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Abstract

Tumor heterogeneity is a complex and widely recognized trait that poses significant chal-

lenges in developing effective cancer therapies. In particular, many tumors harbor a variety

of subpopulations with distinct therapeutic response characteristics. Characterizing this het-

erogeneity by determining the subpopulation structure within a tumor enables more precise

and successful treatment strategies. In our prior work, we developed PhenoPop, a computa-

tional framework for unravelling the drug-response subpopulation structure within a tumor

from bulk high-throughput drug screening data. However, the deterministic nature of the

underlying models driving PhenoPop restricts the model fit and the information it can extract

from the data. As an advancement, we propose a stochastic model based on the linear

birth-death process to address this limitation. Our model can formulate a dynamic variance

along the horizon of the experiment so that the model uses more information from the data

to provide a more robust estimation. In addition, the newly proposed model can be readily

adapted to situations where the experimental data exhibits a positive time correlation. We

test our model on simulated data (in silico) and experimental data (in vitro), which supports

our argument about its advantages.

Author summary

One of the main reasons tumors can be difficult to treat is the presence of multiple sub-

populations each with a distinct response to a given therapy. In particular some of these

subpopulations are able to evade anti-cancer therapies and give rise to treatment resistant
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disease. Therefore it is vitally important to be able to identify these subpopulations and

furthermore quantify their response to a therapy of interest, i.e., to quantify a tumors sub-

population structure. A potential tool for quantifying a tumors subpopulation structure

are so called high-throughput drug screens (HTDS). In these screens a patients tumor

sample is collected and then conditioned to grow in vitro where it can be exposed to a

variety of drugs at different concentration levels. In the present work we develop statistical

tools that create quantitative estimates of tumor population substructure based on HTDS

data. These estimators have better precision than previous results, and furthermore are

able to more accurately identify smaller subpopulations than previous estimators.

Introduction

In recent years the design of personalized anti-cancer therapies has been greatly aided by the

use of high throughput drug screens (HTDS) [1, 2]. In these studies a large panel of drugs is

tested against a patient’s tumor sample to identify the most effective treatment [3–6]. HTDS

output observed cell viabilities after initial populations of tumor cells are exposed to each drug

at a range of dose concentrations. The relative ease of performing and analyzing such large sets

of simultaneous drug-response assays has been driven by technological advances in culturing

patient tumor cells in vitro, and robotics and computer vision improvements. In principle, this

information can be used to guide the choice of therapy and dosage for cancer patients, facilitat-

ing more personalized treatment strategies.

However, due to the evolutionary process by which they develop, tumors often harbor

many different subpopulations with distinct drug-response characteristics by the time of diag-

nosis [7]. This tumor heterogeneity can confound results from HTDS since the combined sig-

nal from multiple tumor subpopulations results in a bulk drug sensitivity profile that may not

reflect the true drug response characteristics of any individual cell in the tumor. Small clones

of drug-resistant subpopulations may be difficult to detect in a bulk drug response profile, but

these clones may be clinically significant and drive tumor recurrence after drug-sensitive pop-

ulations are depleted. As a result of the complex heterogeneities present in most tumors, care

must be taken in the analysis and design of HTDS to ensure that beneficial treatments result

from the HTDS. In recent work we developed a method, PhenoPop, that leverages HTDS data

to probe tumor heterogeneity and population substructure with respect to drug sensitivity [8].

In particular, for each drug, PhenoPop characterizes i) the number of phenotypically distinct

subpopulations present, ii) the relative abundance of those subpopulations and iii) each sub-

population’s drug sensitivity. This method was validated on both experimental and simulated

datasets, and applied to clinical samples from multiple myeloma patients.

In the current work, we develop novel theoretical results and computational strategies that

improve PhenoPop by addressing important theoretical and practical limitations. The original

PhenoPop framework was powered by an underlying deterministic population dynamic

model of tumor cell growth and response to therapy. Here we introduce a more sophisticated

version of PhenoPop that utilizes stochastic linear birth-death processes, which are widely

used to model the dynamics of growing cellular populations [9–11], as the underlying popula-

tion dynamic model powering the method. This new framework addresses several important

practical limitations of the original approach: First, our original framework assumed two fixed

levels of observational noise; here, the use of an underlying stochastic population dynamic

model enables an improved model of observational noise that more accurately captures the

characteristics of HTDS data, and reflects the observed dependence of noise amplitude on
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population size (see Fig 1 and discussion in S1 Text). Second, this framework allows for natural

correlations in observation noise that are tailored to fit specific experimental platforms. Rather

than assuming that all HTDS observations are independent, we may consider data generated

using live-cell imaging techniques where the same cellular population is studied at multiple

time points, resulting in observational noise that is correlated in time. By using these stochastic

processes to model the underlying populations, we obtain an improved variance and correla-

tion structure that more accurately models the data and enables more accurate estimators with

smaller confidence intervals.

The rest of the paper is organized as follows. In Material and methods, we review the exist-

ing PhenoPop method and introduce the new estimation framework based on a stochastic

birth-death process model of the underlying population dynamics. We propose two distinct

statistical approaches in the new framework, aimed at analyzing data from endpoint vs. time

series (e.g. live-cell imaging) HTDS. In Result, we conduct a comprehensive investigation of

our newly proposed methods and compare them with the PhenoPop method on both in silico
and in vitro data. Finally, we summarize the results of the investigation and discuss the advan-

tages of the new framework in Conclusion.

Material and methods

The central problem we address is to infer the presence of subpopulations with different drug

sensitivities using data on the drug response of bulk cellular populations. Here the term ‘bulk

cellular population’ refers to the aggregate of all subpopulations within the tumor. For each

given drug, we assume that the data is in the standard format of total cell counts at a specified

Fig 1. One to one mixtures of imatinib-sensitive and resistant Ba/F3 cells are counted at 14 different time points under 11 different

concentrations of imatinib. Error bars, based on 14 replicates with outliers removed, depict the sample standard deviation, which

increases with larger cell counts.

https://doi.org/10.1371/journal.pcbi.1011888.g001
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collection of time points T ¼ ft1; . . . ; tNT
g and drug concentrations D ¼ fd1; . . . ; dND

g. Fur-

thermore, assume that for each dose-time pair, NR independent experimental replicates are

performed. We denote the observed cell count of replicate r at dose d and time t by xt,d,r, and

denote the total dataset by

x ¼ fxt;d;r; t 2 T ; d 2 D; r 2 f1; . . . ;NRgg:

PhenoPop for drug response deconvolution in cell populations

In [8], we introduced a statistical framework for identifying the subpopulation structure of a

heterogeneous tumor based on drug screen measurements of the total tumor population.

Here, we briefly review the statistical framework and the resulting HTDS deconvolution

method (PhenoPop). First, define the Hill equation with parameters (b, E, m) as

Hðd; b; E;mÞ ¼ bþ
1 � b

1þ ðd=EÞm
; ð1Þ

where b 2 (0, 1) and E, m> 0.

A homogeneous cell population treated continuously with drug dose d is assumed to grow

at exponential rate α + log(H(d; b, E, m)) per unit time. If the population has initial size C0, the

population size at time t is given by

C0 exp ½tðaþ logðHðd; b; E;mÞÞÞ�:

Note that H(0; b, E, m) = 1 and H(d;b, E, m)! b as d!1. Therefore, the population grows

at exponential rate α in the absence of drug (d = 0) and at rate α + log(b) < α for an arbitrarily

large drug dose (d!1). In other words, log(b) represents the theoretical maximum drug

effect on the growth rate. The parameter E represents the dose at which the drug has half the

theoretical maximum effect, and m represents the steepness of the dose-response curve d 7! H
(d; b, E, m).

For a heterogeneous cell population, each subpopulation is assumed to follow the afore-

mentioned growth model with subpopulation-specific parameters αi and (bi, Ei, mi). Assume

there are S distinct subpopulations. Then, under drug dose d, the number of cells in population

i at time t is given by

fiðt; dÞ ¼ fið0Þ exp ½tðai þ logðHðd; bi;Ei;miÞÞÞ�:

To ease notation, the dose-response function H(�; bi, Ei, mi) for population i will be denoted by

Hi(�) in what follows. The initial size of population i is fi(0) = npi, where n is the known initial

total population size and pi is the unknown initial fraction of population i. The total population

size at time t is then given by

f ðt; dÞ ¼
XS

i¼1

fiðt; dÞ ¼ n
XS

i¼1

pi exp ½tðai þ logðHiðdÞÞÞ�:

A statistical model for the observed data x is obtained by adding independent Gaussian

noise to the deterministic growth model prediction. The variance of the Gaussian noise is

given by

s2

hlðt; dÞ ¼
s2

H; t � TL and d � DL

s2
L; otherwise:

(
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The variance is allowed to depend on time and dose, since at large time points and low doses, a

larger variance is expected due to larger cell counts [8]. Thus, the statistical model for the

observation xt,d,r is given by

xt;d;r ¼ f ðt; dÞ þ ZðrÞðt; dÞ;

where {Z(r)(t, d); r 2 {1, . . ., NR}} are independent random variables with the normal distribu-

tion Nð0; s2
hlðt; dÞÞ. This model has the parameter set

yPPðSÞ ¼ fðpi; ai; bi;Ei;miÞ; sH; sL; i 2 f1; . . . ; Sgg: ð2Þ

The initial fractions of the S subpopulations {pi : i 2 {1, . . .S}} and the parameters {(αi, bi, Ei,

mi) : i 2 {1, . . ., S}} governing the drug responses of the subpopulations are unknown. In addi-

tion, the variance levels s2
H and s2

L are unknown. In practice, the precise values of the thresh-

olds TL and DL have minimal effect on the performance of PhenoPop. Therefore, TL and DL

are treated as known.

The goal of the PhenoPop algorithm is to use the experimental data x to estimate the

unknown parameters θPP(S) and the number of subpopulations S. The parameters θPP(S) are

estimated via maximum likelihood estimation, where the likelihood function is given by

LPP yPPðSÞjxð Þ ¼
YNR

r¼1

Y

ðt;dÞ2T �D

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

hlðt; dÞ
p exp �

ðxt;d;r � f ðt; dÞÞ2

2s2
hlðt; dÞ

" #

: ð3Þ

The likelihood function describes the probability of observing the data x as a function of the

parameter vector θPP(S) for a given number S of subpopulations. The number of subpopula-

tions is then estimated by comparing the negative log likelihood across candidate values of S
via the elbow method or Akaike/Bayesian Information criteria. For further information, we

refer to [8].

Limitations. The assumption of the PhenoPop algorithm that the Gaussian observation

noise has two levels of variance is made for methodological simplicity and does not reflect an

observed bifurcation of experimental noise levels. It would be more natural to assume that the

noise level is directly proportional to the cell count, as indicated by the experimental data

shown in Fig 1. In addition, PhenoPop assumes that all observations are statistically indepen-

dent. However, if cells are counted using techniques such as live-cell imaging (time-lapse

microscopy), then observations of the same well at different time points will be positively cor-

related. Both of these limitations can be addressed by modeling the cellular populations with

stochastic processes, as we will now show.

Linear birth-death process

A natural extension of PhenoPop [8] is to use a stochastic linear birth-death process to model

the cell population dynamics. In the model, a cell in subpopulation i (type-i cell) divides into

two cells at rate βi� 0 and dies at rate νi� 0. This means that during a short time interval of

length Δt> 0, a type-i cell divides with probability βiΔt and dies with probability νiΔt. The

death rate of type-i cells is assumed dose-dependent according to

niðdÞ ¼ ni � logðHiðdÞÞ ¼ ni � log bi þ
1 � bi

1þ ðd=EiÞ
mi

� �

:

The net birth rate λi(d)¼
: βi − νi(d) of type-i cells is then given by

liðdÞ ¼ ðbi � niÞ þ logðHiðdÞÞ:
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Using the substitution αi = βi − νi, we see that the drug affects the net birth rate of the stochastic

model the same way it affects the growth rate αi of the deterministic population model of Phe-

noPop. Note however that here, the drug is assumed to act via a cytotoxic mechanism, that is,

higher doses lead to higher death rates. Our framework can easily account for cytostatic effects,

where higher doses lead to lower cell division rates, but we focus on cytotoxic therapies for

simplicity.

Let Xi(t, d) denote the number of cells in subpopulation i at time t under drug dose d. The

mean and variance of the subpopulation size at time t is given by [12]

E½Xiðt; dÞ� ¼
: npimiðt; dÞ ¼ npieliðdÞt ð4Þ

Var½Xiðt; dÞ�¼
: npis

2
i ðt; dÞ ¼ npi

bi þ niðdÞ
liðdÞ

e2liðdÞt � eliðdÞt
� �

: ð5Þ

Next, denote the total population size at time t under drug dose d by

Xðt; dÞ ¼
XS

i¼1

Xiðt; dÞ;

with mean and variance

E½Xðt; dÞ� ¼: mðt; dÞ ¼
XS

i¼1

npimiðt; dÞ

Var½Xðt; dÞ� ¼: ns2ðt; dÞ ¼ n
XS

i¼1

pis
2

i ðt; dÞ:

Note that the mean size of the total population under the stochastic model equals the total pop-

ulation size under the deterministic model of PhenoPop, again with the substitution αi = βi −
νi. However, the stochastic model introduces variability in the population dynamics at each

time point arising from the stochastic nature of cell division and cell death. To account for

experimental measurement error, we add independent Gaussian noise to each observation of

the stochastic model. As a result, the new statistical model for each observation is

xt;d;r ¼ XðrÞðt; dÞ þ Zt;d;r; ð6Þ

where X(r)(t, d) are independent copies of X(t, d) for r = 1, . . ., NR, and fZt;d;r; d 2 D; t 2 T ; r 2
f1; . . . ;NRgg are i.i.d. random variables with the normal distribution N(0, c2), independent of

the X(r)(t, d)’s. The model parameter set is now

yBDðSÞ ¼ fðpi; bi; ni; bi;Ei;miÞ; c; i 2 f1; . . . ; Sgg: ð7Þ

In comparison with PhenoPop, on the one hand, the growth rate parameter αi for each subpop-

ulation has been replaced by the birth and death rates βi and νi. On the other hand, there is

only one parameter c for the observation noise as opposed to four parameters {σH, σL, TL, DL}

for PhenoPop.

Under the new statistical model, the likelihood function is

LBDðyBDðSÞjxÞ

¼
YNR

r¼1

Y

d2D

P
�
XðrÞðt; dÞ þ Zt;d;r 2 ðxt;d;r � Dxt;d;r; xt;d;r þ Dxt;d;rÞ; t 2 T jyBDðSÞ

� ð8Þ
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where we assume that observations at different doses and from distinct replicates are indepen-

dent, and (xt,d,r − Δxt,d,r, xt,d,r + Δxt,d,r) represents an infinitesimally small interval around xt,d,r.

We now discuss two different forms this likelihood function can take, depending on whether

the data collected at different time points are correlated or not.

End-point experiments. For many common cell counting techniques, e.g. CellTiter-Glo

[13], the experiment must be stopped to perform the viability assay and the cells are then

killed. In this case, observations at different time points are actually observations of indepen-

dent cell populations. We can therefore assume that conditional on the parameter θBD(S) these

observations are independent. Thus, the likelihood function can be written as

LEPðyBDðSÞjxÞ

¼
YNR

r¼1

Y

d2D

Y

t2T

P
�
XðrÞðt; dÞ þ Zt;d;r 2 ðxt;d;r � Dxt;d;r; xt;d;r þ Dxt;d;rÞjyBDðSÞ

�
:

We note that the distribution of X(r)(t, d) + Zt,d,r can be computed exactly. However, for faster

computation, one can approximate the distribution by a Gaussian distribution. To that end,

consider the centered and normalized process

Wnðt; dÞ ¼
1
ffiffiffi
n
p
XS

i¼1

Xiðt; dÞ � npie
liðdÞt

� �
: ð9Þ

A straightforward application of the central limit theorem gives the following result.

Proposition 1 For t> 0 and d� 0, Wn(t, d)) N(0, σ2(t, d)), as n!1.

Note that ‘)’ means converge in distribution. The proof of this result will not be provided

since it is a consequence of the more general Proposition 2.

Based on Proposition 1, we obtain the likelihood function

LEP yBDðSÞjxð Þ ¼
YNR

r¼1

Y

ðt;dÞ2T �D

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðns2ðt; dÞ þ c2Þ

p exp �
ðxt;d;r � mðt; dÞÞ

2

2ðns2ðt; dÞ þ c2Þ

" #

: ð10Þ

The right-hand side of (10) depends on the model parameters θBD(S) via the mean and vari-

ance functions μ(t, d) and σ2(t, d). As in [8], one can maximize this expression over the param-

eter set θBD(S) to obtain maximum likelihood estimates of the model parameters. The

optimization problem for the new likelihood LEP is more difficult to solve than the correspond-

ing problem for the PhenoPop likelihood LPP in (3), since the variance of the data now depends

on the dose-response parameters for the subpopulations. However, the numerical optimiza-

tion software we employ is able to deal with this more complex dependence on the model

parameters.

Live-cell imaging techniques. Live-cell imaging techniques enable the experimenter to

obtain cell counts for the same population across multiple different time points. For such data-

sets, observations of the same sample at different time points will be positively correlated. In

this case, we must compute the joint distribution

P
�
XðrÞðt; dÞ þ Zt;d;r 2 ðxt;d;r � Dxt;d;r; xt;d;r þ Dxt;d;rÞ; t 2 T jyBDðSÞ

�
ð11Þ

for each d 2 D. To ease notation, we will temporarily suppress dependence on the dose.

We first note that (X(r)(t))t�0 is not a Markov process, since the total cell count at each time

point does not include information on the sizes of the individual subpopulations. Computing

(11) exactly requires summing over the possible sizes of the subpopulations at each time point,

which is computationally infeasible. It is possible to speed up the computation using tools
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from Hidden Markov Models (HMM), but even with these tools it is still computationally

infeasible to compute the exact likelihood. We discuss this in further detail in S3 Text.

A more efficient approach is to use a Gaussian approximation. For the centered and nor-

malized process Wn(t) from (9), define the vector of observations across time points

Wn ¼ fWnðtÞ; t 2 T g:

By assuming that the set T , number of subpopulations S and initial proportion pi of each sub-

type i are independent of the initial total cell count n, we derive the following approximation

for Wn:

Proposition 2 As n!1,

Wn ) Y ¼ fYðtÞ; t 2 T g � Nð0;SÞ;

where the (i, j) element of the covariance matrix S is given by

Si;j ¼
Xminði;jÞ

‘¼1

XS

k¼1

pke
ðlkti � lkt‘Þeðlktj � lkt‘Þelkt‘� 1s2

kðt‘ � t‘� 1Þ:

The proof of this proposition is given in S2 Text. Upon this proof, we further relax the assump-

tion that the initial proportion pi is independent of the initial total cell count, and a similar

result still follows. In future work, we plan to relax the assumption that T is independent of n.

We now reintroduce dose dependence. For each d 2 D, define the NT × 1 vector

mðdÞ ¼ fmðt; dÞ; t 2 T g

and the NT × NT identity matrix I. Based on Proposition 2, the following approximation is

used to compute the likelihood in expression (8):

x�;d;r ¼ ðxt;d;r; t 2 T Þ � mðdÞ þ Nð0; nSðdÞÞ þ Nð0; c2IÞ:

The likelihood function is thus given by

LLC yBDðSÞjxð Þ ¼
YNR

r¼1

Y

d2D

exp � 1

2
ðx�;d;r � mðdÞÞ

>
ðnSðdÞ þ c2IÞ� 1 x�;d;r � mðdÞ

� �� �

ðdetð2pðnSðdÞ þ c2IÞÞÞ1=2
: ð12Þ

Note that the computational complexity of evaluating the above likelihood is independent of

mint2T xt, alleviating the computational burden associated with an exact evaluation of the

likelihood.

The difference between the likelihood function LEP for endpoint data and LLC for live-cell

imaging data lies in the structure of the covariance matrix for the observation vector x�,d,r. For

LEP, observations made at different time points are assumed independent, meaning that the

covariance matrix is diagonal. For live-cell imaging data, the covariance matrix is not diagonal.

Accurately accounting for time correlations in the likelihood (12) can improve the accuracy of

parameter estimates, as we will discuss in the Results section. However, it does come at a cost,

since it is obviously more computationally expensive to calculate the inverses and determi-

nants present in LLC. As a result, the optimization of LLC can be more difficult than the optimi-

zation of LEP.

The parameters used in our newly proposed models are summarized in Table 1:

Accuracy of Gaussian approximation. Proposition 2 states that the centered and normal-

ized process Wn is approximately Gaussian N(0, S(d)). However, in the derivation of the likeli-

hood function (12), the distribution of the total cell number XðdÞ ¼ fXðt; dÞ; t 2 T g is

approximated with a Gaussian distribution N(μ(d), nS(d) + c2I), whose mean and variance
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increases linearly with n. To verify that the error in this approximation is reasonable for large

n, we will now compare the distributions of X(d) and N(μ(d), nS(d) + c2I) using a well-known

measure of the distance between two distributions. The energy distance, introduced in [14], is

a measure of the distance between probability distributions, which has previously been shown

to be related to Cramer’s distance [14, 15]. The energy distance has been utilized in several sta-

tistical tests [16] and is easily computed for multivariate distributions. For probability distribu-

tions F and G on Rd, we define their energy distance as

DðF;GÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E½kX � Yk� � E½kX � X0 k� � E½kY � Y 0 k�

p
; ð13Þ

where all random variables are independent, X and X0, and Y and Y0, are distributed according

to F and G respectively, and k�k denotes the Euclidean norm.

Since it is unrealistic to compute the Eq (13) directly, we approximate the true energy dis-

tance by computing the empirical energy distance. For two sets of i.i.d. realization {X1, . . ., Xk},

Xi* F, {Y1, . . ., Ym}, Yi* G, one can obtain the empirical energy distance by

DEðF;GÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

km

Xk

i¼1

Xm

j¼1

kXi � Yjk �
1

k2

Xk

i¼1

Xk

j¼1

kXi � Xjk �
1

m2

Xm

i¼1

Xm

j¼1

kYi � Yjk

v
u
u
t : ð14Þ

Denote the distribution of X(d) by FBD and the normal distribution N(μ(d), nS(d) + c2I) by FN.

Let fXig
k
i¼1

be k i.i.d. samples from the distribution FBD, and let fYig
m
i¼1

be m i.i.d samples from

FN. We can then compute DE(FBD, FN) using (14). In Fig 2, we plot DE(FBD, FN) with varying

initial cell counts. The plot shows a monotonic decrease in the empirical energy distance as a

function of the initial cell count, which indicates that the distribution of X(d) is reasonably

approximated by a Gaussian distribution for large values of the initial cell count.

Results

In this section, we use our new statistical methods to analyze both simulated (in silico) and

experimental (in vitro) live cell imaging data. We apply both the simpler end-point estimation

procedure (“end-points method”), based on the likelihood LEP in (10), and the more complex

live cell imaging procedure (“live cell image method”), based on the likelihood LLC in (12). The

performance of the new methods is compared with the existing PhenoPop algorithm. In all

analyses it is assumed that the observation at time t = 0 represents the known starting popula-

tion size, i.e. x0,d,r = n. In the in silico experiment, n is always set to 1000, while in the in vitro
experiment, it varies between experiments but is usually close to 3000.

Table 1. Table of parameters used in the end-points and live cell image methods.

Parameters Description Range

pi Initial proportion of each subpopulation
PS

i¼1
pi ¼ 1; pi � 0

βi Birth rate of subpopulation i βi 2 (0, 1)

νi Death rate of subpopulation i νi 2 (max(0, βi−0.1), βi)

bi Hill coefficient bi 2 (0, 1)

Ei Hill coefficient Ei> 0

mi Hill coefficient mi> 0

n Initial cell count * 104

c Standard deviation of observation noise (0, 0.15n)

https://doi.org/10.1371/journal.pcbi.1011888.t001
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Application to simulated data

We first apply our estimation methods to simulated (in silico) data. In S1 Text, we provide

details of the data generation and the parameter estimation for these in silico experiments.

Data for this section are available at https://github.com/chenyuwu233/PhenoPop_stochastic/

tree/main/In%20silico%20experiment.

Examples with 2 subpopulations. For illustrative purposes, we begin with a case study

involving an artificial tumor with two subpopulations. Data is generated using a parameter

vector θBD(2) selected uniformly at random from the ranges in Table 2. We assume that one

tumor subpopulation is drug-sensitive and the other is drug-resistant. These subpopulations

are indicated by the subscripts s and r, respectively. We furthermore assume that the data is

collected at the time points

T ¼ ½0; 3; 6; 9; 12; 15; 18; 21; 24; 27; 30; 33; 36�: ð15Þ

As in [8], we focus on inferring the initial proportion ps of sensitive cells, as well as the GR50

dose for each subpopulation. The GR50 is the dose at which the drug has half the maximal

Fig 2. Empirical energy distance between linear birth-death simulated data and multivariate normal distributed data with respect to

varying initial cell count: [10, 20, 50, 100, 500, 1000]. The data consists of NR = 100, 000 replicates and 7 time points

T ¼ ½1; 2; 3; 4; 5; 6; 7�. No drug effect is assumed. The parameters used to generate the data are p1 = 0.4629, β1 = 0.9058, ν1 = 0.8101, p2 =

0.5371, β2 = 0.2785, ν2 = 0.2300. The box plot represents the values from 10 distinct datasets. The figure demonstrates that the distribution of

the linear birth-death process converges to the multivariate normal distribution with mean and covariance given by Proposition 2 as the

initial cell count increases.

https://doi.org/10.1371/journal.pcbi.1011888.g002

Table 2. Range for parameter generation of experiments with 2 subpopulations.

ps pr βs,r νs,r bs,r Es Er ms,r c
Range [0.3, 0.5] 1 − ps [0, 1] [β − 0.1, β] [0.8, 0.9] [0.05, 0.1] [0.5, 2.5] [1.5, 5] [0, 10]

https://doi.org/10.1371/journal.pcbi.1011888.t002
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effect on the cell death rate, as is further explained in S1 Text. Informally, the GR50 dose for

each subpopulation is a measure of the subpopulation’s sensitivity to the drug. To assess the

uncertainty in the parameter estimation, we compute maximum likelihood estimates for 100

bootstrapped datasets, as described in S1 Text. The results of the case study are shown in Fig 3,

where we see that both the live cell image method and the end-points method are able to

recover the initial proportion ps of the sensitive population and the GR50 dose for each subpop-

ulation accurately.

We next evaluate the performance of the estimation methods across 30 simulated datasets,

where each parameter vector y
i
BDð2Þ for i = 1, . . ., 30 is sampled from the ranges in Table 2. We

furthermore compare the performance of the two new methods with the performance of Phe-

noPop. The error in the estimation of each parameter {ps, GRs, GRr} is measured by consider-

ing the absolute log ratio between the point estimate x̂ and the true value x for the parameter,

Erðx̂; xÞ ¼
�
�
�log

x
x̂

� ��
�
�: ð16Þ

This metric is chosen to address the logarithmic scale associated with the GR50 dose.

In Fig 4, a box plot of the estimation errors for the three methods across the 30 datasets is

presented. Note that all three parameters {ps, GRs, GRr} are estimated accurately using all three

methods. In addition, the error in estimating the sensitive GR50 is larger than the error in esti-

mating the resistant GR50 for all three methods. One possible reason is that the initial

Fig 3. Estimation of the initial proportion and GR50 for 2 subpopulations using the end-points method and the live cell image method on

simulated data. The parameter vector θBD(2) and observation noise c used in this example are ps = 0.4856, βs = 0.1163, νs = 0.0176, bs = 0.8262, Es =

0.0674, ms = 4.5404, pr = 0.5144, βr = 0.4624, νr = 0.3978, br = 0.8062, Er = 1.5776, mr = 4.2002, c = 1.2103. The pie chart illustrates the average of all

bootstrap estimates for the initial proportion, while the box plot summarizes the distribution of the estimates for the GR50’s. The vertical dashed lines in

the box plot correspond to the true GR50 values employed to generate the data, while the vertical solid lines indicate the concentration levels at which

the data were collected. Each color in the plot represents a distinct subpopulation: orange for sensitive and blue for resistant. The shaded areas, colored

according to the corresponding colors, indicate the concentration intervals where the true sensitive GR50 and resistant GR50 are situated. The colored

dots mark outliers in the estimation of the GR50 for each subpopulation, with red for sensitive and blue for resistant. This example demonstrates that

our newly proposed models can accurately recover the initial proportion and GR50 values with high precision.

https://doi.org/10.1371/journal.pcbi.1011888.g003
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proportion of sensitive cells is ps 2 [0.3, 0.5], so the experimental data contains less informa-

tion on the sensitive subpopulation. Later experimental results will lend further support to this

hypothesis.

We next compare the estimation precision of the three methods. Specifically, we will com-

pare the widths of the 95% confidence intervals for the three parameters between the three dif-

ferent methods. We have noticed that the CI width of the estimation depends on the true

parameter value, especially for the GR50. This becomes evident when comparing the CI widths

for estimating the sensitive GR50 and resistant GR50, as shown in Fig 5. Consequently, we have

chosen the Wilcoxon signed rank test to illustrate the paired difference in the CI width

between the three methods. By using paired differences, we can control for variability in CI

width between different parameter sets.

In Fig 5, CIs for {ps, GRs, GRr} are compared between the three methods across the 30 data-

sets. First, note that for the initial proportion ps, the live cell image method has significantly

narrower CIs than the other two methods. Additionally, there is a small but statistically signifi-

cant difference between the CI widths for the end-points method and the PhenoPop method.

For the sensitive GR50 index, the live cell image method again has significantly narrower confi-

dence intervals than the other two methods, and the end-points method has significantly nar-

rower confidence intervals than the PhenoPop method. The results are similar for the resistant

GR50 index. It is worth mentioning that for at least 28 out of the 30 datasets, the true parame-

ters were located within the confidence intervals for all three methods.

In summary, the end-points and live cell image methods provide a significant improvement

in estimator precision over the PhenoPop method for all three parameters, and furthermore,

the live cell image method has the best precision out of all three methods.

Fig 4. Absolute log ratio accuracy of three estimators fp̂s; ĜRs; ĜRrg using the PhenoPop, end-points and live cell image methods. The results are

summarized based on 30 different simulated datasets. This figure demonstrates that there are no significant differences in estimation accuracy among

these three methods when the true parameters fall within the range described in Table 2.

https://doi.org/10.1371/journal.pcbi.1011888.g004
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Estimation of complete parameter set. Until now we have focused on estimating the ini-

tial fractions and GR50 values. Of course our model has several more parameters, and it is of

interest how well the presented algorithms can estimate the complete parameter set, i.e. θBD(2)

= {(pi, βi, νi, bi, Ei, mi), c; i = 1, 2}.

Based on the aforementioned 30 experiment results, we will investigate how accurately our

algorithms can estimate the full parameter set θBD. In particular, we will look at the relative

error

Erðx̂; xÞ ¼
�
�
�
�
x � x̂

x

�
�
�
�

between the point estimate x̂ and the true value x for each element of the parameter set.

In Fig 6, it is evident that the estimates of the initial fractions p and drug effect parameters

(b, E) are accurate across all 30 in silico experiments. However, the estimates of m are not as

accurate as those of the other parameters due to the fact that m introduces non-convexity to

the optimization problem. Interestingly, our newly proposed models demonstrate the ability

to reasonably recover most of the birth and death parameters (β, ν) of each subpopulation,

which cannot be estimated using the PhenoPop method. This highlights a unique property of

our newly proposed models, as they leverage data variability to infer the birth and death rates

separately. Additionally, we observe as in Fig 4 that the parameters related to the sensitive sub-

population tend to be less accurately estimated than for the resistant subpopulation due to a

smaller initial sensitive subpopulation proportion.

Fig 5. Comparison of the CI widths of three estimators fp̂s; ĜRs; ĜRrg estimated from three different methods. The y-axis represents the CI width.

The box plots summarize the results across 30 different simulated datasets. The significance bar indicates the p-values derived from the Wilcoxon

signed rank test, with significance levels denoted as ***� 0.001� **� 0.01� *� 0.05. The solid line between the box plots indicates the paired result

from all three methods. This figure demonstrates that the newly proposed models exhibit significant advantages in estimation precision, with the live

cell image method demonstrating the highest level of precision.

https://doi.org/10.1371/journal.pcbi.1011888.g005
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To analyze the trade-off in accuracy between estimates of different parameters, we pro-

ceeded to examine the empirical joint confidence region (JCR) for these parameters. Since we

have 30 different sets of true parameters, we generate the empirical joint confidence region

based on the estimation error, i.e. the difference between the estimate and the true parameter.

Specifically, we calculated the errors for the 100 bootstrapped estimates for each experiment

and compiled the results from the 30 experiments. Due to a discernible positive correlation

between the estimates of the birth rate β and death rate ν, our focus in Fig 7 is solely on the

errors associated with the parameters (β, b, E, m) for the two subpopulations. While we do not

observe a clear trade-off in estimating (β, b, m) for both subpopulations, there is a slight hyper-

bolic shape in the JCR for the drug effect parameter E. This indicates that a smaller estimation

error for Es may cause a larger estimation error for Er.

Effect of small time observation window on estimation accuracy. It should be noted

that the quality of estimation depends on the quality of the experimental design, specifically

the choice of time points and dosage levels. For instance, as we shorten the time window, the

initial fluctuations in the linear birth-death process may make it difficult to infer and decouple

the growth characteristics of the resistant and sensitive subpopulations. To illustrate how the

three methods perform when only observing the first few hours of the experiment, we con-

ducted a new set of experiments with time points:

t ¼ f0; 1=3; 2=3; 1; 4=3; 5=3; 2; 7=3; 8=3; 3; 10=3; 11=3; 4g: ð17Þ

Otherwise, all the experimental settings are the same as the aforementioned experiment. In

Fig 8, we compare the accuracy and precision in estimating the initial proportion between the

PhenoPop and Live cell image methods. We find that both PhenoPop and Live cell image

Fig 6. Relative point estimation errors for all parameters in the parameter vector θBD(2). Results from the live cell image method and the

end-points method are included as shown in the legend. The y-axis is in logarithmic scale and the solid line indicates the place where the

relative error is equal to 1.

https://doi.org/10.1371/journal.pcbi.1011888.g006
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methods exhibit a significant deterioration in estimation accuracy and precision under this

experimental design, which higlights the importance of collecting data over a sufficiently long

time horizon.

Illustrative example with 3 subpopulations. In this section, we examine a case study

involving an artificial tumor with 3 subpopulations. The subpopulations are assumed sensitive,

moderate, and resistant with respect to the drug, and they are denoted using the subscripts s,
m, and r, respectively. Data is generated using a parameter vector θBD(3) selected uniformly at

random from the ranges in Table 3. Those parameters not listed in Table 3 are selected as in

Table 2.

Fig 9 shows estimation results for the initial proportions ps, pm, pr and the GR50 doses of the

three subpopulations. Note that the end-points and live cell image methods provide more

accurate estimates of the initial proportion for each subpopulation than PhenoPop. Further-

more, when estimating the GR50 for each subpopulation, the inter-quartile range (IQR) of 100

bootstrapped estimates covers the true GR50 value for all three methods. However, the estima-

tion for the GR50 of the moderate subpopulation with Em = 0.3558 is less precise than for the

other two subpopulations, i.e., the IQR is wider. This is likely due to confounding between the

moderate subpopulation and the other two subpopulations.

It is worth noting that for the 3 subpopulation example, the number of datapoints is the

same as for the 2 subpopulation examples, since only total cell counts are observed at each

time point. Furthermore, when computing maximum likelihood estimates for 3 subpopula-

tions, we solved each optimization problem the same number of times as for 2 subpopulations.

Fig 7. Joint confidence region of (β, b, E, m) between resistant and sensitive cells. In each subfigure, the x-axis

represents the estimation error of the correspondent parameter of the sensitive subpopulation, while the y-axis

represents the estimation error of the correspondent parameter of the resistant subpopulation.

https://doi.org/10.1371/journal.pcbi.1011888.g007
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Overall, our conclusion is that all three methods can provide reasonable estimates of the true

initial proportion and the GR50 of each subpopulation for 3 subpopulations. However, achiev-

ing equivalent levels of accuracy and precision as for 2 subpopulations may require a greater

computational effort or the collection of more data, given that the 3 subpopulation model is

more complex and has more parameters.

Performance in challenging conditions. In the previous work [8], three conditions

under which the performance of PhenoPop deteriorates were identified: the case of a large

observation noise, a small initial fraction of resistant cells, and similar drug-sensitivity of both

subpopulations. We now investigate the performance of the end-points and live cell image

methods in these conditions and compare to the performance of PhenoPop.

Large observation noise:

We first consider the case of large observation noise. Note that in the PhenoPop method,

the only source of variability in the statistical model is the additive Gaussian noise. In the end-

points and live cell image methods, however, there is an underlying stochastic process govern-

ing the population dynamics with an added Gaussian noise term. Thus, whereas PhenoPop

deals with high levels of noise by adjusting the variance of the Gaussian term, the two new

methods may also try to adjust the subpopulation growth and dose response parameters. This

can complicate estimation with the two new methods compared to PhenoPop from data with

high levels of noise.

Fig 8. Estimation accuracy (left panel) and precision (right panel) of the initial proportion from data collected from different time horizons. The

methods PhenoPop(t) and Live cell image(t) estimate from data collected at the time points τ defined in (17), while the methods PhenoPop(T) and Live

cell image(T) estimate from data collected at the time points T defined in (15).

https://doi.org/10.1371/journal.pcbi.1011888.g008

Table 3. Modified range of parameters in experiments with 3 subpopulations.

ps, pm pr Es Em Er
Range [0.167, 0.333] 1 − ps − pm [0.0313, 0.0625] [0.25, 0.375] [1.25, 2.5]

https://doi.org/10.1371/journal.pcbi.1011888.t003
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We begin by considering a case study where the noise level is set to c = 500, and other

parameters are chosen uniformly at random according to Table 2. The results are shown in Fig

10. For each method, the initial proportion ps is estimated with good accuracy, and the IQR of

100 bootstrap estimates for GRs covers the true value. However, compared with the estimation

in Fig 3, the estimation precision of the end-points method and live cell image method has

degraded. In addition, observe that the IQRs of the three methods have about the same width,

which implies the precision advantage observed in Fig 5 disappears under a very large observa-

tion noise.

We next evaluate estimation performance across 30 simulated datasets for each noise value

c 2 C ¼ f100; 200; 300; 400; 500g. Fig 11 shows the mean absolute log ratio across the 30

datasets for each parameter {ps, GRs, GRr}, each noise level and each estimation method. As

expected, the estimation error increases for all three methods as a function of the observation

noise. In fact, all three methods show a similar response to increasing levels of noise.

We next compare the widths of 95% confidence intervals for the three parameters under

noise levels c = 100 and c = 500, using 30 datasets for each noise level. The results are shown in

Figs 12 and 13. For c = 100 (Fig 12), the precision advantage of the live cell image method over

the other two methods is less pronounced than in Fig 5, where c 2 [0, 10], especially for the

resistant GR50. For c = 500 (Fig 13), the advantage in precision disappears for estimation of all

three parameters. Note that both end-points and live-cell methods utilize information from

the variability in the data to infer model parameters. Consequently, as observation noise

increases, data variability becomes less informative, leading to the disappearance of the

Fig 9. Estimation of the initial proportion and GR50 for 3 subpopulations using the three estimation methods. The parameter vector θBD(3) and the

observation noise in this example are ps = 0.2135, βs = 0.3214, νs = 0.2773, bs = 0.8782, Es = 0.0344, ms = 2.5998, pm = 0.2718, βm = 0.7334, νm = 0.6776,

bm = 0.8506, Em = 0.3558, mm = 4.6055, pr = 0.5147, βr = 0.0683, νr = 0.0253, br = 0.8614, Er = 1.5764, mr = 4.4706, c = 9.5209. The pie chart illustrates the

average of all bootstrap estimates for the initial proportion, while the box plot summarizes the distribution of all estimates for the GR50’s. The vertical

dashed lines in the box plot correspond to the true GR50 values employed to generate the data, while the vertical solid lines indicate the concentration

levels at which the data were collected. Each color in the plot represents a distinct subpopulation: orange for sensitive, blue for moderate, and yellow for

resistant. The shaded areas, colored according to the corresponding colors, indicate the concentration intervals where the true sensitive GR50 and

resistant GR50 are situated. The colored dots mark outliers in the estimation of the GR50 for each subpopulation, with red for sensitive, blue for

moderate, and yellow for resistant.

https://doi.org/10.1371/journal.pcbi.1011888.g009
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Fig 10. An illustrative example under the high observation noise scenario, i.e.c = 500. The parameter vector θBD(2) and the observation noise in this

example are ps = 0.3690, βs = 0.4380, νs = 0.3422, bs = 0.8398, Es = 0.0813, ms = 3.9647, pr = 0.6310, βr = 0.5320, νr = 0.4767, br = 0.8674, Er = 1.9793, mr =

4.8357, c = 500. Results are presented in Fig 3. This example demonstrates that all three methods are capable of recovering the initial proportion and

GR50 even under the high observation noise scenario.

https://doi.org/10.1371/journal.pcbi.1011888.g010

Fig 11. Estimation error of fp̂s; ĜRs; ĜRrg with respect to varying standard deviation of observation noise. The metric of estimation error is the

mean absolute log ratio of estimates across 30 simulated datasets, each generated from a distinct parameter set. The value of the observation noise

parameter, c, in these 30 generating parameter sets was assigned to 5 different values in the set C ¼ f100; 200; 300; 400; 500g to generate the line plots.

Three different line plots correspond to three different methods, as indicated by the figure legends. This figure demonstrates that the estimates of the

three methods deteriorate as the level of observation noise increases.

https://doi.org/10.1371/journal.pcbi.1011888.g011
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precision advantage offered by the newly proposed models. Importantly, however, Fig 12

shows that the precision advantage of the live cell method is statistically significant for all three

parameters {ps, GRs, GRr} for an observation noise as large as 10% of the initial cell count. It

should be noted that the standard deviation of observation noise reported from common auto-

mated and semi-automated cell counting techniques ranges from 1 − 15% [17, 18].

Small resistant subpopulation:

For the datasets investigated in Fig 3, the initial proportion ps of sensitive cells was con-

strained to be in [0.3, 0.5]. We now consider the setting of a small resistant subpopulation. We

begin with a case study in Fig 14, where ps is assigned to 0.99, and other parameters are sam-

pled according to Table 2. For both the sensitive and resistant subpopulations, the IQR for the

GR50 dose under PhenoPop does not cover the true value, whereas the IQR for the live cell

image method does. The IQR for the end-points method covers the true resistant GR50, but

only barely covers the true sensitive GR50. In addition, the end-points and live cell image meth-

ods have significantly narrower IQRs than PhenoPop. Finally, note that the estimate of the ini-

tial proportion of resistant cells is much more accurate for the end-points and live cell image

methods. Thus, while PhenoPop provides a reasonable estimate of the sensitive GR50, which is

the dominant subpopulation in this scenario, inferring the population composition and the

GR50 for the minority resistant subpopulation requires the use of the more powerful end-

points and live cell image methods.

In Fig 15, we show the mean absolute log ratio for each parameter {ps, GRs, GRr} across 100

datasets for each ps 2 {0.85, 0.9, 0.95, 0.99}. Note that both the end-points and live cell image

methods have significantly smaller errors than PhenoPop, and that the difference becomes

Fig 12. Comparison of the CI widths of the three estimators fp̂s; ĜRs; ĜRrg using the three different estimation methods, when the observation

noise parameter is set to c = 100. The y-axis represents the CI width. The box plot summarizes the results across 30 different datasets. The significance

bar indicates the p-values derived from the Wilcoxon rank-sum test, with significance levels denoted as ***� 0.001� **� 0.01� *� 0.05. This figure

demonstrates that the advantages of the live cell image method in estimation precision are preserved even when the standard deviation of observation

noise is 10% of the initial cell count.

https://doi.org/10.1371/journal.pcbi.1011888.g012
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Fig 13. Comparison of the CI widths of three estimators fp̂s; ĜRs; ĜRrg using the three different estimation methods, when the observation noise

parameter is set to c = 500. Results are presented as in Fig 12. This figure demonstrates that the advantages of the live cell image method in estimation

precision become less significant as the standard deviation of observation noise increases to 50% of the initial cell count.

https://doi.org/10.1371/journal.pcbi.1011888.g013

Fig 14. An illustrative example under the unbalanced initial proportion scenario, i.e. ps = 0.99. The parameter vector θBD(2) and the observation

noise in this example are ps = 0.9900, βs = 0.4301, νs = 0.4199, bs = 0.8644, Es = 0.0768, ms = 4.3186, pr = 0.0100, βr = 0.1458, νr = 0.1258, br = 0.8565, Er =

0.5348, mr = 3.7518, c = 4.8400. Results are presented as in Fig 3. This example demonstrates that our newly proposed model can accurately estimate

parameters even when the initial proportion of the resistant subpopulation is negligible, while the PhenoPop method fails to estimate the parameters

accurately.

https://doi.org/10.1371/journal.pcbi.1011888.g014
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more pronounced as ps increases. Also note that the error in estimating the sensitive GR50 is

smaller than for the resistant GR50, opposite to the results of Fig 4, where ps 2 [0.3, 0.5]. This

further reinforces the hypothesis that the initial proportion of a subpopulation impacts the pre-

cision of estimating the GR50 for that subpopulation.

Similar subpopulation sensitivity:

For the datasets investigated in Fig 3, the GR50’s for the two subpopulations were assumed

to be significantly different. We now consider the case where the two GR50’s are similar.

Fig 16 shows the results of a case study where Es 2 [0.05, 0.1], Er = 0.15, and other parameters

are selected according to Table 2. Note that all three methods successfully recover the

parameters {ps, GRs, GRr}, where the IQRs for the live cell image method are significantly

narrower than for PhenoPop. For brevity, we omit the plots that depict the statistical com-

parison of confidence interval widths. In Fig 17, we perform estimation across 80 datasets

for each Er 2 {0.15, 0.3, 0.45, 0.85, 2.0}, with other parameters sampled from Table 2, includ-

ing Es 2 [0.05, 0.1]. As expected, the accuracy in estimating the parameters {ps, GRs, GRr}

improves as the sensitive GR50 and resistant GR50 become more different. We note however

that the live cell image method has the lowest mean error when estimating the GR50, with all

three methods showing similar degradation as the two subpopulations become more pheno-

typically similar.

Application to in vitro data

We conclude by evaluating the performance of our two new methods on in vitro experimental

data. We provide the details of maximum likelihood estimation in S1 Text. Data for this

Fig 15. Estimation error of fp̂s; ĜRs; ĜRrg with respect to varying resistant initial proportions. The metric of estimation error is the mean absolute

log ratio across 100 simulated datasets, each generated from a distinct parameter set. The value of ps in these 100 generating parameter sets was assigned

to 4 different values in the set P ¼ f0:85; 0:90; 0:95; 0:99g to generate the line plots. Three different line plots correspond to three different methods, as

indicated by the figure legends. This figure demonstrates the advantages of estimation accuracy provided by the newly proposed methods when the

initial proportion of the resistant subpopulation decreases toward 0.

https://doi.org/10.1371/journal.pcbi.1011888.g015
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section are available at https://github.com/chenyuwu233/PhenoPop_stochastic/tree/main/In%

20vitro%20experiment.

The in vitro data consists of both monoclonal and mixtures of imatinib sensitive and resis-

tant Ba/F3 cells with different mixture proportions. In the experiments, cells were exposed to

11 different concentrations of imatinib and they were observed at 14 different time points. For

each drug concentration, 14 independent replicates were performed starting with roughly

1000 cells. Cell counts were obtained using a live-cell imaging technique. We gathered a total

of four monoclonal datasets: two sensitive datasets and two resistant datasets, each initialized

with different cell counts. These datasets are identified as SENSITIVE500, SENSITIVE1000,

RESISTANT250, and RESISTANT500, with the numerical labels indicating the respective ini-

tial cell counts. We will also analyze mixture datasets with starting ratios between sensitive and

resistant cells: 1 : 1, 1 : 2, 2 : 1 and 4 : 1. These datasets are denoted by BF11, BF12, BF21 and

BF41, respectively. See [8] for further details on the experimental methods for generating the

data.

In [8], we showed that the PhenoPop method can accurately identify the initial proportion

of sensitive cells and both subpopulations’ GR50 from the BF 21 and BF 41 datasets. Here, we

employ our newly proposed methods to these two datasets and compare the result with the

PhenoPop method. We present the point estimation results for the BF 41 and BF 21 datasets in

Figs 18 and 19 respectively. It is important to note that we lack the true GR50 for the sensitive

and resistant Ba/F3 cells. Instead, we estimate the ‘ground truth’ GR50 based on independently

applying all three methods to sensitive or resistant monoclonal data. The monoclonal esti-

mates using the three methods indicate the likely range where the ground truth GR50 is

located.

Fig 16. An illustrative example under the similar subpopulation sensitivity scenario. The parameter vector θBD(2) and the observation noise in this

example are ps = 0.3263, βs = 0.8896, νs = 0.8215, bs = 0.8820, Es = 0.0654, ms = 3.8539, pr = 0.6737, βr = 0.0925, νr = 0.0661, br = 0.8171, Er = 0.1500, mr =

3.6015, c = 7.6660. Results are presented as in Fig 3. This example demonstrates that all three methods are capable of recovering the initial proportion

and GR50 even when two subpopulations have similar drug sensitivity, while the newly proposed methods exhibit superior estimation precision

compared to the PhenoPop method.

https://doi.org/10.1371/journal.pcbi.1011888.g016
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For both the BF 41 and BF 21 datasets, and for both the sensitive and resistant subpopula-

tion in each case, all three methods return GR50 estimates that fall within the same concentra-

tion interval, meaning that the estimates fall between two particular drug concentrations

applied in the experiments (Figs 18 and 19). The estimates clearly indicate that the GR50’s for

the sensitive and resistant subpopulations are distinct, and the estimates furthermore are con-

sistent with the likely ‘ground truth’ ranges for the GR50’s. Finally, regarding subpopulation

structure, there is a noticeable consensus among all three methods and the true initial

proportions.

Next, we assess how well these three methods fit all the datasets using the Akaike Informa-

tion Criterion (AIC). For a statistical model with parameters θ and likelihood function LðyjxÞ,
AIC is given by

AIC ¼ � 2 logðLðy∗jxÞÞ þ 2jy
∗
j:

Here, θ* is the maximum likelihood estimate and |v| is the cardinality of the vector v. When

comparing the three methods, the one with the lowest AIC is preferred.

Results are shown in Table 4. The AIC values of the end-points method (EP) and live cell

image method (LC) are clearly lower than for the PhenoPop method (PP), indicating that the

two new methods are superior for fitting the experimental datasets. As discussed in Material

and methods, the newly proposed methods have more sophisticated variance structures, which

is likely the reason why they are able to provide a better fit to the datasets. Then, it is worth not-

ing that the live cell image method has superior AIC scores among all three methods on the

Fig 17. Estimation error of fp̂s; ĜRs; ĜRrg with respect to varying similarity between subpopulation drug sensitivities. The metric of estimation

error is the mean absolute log ratio across 80 simulated datasets, each generated from a distinct parameter set. The value of Er in these 80 generating

parameter sets was assigned to 5 different values in the set E ¼ f0:15; 0:3; 0:45; 0:85; 2g to generate the line plots. Three different line plots correspond

to three different methods, as indicated by the figure legends. This figure demonstrates that the estimation accuracy of the three methods improves as

the discrepancy of drug sensitivity between the two subpopulations increases, with the live cell image method exhibiting the smallest average error

among the three methods.

https://doi.org/10.1371/journal.pcbi.1011888.g017
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monoclonal data. However, this advantage does not persist when fitting the mixture datasets.

One possible explanation is that interactions within the mixture, which our model does not

account for, may dilute the advantage of the live cell image method. Alternatively, the level of

noise maybe high enough to reduce the power of the live cell method. Finally we observed that

the auto-correlation structure of the data in the mixture experiments does not match the pre-

dicted structure of the live-cell model, while it does match the predicted structure in the mono-

clonal experiments. We plan to extend our models to account for potential cell-to-cell

interactions in future work.

Conclusion

In this work, we have proposed two methods for analyzing data from heterogeneous cell mix-

tures. In particular, we are interested in the setting where a mixture of at least two distinct cell

subpopulations is exposed to a given drug at various concentrations. We then use the dose

response curve of the composite population to learn about the two subpopulations. In particu-

lar, we are interested in estimates of the different subpopulations’ initial prevalence and also

their distinct dose response curves. The challenge of this problem is that we do not observe

direct information about the subpopulations, but instead only information about the dose

response of the composite population.

This work is an extension of our prior work in [8]. The novelty of the current work is that

we introduce a more realistic variance structure to our statistical model. We create a new vari-

ance structure by building our model using linear birth-death processes. In particular, we

Fig 18. Estimation of the initial proportion and GR50 for 2 subpopulations from the mixture (BF41), and the monoclonal (SENSITIVE500,

RESISTANT250) datasets using all three methods (PhenoPop, End-points, Live cell image). True initial proportion is obtained from the initial

setting of the BF41 dataset, with a 4: 1 between sensitive and resistant cells. The estimated initial proportions are labeled according to their respective

methods. True GR50 are estimated from monoclonal data and denoted as ‘Monoclonal’ from all three methods, while the estimated GR50 are labeled as

‘Mixture’. Each shape in the GR50 estimation corresponds to a method, circle for PhenoPop, square for End-points, and diamond for Live cell image.

Each color in the plot represents a distinct subpopulation: orange for sensitive and blue for resistant.

https://doi.org/10.1371/journal.pcbi.1011888.g018
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model each subpopulation as a linear birth-death process with a unique birth rate and a unique

dose-dependent death rate. The dose dependence of the death rate is captured using a

3-parameter Hill function. Our observed process is then a sum of independent birth-death

processes. Our goal is then to estimate the initial proportion of the subpopulations, as well as

their birth rates and the parameters governing the dose response in their death rates.

Counting cells in in vitro experiments can generally be conducted in one of two fashions. In

the first approach, cell numbers can only be estimated at the end of the experiment because the

mechanism for estimating cell numbers requires killing the cells. In the second approach, cells

are counted via live imaging techniques and the cells can be counted at multiple time points.

Fig 19. Estimation of the initial proportion and GR50 for 2 subpopulations from the mixture (BF21), and the monoclonal (SENSITIVE500,

RESISTANT250) datasets using all three methods (PhenoPop, End-points, Live cell image). True initial proportion is obtained from the initial

setting of the BF21 dataset, with a 2: 1 between sensitive and resistant cells. The estimated initial proportions are labeled according to their respective

methods. True GR50 are estimated from monoclonal data and denoted as ‘Monoclonal’ from all three methods, while the estimated GR50 are labeled as

‘Mixture’. Each shape in the GR50 estimation corresponds to a method, circle for PhenoPop, square for End-points, and diamond for Live cell image.

Each color in the plot represents a distinct subpopulation: orange for sensitive and blue for resistant.

https://doi.org/10.1371/journal.pcbi.1011888.g019

Table 4. AIC scores of three methods: PhenoPop method(PP), end-points method(EP), and live cell image

method(LC) for the eight experimental datasets BF11, BF12, BF21, BF41, SENSITIVE500, SENSITIVE1000,

RESISTANT250, RESISTANT500.

DATA PP(AIC) EP(AIC) LC(AIC)

BF11 28502 26300 25294

BF12 30485 26816 27311

BF21 27928 24064 24182

BF41 28912 24066 24574

SENSITIVE500 16067 15776 14021

SENSITIVE1000 17977 16360 15937

RESISTANT250 15626 13053 11353

RESISTANT500 16886 12079 11912

https://doi.org/10.1371/journal.pcbi.1011888.t004

PLOS COMPUTATIONAL BIOLOGY Using birth-death processes to infer tumor subpopulations from drug screen data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011888 March 6, 2024 25 / 29

https://doi.org/10.1371/journal.pcbi.1011888.g019
https://doi.org/10.1371/journal.pcbi.1011888.t004
https://doi.org/10.1371/journal.pcbi.1011888


The second approach requires less cellular materials than the first approach when collecting

data at multiple time points. In particular, when using live imaging techniques, we can obtain

observations at multiple time points with a single sample, whereas when we use the end-point

method multiple time points will require multiple independently run cell cultures. When deal-

ing with multiple time point data from cells collected via the first approach we can assume that

observations at different time points are independent because they are the result of different

experiments. However, when dealing with data from the second approach we can no longer

make that assumption because the cell counts at different time points are from the same popu-

lation and there is a positive correlation between those measurements. As a result of this differ-

ing structure we develop two methods, one that assumes independent observations at each

time point, and one that assumes all the time points for a given dose are correlated. Evaluating

the likelihood function under the second approach is not trivial at first glance since it requires

evaluating the likelihood function of a sample path of a non-Markovian process (the total cell

count). We are able to get around this difficulty by using a central limit theorem argument to

approximate the exact likelihood function with a Gaussian likelihood.

In this work we compared three different methods: PhenoPop method from [8], end-points

method (assumes measurements are independent in time), and live cell image method

(assumes time correlations). We first performed this comparison using simulated data. We

generated our data by simulating linear birth-death processes and then adding independent

Gaussian noise terms to the simulations. We mainly focused on a mixture of two supbopula-

tions, and we were interested in estimating three features of the mixed population: initial pro-

portion of sensitive cells, GR50 of the sensitive cells, and GR50 of the resistant cells. Our first

test for the simulated data was to look at confidence interval widths as a measure of estimator

precision. In this study, we found that the live cell image method had significantly narrower

confidence intervals than the other methods for estimating all three features. We next investi-

gated the performance of our three methods in the setting of small resistant subpopulations,

where less than 15% of initial cells are resistant. We found that in this small resistant fraction

setting the live cell image method provides a significant improvement in accuracy over the

original PhenoPop method. Furthermore, this improvement increases as the initial fraction of

resistant cells goes to zero. We also compared the performance of the methods for simulations

with increased levels of additive noise and subpopulations with similar dose response curves.

In the scenario of subpopulations with similar dose response curves, we found that the live cell

image method has the lowest mean error on estimating GR50 among the three methods. For

increasing additive noise, all three methods perform similarly in terms of estimation accuracy.

However, the live cell image method maintains its precision advantage over the other two

methods for an observation noise of 10% of the initial cell count, while the advantage disap-

pears for a 50% noise level. These results show that the endpoints and live cell image methods

are best used in datasets with lower noise standard deviation levels. Whereas when standard

deviation levels are equal to a significant fraction of the initial population the precision benefit

of these newer algorithms is reduced and one can safely use the original PhenoPop algorithm.

In our simulated datasets the statistical distribution of the data most closely matches the

likelihood proposed by the live-cell imaging model. However, we see in many of our results

that both the endpoints and PhenoPop algorithm are able to accurately identify the model

parameters, with only a reduction in precision. We hypothesize that this is because both Phe-

noPop and the endpoints method accurately model the mean of the simulated data. As a

result, they are able to use the mean behavior of the data to accurately identify the model

parameters. Neither the endpoints nor PhenoPop method accurately models the variance of

the data, and as a result they are not able to generate as precise estimates as the live-cell

method on this data.
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We finally compared the three methods using in vitro data. In particular, we used data from

our previous work [8] that considered different seeding mixtures of imatinib sensitive and

resistant tumor cells. We then used all three methods to fit this data and used AIC as a model

selection tool. We found that live cell image and end-points methods had significantly better

scores than PhenoPop for all four initial mixtures studied. Interestingly the end-points method

had lower AIC scores for three out of the four mixtures studied even though this data was gen-

erated using live-cell imaging techniques. This may be due to cell-to-cell interactions, which

we plan to incorporate into our models in future work. For monoclonal data, the live cell

image method outperformed both PhenoPop and the end-points method in terms of model fit.

Similar to our previous work [8], our newly proposed methods effectively classify a hetero-

geneous tumor population into distinct phenotypic subpopulations with differentiable drug

responses, using data on the response of the tumor bulk. Our methods identify the number of

distinct subpopulations, thus bypassing the need for more advanced techniques like genotyp-

ing based on next-generation sequencing, and they simultaneously characterize the drug

responses of each subpopulation, which would otherwise require separate assays. It is worth

noting that our approach can also be applied to other controllable environmental factors, such

as nutrient/oxygen deprivation. Accurately identifying subpopulations with differential drug

sensitivities, especially small subpopulations with partial or full drug resistance, is crucial for

the design of successful drug treatments. Indeed, drug response profiles for the tumor bulk

may suggest treatment regimens which are effective at killing most of the tumor cells, while

leaving a small reservoir of resistant cells with the ability to drive tumor recurrence. Knowing

the subpopulation structure of the tumor can aid in the design of combination treatments

which target several subpopulations simultaneously [19, 20]. In addition, the ability to infer

the drug response profiles of each subpopulation facilitates the design of mathematically opti-

mal drug treatments, under which drug administration schedules and dosage levels are chosen

to maximize the probability of success [21, 22].

Beyond PhenoPop, the current work utilizes a linear birth-death process that allows for a

more realistic variance model, particularly for experimental data obtained through live-cell

imaging, where population size measurements are correlated over time. As a result of this

more realistic variance model, our new inference methods show improved precision and accu-

racy over PhenoPop. An obvious future direction for this line of research is to leverage the

inferred drug sensitivity profiles to design optimal treatments, as discussed above. In addition,

there are several possible extensions and improvements of our statistical models, which can

incorporate more complex cell population dynamics or capture important features of cell biol-

ogy we have left out. For example, one type of cell may transition to another type of cell via a

phenotypic switching mechanism (see e.g., [23, 24]). We believe that our current methods

should be able to handle this type of switching with little modification since the underlying sto-

chastic model will be very similar, i.e., a multi-type branching process. Another way the cell

types can interact is via competition for scarce resources as the populations approach their car-

rying capacity. These types of interactions will require new statistical models since the underly-

ing stochastic processes will no longer be linear birth-death processes. Another interesting

direction of future work is to quantify the limits of when we can identify distinct subpopula-

tions. For example, if the resistant subpopulation is present at fraction �, what observation set

would allow us to identify the presence of this subpopulation? This is related to the broader

question of parameter identifiability for our model, a question we plan to address in future

work. Finally our stochastic model assumes that the time between cell divisions is exponential,

but this is of course a great simplifcation. At the cost of a more complex model it would be pos-

sible to incorporate states for the different stages of the cell cycle. We leave this open as a ques-

tion for future investigation.
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