1 � λ

h is the
coefficient of equivalent heat convection between the water pipe and
concrete, and λ, h are the thermal conductivity coefficient and
thickness of the non-metallic water pipe, respectively. β2 is the
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heat convection coefficient from the concrete to the air. It should be
noted that only the third boundary condition (Robin boundary
condition) is considered in this study.

According to the governing equation and boundary conditions
mentioned in Eqs 3–5, the functional appeared by applying
Galerkin’s method and integration by parts.

Π � ∫
Ω

α

2
∂T
∂x

( )2

+ ∂T
∂y

( )2[ ] + ∂T
∂τ

− ∂θ
∂τ

( ){ }dΩ
+ ∫

Γ1
�β

T2

2
− TwT( )dΓ + ∫

Γ2
β′ T2

2
− TaT( )dΓ. (6)

In Eq. 6, �β � β1
ccρc

and β′ � β2
ccρc

. Boundary Γ1 is the inner boundary
in contact with pipe and boundary Γ2 denotes the concrete surface in
contact with air. The solution of the two-dimensional transient
temperature field of the mass concrete with cooling pipe embedded
is equivalent to the extreme value of the functional above.

3 Isogeometric analysis

In this section, we first give a brief introduction to NURBS as the
foundation of the IGA. After that, IGA formulation for thermal field
in mass concrete with cooling pipe is to be discussed. Finally, the
most suitable IGA calculation model and refinement for numerical
simulations are presented.

3.1 B-spline basis function and refinement

Different from the FEM, the IGA generates mesh by
constructing parametric surface (volumes, in terms of three
dimension) with CAD basis function like B-spline or NURBS. It
provides some unique advantages to the isogeometric analysis, such
as geometric exactness and simple refinements.

As NURBS is built from B-spline, it is necessary to introduce the
definition and character of B-spline. The B-spline is defined in parametric

space named knot vector Ξ � [ξ1, ξ2, ..., ξn+p+1], which is constructed
with a non-decreasing set of knots ξi ∈ R, where n and p are the number
of basis functions (as well as control points) and the polynomial order,
respectively. The B-spline basis function could be defined recursively as

Ni,0 ξ( ) � 1 if ξ i ≤ ξ < ξ i+1
0 otherwise

{ , p � 0( ) (7)

and

Ni,p ξ( ) � ξ − ξ i
ξ i+p − ξ i

Ni,p−1 ξ( ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 ξ( ),

p � 1, 2, 3, ....( ). (8)

Based on the B-spline basis function described in Eqs. 7, 8, the
NURBS basis function is defined as follows:

Rp
i ξ( ) � Ni,p ξ( )wi∑n

î�1
Nî,p ξ( )wî

. (9)

Moreover, the basis function of the NURBS surface is given by

Rp,q
i,j ξ, η( ) � Ni,p ξ( )Mj,q η( )wi,j∑n

î�1
∑m
ĵ�1
Nî,p ξ( )Mĵ,q η( )wî,ĵ

, (10)

where wi is the weight, as well as wi,j.
There are several crucial properties that emerged from the basis

functions above. The first one is that each basis function is non-
negativity and constitutes partition of unity. The second main
property to note is compact support, that is, Rp

i (ξi) mentioned in
Eq. 9 is non-zero only in the knot span [ξi, ξi+p+1). This means that
the stiffness matrix in numerical calculation is a large sparse matrix,
which is similar to their FEM counterparts. Finally, every pth order
basis function has p −mi continuous derivatives at knot ξi which is
repeatedmi times in the knot span. As a result, the continuity at any
knot value could be selected by controlling the number of the knot
value. In addition, the basis is interpolatory at a knot when the

FIGURE 1
(A) A typical model for pipe cooling concrete and (B) FEM meshing.
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multiplicity is p. It is worth noting that this is the most distinctive
property of the IGA.

Given n NURBS basis functions, Rp
i (ξ), i � 1, 2, ..., n, and

corresponding weighted control points Bi, i � 1, 2, ..., n, a
piecewise-polynomial NURBS curve, is obtained by

C ξ( ) � ∑n
i�1
Rp
i ξ( )Bi. (11)

Similarly, a tensor product NURBS surface is defined by

S ξ, η( ) � ∑n
i�1
∑m
j�1
Rp,q
i,j ξ, η( )Bi,j. (12)

As shown in Eqs 11, 12, the NURBS curve (surface) is
approximated by a control polygon consisting of control points
and the control polygon is not unique. As a result, the choice of
control points should be based on the geometric features of the
objective curve like endpoints and inflection points. The weights at
control points reflect the distance from the curve to the
control polygon.

Similar to the FEM, appropriate refinement should be taken to
ensure the computational accuracy; however, a coarse mesh could
guarantee the geometric exactness in the isogeometric approach.
Three main means are used frequently to enrich the basis function,
namely, knot insertion, order elevation, and k-refinement. Here, a
brief introduction to the approach is given.

The first means is knot insertion by which a new knot �ξ is
inserted in a given one-dimensional knot vector Ξ and a new
extended knot vector �Ξ � [ξ1, ξ2, ..., ξk, �ξ, ξk+1, ..., ξn+p+2] is created.
It will increase the number of basis functions to n + 1, as well as the
control points, and the mesh will be tessellated. The new weighted
control points ~Bi, i � 1, 2, ..., n + 1 can obtained by Eqs 13, 14

~Bi � αiBi + 1 − αi( )Bi−1, (13)
where

αi �

1, i≤ k − p

�ξ − ξ i
ξ i+p − ξ i

, k − p + 1≤

0, i≥ k + 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ i≤ k. (14)

Unfortunately, the continuity of the curve based on �Ξ is
increased to p − 1 at the new knot. To keep the continuity of
knot �ξ unchanged, the multiplicity of the new knot should stay
consistent with other knots, that is, the second means, k-refinement.
The last one is order elevation, which is much similar to the
p-refinement used in the FEM. It has no influence on the
existing mesh, but the number of basis functions and control
points in each mesh will be increased.

3.2 IGA formulation for thermal field

In the IGA method, the tensor products of the NURBS basis
function are defined in the parametric space ξ � (ξ, η) as Eq. 10. To
apply the IGA, we first introduce the transformation G between
parametric space and physical space x � (x, y), which can be written
as follows

G: ξ � ξ, η( ) → x � x, y( ), ξ ∈Ω̂ x ∈ Ω
G−1 x( ) � ξ

(15)

In the non-zero mesh [ξi, ξi+1) × [ηj, ηj+1), based on Eq. 15, the
approximation of the transient temperature field for this problem
can be expressed as

T ξ, τ( ) � T G−1 x( ), τ( ) � ∑n
i�1
∑m
j�1
Rp,q
i,j ξ, η( )Ti,j τ( ) � ReTe, (16)

where Ti,j(τ) is the temperature of control point at time τ, Re is the
element basis function matrix in the mesh, and Te is the element
control point temperature matrix. Substituting Eq. 16 into the
function (6) and using the variational method to make δΠ � 0,
we can obtain

Ce _T
e
τ( ) + KeTe τ( ) � Fe τ( ), (17)

Ce � ∫
Ωe

ReTRe J| |dξdη, (18)

Ke � ∫
Ωe

α
∂ReT

∂ξ
∂Re

∂ξ
+ ∂ReT

∂η
∂Re

∂η
( ) J| |dξdη + ∫

Γ1e
�βReTReAdη

+∫
Γ2e
β′ReTReAdη, (19)

Fe � ∫
Ωe

∂θ
∂τ

Re J| |dξdη + ∫
Γ1e
�βTwR

eAdη + ∫
Γ2e
β′TaR

eAdη, (20)

where Ce is the element thermal capacity matrix, Ke is the element
thermal transfer matrix, and Fe is the element temperature load
matrix. The element boundaries Γ1e, Γ2e are in contact with the pipe
and the air. Ωe is the computational element domain in Ω. J, A are
the Jacobian determinants for transformation G. Benefiting from the
local support of the NURBS, the matrix mentioned above is a sparse
matrix which is similar to the FEM. Based on Eqs 17–20, we
assemble the element matrices to obtain the global equation.

C _T τ( ) + KT τ( ) � F τ( ), (21)
where

C � ∑
e

Ce,K � ∑
e

Ke, F � ∑
e

Fe. (22)

To discretize the time, the difference method is employed in Eqs
21, 22 . It is supposed that the temperature changes linearly at each
time step Δτ � τi+1 − τi after the time domain has been divided into
time steps. As the initial temperature T0 of concrete is given, we
assume that temperature Tn is known before the calculation of Tn+1.
Then, we obtain

T τ + sΔτ( ) � 1 − s( )Tn + sTn+1 (23)
and

_T τ + sΔτ( ) � Tn+1 − Tn( )
Δτ , 0≤ s≤ 1( ). (24)

As the solution based on the backward difference method is
unconditionally convergent, we take s � 1 into the equation above
and then substituting Eqs 23, 24 into Eq. 21, we can obtain

K + 1
Δτ C( )Tn+1 � 1

ΔτCTn + Fn+1. (25)
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The transient temperature field of mass concrete with the
cooling pipe embedded is obtained through Eq. 25.

3.3 Mathematical model in IGA

The different size between the large scale of concrete and the small
diameter of water pipemakes it hard to ensure the geometric accuracy in
this problem, which greatly affects the results of numerical simulation. In
the IGA, the parameter space is able to depict geometry exactly at all
levels of discretization. As a result, this method is expected to acquire
improved accuracy as comparedwith less geometrically precisemethods.
Moreover, the most time-consuming part is bypassed as the process of
discretization is accomplished when the parameter space is determined.
However, the parameter space is non-unique tomodel the same physical
space, and the different parameter space has a significant impact on the
accuracy and efficiency. This makes the suitable choice of parameter
space important in the IGA.

The strategy of this study is thatminimal control points are taken to
represent geometry in detail and the refinement based on the
temperature gradient in the mass concrete is implemented on those
control points. The typical mathematical model for the two-
dimensional mass concrete can be seen in Figure 1A, and it also can
be assumed as an infinite plate with a circular hole. For simplicity of the
expression, the parameter space is only constructedwith a quarter of the
plate. To depict the circular hole as water pipe, the polynomial order in ξ
direction is at least quadratic, and linear is the minimum order in η

direction. At least four control points are required in ξ direction for this
mathematical model, and there is a repeated control point in the upper

left corner which will generate inhomogeneous mesh and make the
element abnormal after refinement although Hughes [35] has given the
advice solution. The coarsest mesh with four control points in ξ

direction is illustrated in Figures 2A, B, in which the control point is
denoted as the green one. The corresponding inhomogeneous
encryption mesh can also be seen under the arrows.

For the purpose of a well-proportioned mesh, the recommended
parameter space is given in Table 1, in which five control points are
adopted in ξ direction. As shown in Figure 2, the performance of the
three parameter spaces is identical in the coarsest mesh but is
entirely different after refinement, and the harmonious
refinement is available only in the suggested parameter space as
exemplified in Figure 2C. Conveniently, the proposed parameter
space is appropriate for the different diameter of water pipe d, as well
as concrete size l. More details are available in Table 1.

The mechanisms of NURBS refinement also play an important part
in the construction of parameter space. J.A. Cottrell [34] found that the
k-refinement method achieves a significant improvement in accuracy in
the problems of structural vibrations over the classical C0-continuous
p-refinementmethod. R. Duvigneau [29] proved that quadratic functions
result in a significant error reduction compared with the linear functions
in the heat conduction problem with the same degree of freedom,
whereas less accuracy improved compared with the cubic functions.
However, the CPU time required for quadratic functions is considerably
reduced compared to the cubic functions. Chen [30] figured out that the
quadratic functions in the IGA have almost an equal convergence rate
with the cubic Lagrange basis function in transient heat conduction of
solid medium. To further improve the computational efficiency and
accuracy of the IGA method, the order elevation is discarded for

FIGURE 2
Mesh of different parameter spaces and control points: (A) ξ � [0,0,0,0.5, 1, 1, 1] η � [0,0, 1, 1], (B) ξ � [0,0,0,0.5, 1, 1, 1] η � [0,0,0, 1, 1, 1], and (C)
ξ � [0,0,0,0.5,0.5, 1, 1, 1] η � [0,0, 1, 1].
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refinement in this paper, and the quadratic function is adopted in both ξ
and η directions. It not only increases the accuracy of the recommended
parameter space but also guarantees theC1 continuity of basis function in
the concrete domain. In addition, the knot insertion generates elements
with an inhomogeneous distribution of control points although the grid is
the same as k-refinement. In summary, the k-refinement is considered to
be the most appropriate for this problem among the three main kinds of
mechanisms mentioned in Section 3.1. To ensure the continuity in the
knot and uniform distribution of the control point, new knots should be
inserted with the multiplicity of polynomial order. Argumentation is
given in example 1.

At last, the new knot vector should be established flexibly according
to the temperature gradient in the practical condition. It is assumed that
there is a cylindrical region named A around the water pipe in which the
temperature gradient is perpendicular to the cooling pipe surface and has
no relationship with the boundary conditions. This region is time-
varying and the higher temperature gradient appears near thewater pipe.
In consequence, the dense elements are needed in region A and the
parameter space is only refined in η direction, whereas sparse elements
are arranged in region B. The choice of the cylindrical regionA is crucial.
The CEM [12] roughly took the cylindrical region with a radius of
0.12 m from the water pipe as the large gradient regions according to
engineering experience regardless of the different material parameters.
The radial basis function finite difference method (RBF-FD) [36] only
discussed the ARMS error with different radius values of the region. Zhu
[37] has figured out the relationship between temperature gradient Nx

and distance rx from the pipe in time τ with stepΔτ. The formulation is
given below:

Nx �
2Q1 + θ0abτb−1e−aτ

bΔτ − Δθb( )ccρcφ r2x − r2a( )Δl
2kcφrxΔlΔτ

, (26)

Na � −β1
kc

Tw − Tc( ), (27)
Q1 � NaφΔlΔτkcra, (28)

In the Eq. 26, Q1 represents the heat transfer from the water pipe to
the concrete through the inner face in contact with the pipe, and it
can be found in Eq. 28.Na is the equivalent temperature gradient at
the inner face and is given as Eq. 27. Tc is the temperature of the
concrete contacted with the pipe and ra is the external radius of the
pipe. Δθb is the average temperature increment of the concrete
between ra and rx. Δl is the length of a section of the water pipe.
θ0, a, b are the given hydration heat parameters of concrete. The
schematic plot and relationship are shown in Figure 3. It can be seen
that the temperature gradient varies dramatically fromNa to 0.2Na,
but slowly at remaining areas. Consequently, radius rx of the region
to be refined can be calculated from selected Nx, and the different
element densities are adopted to the corresponding regions after
that. Based on the method mentioned above, the new knot vector

and proposed parameter space are constructed and the
mathematical model in the IGA is established.

4 Numerical experiments

In this section, three examples are given to examine the
accuracy, stability, and sensibility of the proposed parameter
space in the IGA. To evaluate the numerical results, the relative
error (RE) and the relative root mean square error (RMSE) are
applied, and the definition is expressed as Eqs 29, 30.

RE T( ) � T xi( ) − T̂ xi( )
T xi( )

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣, (29)

RMSE T( ) �

������������������
1
Nc

∑Nc

i�1
T xi( ) − T̂ xi( )( )2√
���������
1
Nc

∑Nc

i�1
T xi( )2

√ , (30)

where T(xi) denotes the exact solution based on the model as shown
in Figure 1B in the FEM at point xi. T̂(xi) is the numerical solution
of the IGA. Nc is the total number of test points.

4.1 Example 1

There is a two-dimensional square concrete with length l � 1.6m
and a cooling pipe in the center of the concrete with external radius
d � 0.01m. The thickness of the pipe is h � 0.2cm. The initial
temperature of concrete and water are 20°C and 10°C, respectively.
The main focus of this example is to examine the validity of the
recommending parameter space and show guidance of the selection
refinement, so only adiabatic boundary conditions are considered. The
whole process lasts 20 days with a time step of 0.02 days. The material
parameters are shown in Table 2, and the adiabatic temperature
increase of the concrete is θ(τ) � 15.32 × (1 − e−0.4τ0.66 ).

Based on the formulation mentioned in part 3.3, we takeNx �
0.1Na, rx � 0.08m as region A at the beginning, and the grid size
of the region A is 0.07m. The domain of the concrete is divided
into four elements in η direction, and each size of the elements is
0.07, 0.12, 0.2, 0.4m, as the initial model shown in Figure 4A. To
illustrate the rationality of the parameter space and the need for
refinement, the model with repeated control points and uniform
refinement of the parameter space is displayed as the comparison
in Figure 4B. The model of parameter space with recommended
control points and uniform refinement is displayed in Figure 4C
as well. There are three test points selected with the coordinates
of P1 (−0.4, 0), P2 (−0.8, 0), and P3 (−0.8, 0.8). It is worth noting

TABLE 1 Recommended parameter space and control points.

Control point ξ � [0,0,0,0.5,0.5, 1, 1, 1]

η � [0, 0, 1, 1]
(−d, 0, 1) (−d, ( �

2
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that the origin of coordinates is the center of the water pipe in
this paper.

Table 3 shows the numerical solutions of different models with
almost the same number of degrees of freedom in the IGA and the exact

solution in the FEMwith 1256 numbers of nodes. The temperature of the
three test points at different times is given. By comparing the RMSE of
the first two models, it is clear that the repeated control points result in
malformed meshes that lead to low accuracy. From the results obtained

FIGURE 3
Schematic illustration of regions surrounding the water pipe.

TABLE 2 Material parameters of concrete and water pipe, for example 1.

Material parameter Concrete Water Cooling pipe

Density (kg/m3) 2420 1000 —

Specific heat capacity kJ/(kg·°C) 0.89 4.187 —

Thermal conductivity coefficient kJ/(m · h·°C) 9.0 — 1.66

FIGURE 4
Mesh based on different parameter spaces: (A) initial model of proposed, (B) model with repeated control points and uniform distance, (C) initial
model with uniform distance, (D) kη1(hη1), (E) kη2(hη2), and (F) kη1ξ1, for example 1.
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by the twomodels with the same number of degrees of freedom, it can be
found that encryption based on temperature gradients can increase the
accuracy with any additional effort. Moreover, the good accuracy of the
proposed parameter space can be found and in that the RMSE can reach
up to 8.22E-3, even though only 297 control points are used in the IGA.
These results suggest that the construction of the proposed parameter
space is reasonable and necessary in this paper.

To verify the convergence of the initial model and the rationality of
encryption approach selection, different means of refinement
established on the initial model are displayed in Figures 4D–F. For
concise expression, we named k-refinement in η direction for one time
as kη1, and knot insertion (similar to the h-refinement used in the
FEM) in η direction for two times as kη2, and so on. The grid of knot
insertion is not given for the reason that it has totally the same grid as
k-refinement. As the refinement of the initial model is already based on
temperature gradient, the subsequent encryption on the initial model
adopts uniform encryption. Three test points are chosen with the
coordinates of Q1 (−0.08, 0), Q2(−0.2, 0), and Q3 (−0.4, 0).

Figure 5 shows the relative error of the time variable for different
refinement means at the given test points. In addition, the total time
consumed is provided in Table 4. Incidentally, these tests are
performed using an Intel Core i5 2.4 GHz. It can be seen that the
coarse grid applied in the initial model results in a relative error
increment and finally reaches a 1.6E-2 error. After k-refinement in η

direction, the accuracy is significantly improved and kη1 achieves a
relative error of 4E-3, which is supposedly sufficient for practical
engineering. In contrast to kη1, the error is only unnoticeably
decreased in kη2, but the time consumed is doubled. Compared
with kη1, hη1 has a similar performance in not only the accuracy but
also the time consumption. Furthermore, the same phenomenon
occurs between hη2 and kη2. From the consequences of kξ1η1, it has

been proven that the temperature gradient changes in pipe radial
and refinement in ξ direction is totally ineffective in this case. It is
worth noting that the time consumption is dramatically reduced
compared with the FEM in almost the same degree of freedom.

From the discussion aforementioned, the parameter space for
kη1 is supposed to be the suitable refinement in this condition, and it
might be useful to determine the mechanism in other conditions.
The temperature of these test points in the time domain is shown in
Figure 6A, and it is obvious that the transient temperature and
temperature variation regularity of the proposed scheme are
identical to those of the FEM. In addition, the relative error of
the test point is shown in Figure 6B. It can be seen that the relative
error is nearly 3E-3 and converges with time finally. All the results
demonstrate the accuracy and efficiency of the proposed scheme.

4.2 Example 2

The main focus of this example is to figure out the sensitivity of the
IGA to thickness, water temperature, and time step. Concrete length l
and pipe external radius d are 2m and 0.016m, respectively. The initial
temperatures of concrete and cooling water are 15°C and 10°C,
respectively. The adiabatic temperature increase of the concrete is
θ(τ) � 20.78 × (1 − e−0.46τ0.58 ), and the thickness of the water pipe
is 0.2cm. The remaining parameters are not mentioned as they are the
same as in example 1. The mechanism of refinement is referred to kη1
applied in example 1. The refinement interval used in region A is
0.032m, whereas incremental intervals 0.11, 0.15, and 0.2m are used in
region B. The FEMmodel with 1792 elements and 1888 nodes is treated
as the exact solution, and the points R1 (−0.08, 0), R2 (−0.3, 0), R3 (−0.5,
0), and R4 (−1, 0) are selected as the test points.

TABLE 3 RMSE of numerical solution varies with the model under different test points and time, for example 1.

Temperature (°C) Degree of
freedom

P1 P2 P3 RMSE

t = 2.26 day t = 10.88 day t = 4.20 day t = 15.02 day t = 16.36 day

Model as Figure 4B 261 20.0121 18.1370 22.7113 18.4236 17.9524 1.98E-1

Model as Figure 4C 297 24.9686 22.7571 26.6603 21.6370 21.4035 3.34E-2

Initial model as Figure 4A 297 25.2327 23.4759 26.9441 22.4151 22.1799 8.22E-3

FEM 1256 25.2870 23.7002 27.0341 22.6732 22.4473

FIGURE 5
Relative error of different refinement means over time: (A) Test point Q1, (B) Test point Q2, and (C) Test point Q3, for example 1.
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To display the influence of water pipe thickness, the numerical
results with different thicknesses of the proposed scheme and the
FEM in the test points are enumerated in Table 5. It can be found
that the thickness has a considerable influence on the temperature,
and the effect of the cooling pipe decreases as the thickness increases.
The RMSE converges to a level around 1E-3 although the heat
convection coefficient for the surface contacted with water pipe is
crudely represented by the coefficient of equivalent heat convection.

Table 6 lists the comparison between the temperature obtained
from the IGA with different water temperatures and those obtained
from the FEM at the test points. It can be seen that colder water
reduces the temperature observably at each test point and time.
However, the increased temperature difference between water and
concrete produces large temperature gradient which results in the
increase in RMSE and the risk of cracking.

Table 7 displays the temperature with different time steps by the
proposed scheme compared with the FEM. The stability of time step for
the proposed scheme has been proven from the results above. With
increasing time steps, the temperature increases slightly in both the IGA
and FEM, and the RMSE remains unchanged. From the numerical
solutions listed in the three tables above, the accuracy and
stability of the given model in IGA have been demonstrated.

4.3 Example 3

In the last example, the temperature field for the proposed
scheme is illustrated comprehensively in the concrete domain
instead of the test points, and the boundary in contact with air is
considered as a simulation of the practical engineering situation.

TABLE 4 Total time and numbers of freedom used in different models, for example 1.

Initial kη1 kη2 kξ1η1 hη1 hη2 FEM

Degree of freedom 297 561 1089 1105 429 693 1256

Total time (s) 7.22 15.19 31.78 32.79 13.56 29.29 129.63

FIGURE 6
Comparison of the obtained temperature (A) and relative error (B) with different points by the proposed scheme and the FEM, for example 1.

TABLE 5 Comparisons between temperature obtained from the proposed scheme and the FEM in test points with different thicknesses and time, for
example 2.

Thickness (m) Method R1 R2 R3 R4 RMSE (E)

t = 1.96 day t = 3.54 day t = 13.68 day t = 15.82 day t = 7.42 day

0.002 IGA 17.9397 23.5941 22.6972 24.0901 27.3057 2.11–3

FEM 18.0019 23.6268 22.7561 24.1441 27.3349

0.004 IGA 18.9137 24.1361 23.7820 25.0841 27.7649 3.90–3

FEM 19.0231 24.1958 23.9014 25.1932 27.8172

0.006 IGA 19.6656 24.5582 24.6758 25.9009 28.1257 4.68–3

FEM 19.7946 24.6295 24.8271 26.0389 28.1882
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TABLE 6 Temperature and RMSE in test points with different water temperatures and times for IGA and FEM, for example 2.

Water temperature (°C) Method R1 R2 R3 R4 RMSE
(E)

t = 2.96 day t = 4.54 day t = 14.68 day t = 16.82 day t = 8.42 day

5 IGA 15.7892 22.4588 19.7882 21.3080 25.9224 3.09–3

FEM 15.8773 22.5055 19.8621 21.3764 25.9641

10 IGA 18.4277 23.9388 22.3964 23.7252 27.1725 2.25–3

FEM 18.4960 23.9752 22.4568 23.7809 27.2053

15 IGA 21.0663 25.4187 25.0046 26.1424 28.4227 1.54–3

FEM 21.1148 25.4449 25.0515 26.1854 28.4465

TABLE 7 Temperature and RMSE in those test points mentioned above with different time steps and times for IGA and FEM, for example 2.

Time step (day) Method R1 R2 R3 R4 RMSE (E)

t = 1.6 day t = 6.4 day t = 8.4 day t = 14.4 day t = 16.8 day

0.02 IGA 17.6890 24.1379 23.9701 24.5984 24.4756 2.23–3

FEM 17.7483 24.1806 24.0184 24.6496 24.5306

0.16 IGA 17.6933 24.1304 23.9628 24.5930 24.4713 2.23–3

FEM 17.7526 24.1731 24.0111 24.6442 24.5263

0.4 IGA 17.7255 24.0961 23.9293 24.5688 24.4530 2.23–3

FEM 17.7849 24.1388 23.9776 24.6198 24.5078

FIGURE 7
Comparison of the obtained transient temperature field by the proposed scheme and the FEM, for example 3.
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Heat convection coefficient β2 for boundary Γ2 is 53kj/(m · h·°C),
and the temperature is 30°C. The concrete bottom is on the
fundamental which is considered as the insulation panel. The
material parameters are identical to those in example 1. In the
previous examples, the mechanisms of refinement are only used in η

direction, as the other boundary conditions are adiabatic. To take
boundary Γ2 into account, uniform k-refinement is applied in ξ

direction for one time on the basis of model employed in example 1,
and grids near the insulation panel remain unchanged to reduce the
amount of computation.

To further verify the accuracy of the IGA, Figure 7 presents the
temperature field at several time histories by the IGA compared with
the FEM. We can see that the distribution of the temperature field is
almost the same in the IGA and FEM. At the beginning of the
experiment, the temperature of the concrete around the surface
increases although the center is affected by the cooling pipe. With
the heat of hydration proceeding, the temperature in most areas of
the concrete is increased remarkably, and the temperature gradient
around the pipe is changed sharply. When it comes to the time of
20 days, the temperature around the cooling pipe decreases after the
peak of the hydration reaction. Despite the process being
complicated, a good consistency can be observed between the
temperature field of the offered scheme and the FEM. The slight
difference in the bottom of the concrete is caused by the coarse grids
used in boundary Γ3.

Figure 8 displays the absolute relative error correspondingly. It
can be found that the relative error steadily converges to a level
around E-3 in most regions over several time histories although the
largest error near 4E-2 is concentrated around the cooling pipe. This
phenomenon is mostly caused by the approximate representation of
the cooling pipe effect and the large temperature gradient around the
pipe. All the results in this example demonstrate the accuracy of the
IGA in the entire concrete, as well as the flexibility to refine
according to the different boundaries.

5 Conclusion

In this paper, the IGAmethod based on NURBS is introduced to
simulate the transient temperature field in massive concrete with

cooling pipe embedded. As a preparation for the multi-pipes in
three-dimensional simulation, only a classical model of simplified
two-dimensional concrete with one pipe is considered, where the
cooling pipe is considered as a negative heat resource.

Based on the aforementioned classical model, the most concise
parameter space that can precisely describe the simplified model is
provided. Different mechanisms for encrypting parameter space are
discussed, and the unique k-refinement has been proven to be the most
efficient method. To improve the efficiency under the premise of
ensuring accuracy, the characteristics of temperature gradient in this
problem is considered and different levels of refinement are applied in
constructing the parameter space. Furthermore, the parameter space
also can be refined flexibly according to the actual boundary conditions,
which is expected to reduce the time consumption. The construction of
parameter space is not only to avoid the cumbersome and useless
refinement but also to leap over the time-consuming process
of the mesh.

Numerical examples are presented to verify the validity and
applicability of the proposed scheme. The rationality of the
constructed parameter space and the accuracy of the IGA are
demonstrated through numerical results displayed in the first
example. The stability for different calculating parameters is also
indicated in the second example. In addition, the flexibility and
applicability of the method are shown in the last example. As a
result, the proposed parameter space in the IGA method is deemed
to possess great potential in simulating the thermal field in mass
concrete with a cooling pipe system.
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