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In this paper, common best proximity point theorems for weakly contractive mapping in b-metric spaces in the cases of nonself-
mappings are proved; we introduced the notion of generalized proximal weakly contractive mappings in b-metric spaces and
proved the existence and uniqueness of common best proximity point for these mappings in complete b-metric spaces. We
also included some supporting examples that our finding is more generalized with the references we used.

1. Introduction

The metric fixed point theory gained impetus due to its wide
range of applicability to resolve diverse problems emanating
from the theory of nonlinear differential equations, theory of
nonlinear integral equations, game theory, mathematical
economics, and so forth. The first fixed point theorem was
given by Brouwer [1], but the credit of making concept use-
tul and popular goes to polish mathematician, Banach [2]
who proved the famous contraction mapping theorem in
1922 in the setting of metric space. This principle guarantees
the existence and uniqueness of fixed point of certain self-
maps of metric spaces and provides a constructive method
to find those fixed points. This principle includes different
directions in different spaces adopted by mathematicians
for example metric spaces, G-metric spaces, partial metric
spaces, and cone metric spaces.

A classical best approximation theorem was introduced
by Fan [3], which states that “if A is a non-empty compact
convex subset of a Hausdorft locally convex topological vec-
tor space B and T : A— B is a continuous mapping, then
there exists an element x € A such that d(x, Tx) =d(Tx, A)
. Afterwards, Prolla [4], Reich [5], and Sehgal and Singh
[6] have derived extensions of Fan Theorem in many direc-
tions. The common fixed point theorem insists to the
authors to investigation on common best proximity point

theorem for nonself-mappings. The common best proximity
point theorem assures a common optimal solution at which
both the real valued multiobjective functions x — d(x, Sx)
and x — d(x, Tx) attain the global minimal value d(A, B).
A number of authors have improved, generalized, and
extended this basic result either by defining a new contrac-
tive mapping in the context of a complete metric space or
extend best proximity results from fixed point theory (see
[7-12]).

Definition 1. Let X be a nonempty set and T : X — X a self-
map. A point x € X is said to be fixed point of T if Tx = x.

Example 2. Let X =R and T : X — X defined by Tx = x/2,
for each x € X.

Tx=x= x/2=x, and we get x=0 € X, which is a fixed
point of T.

Definition 3 (see [13]). A function v : [0,00) — [0,00) is
called an altering distance function if the following proper-
ties are satisfied:

(i) v is monotone increasing and continuous

(i) w(t)=0if and only if t =0
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Example 4. Define v : [0,00) — [0,00) by w(t) = £2/2.
v'(t)=2t/2=1t>0, which shows v is nondecreasing,
satisfies that y(t) =0 & ¢t =0, and y is continuous.

Definition 5 (see [14]). Let X be a nonempty set, and a
mapping d : X x X — [0,00) is said to be metric if and
only if, for all x,y,z€X, the following conditions are
satisfied:

(i) d(x,y)=0ifand onlyif x=yand d(x,y) >0 ifx # y
(ii) d(x, y) =d(y, x)
(iii) d(x,y) <d(x,z)+d(z,y)

Example 6. Let X =IR; then, (X, |.|) that means d(x, y) = |x
—y|, for all x, y € X which is a metric space.

Definition 7 (see [2]). Let (X, d) be a metric space and T
: X —> X be a self-map; then, T is said to be a contraction
mapping if there exists a constant k € [0, 1), such that d(Tx,
Ty) <kd(x,y), Vx,y € X.

Example 8. Let X =R, d(x,y) =|x—y|, and a mapping T
: R — R defined by Tx =x/3, Vx,y € R.

Then, d(Tx, Ty)=|Tx—Ty|=|x/3-y/3|=]1/3(x—y)]
<1/3]x - y| =1/3d(x, y), which implies that d(Tx, Ty) <1/
3d(x,y) and k=1/3 €0, 1), for all x, y € X. Therefore, T is
contraction mapping.

Definition 9 (see [15]). Let (X, d) be a metric space. The
mapping T : X — X is said to be contractive mapping if

d(Tx, Ty) <d(x,y)forallx, y € X withx # y. (1)

Example 10. Let X =R and d(x, y) = |x — y|, and a mapping
T : R — R defined by Tx =x/2, Vx,y € R.

Then, d(Tx, Ty)=|Tx—Ty|=|x/2-y/2|=]1/2(x - )]
<1/2|x - y| < |x — y|, which implies that d(Tx, Ty) < d(x, y)
with x # y.

Therefore, T is contractive mapping.

Definition 11 (see[16]). Let (X, d) be a metric space and T
: X — X, a mapping T is said to be weakly contractive if

d(Tx, Ty) <d(x,y) — ¢(d(x, y)), forallx,y e X,  (2)

where ¢ : [0,00) — [0,00) is altering function.

Remark 12. If ¢(t) = (1 — k)t with k€ [0,1) and ¢t € [0,00), a
weak contraction reduces to a contraction.

Example 13. Let X =[0,00) be endowed by d(x, y) = |x - y|,
and let T : X — X define by Tx =x/1 + x for each, x € X.

Define ¢ : [0,00) — [0,00) by ¢(t) =13/1 + 1.

Claim: T is weakly contractive.

¢'(t) =2t + t*/(1 + t)* = 0 which shows ¢ is nondecreas-
ing and satisfies that ¢(¢t) =0 <t =0 and ¢ is continuous.
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Then, d(Tx,Ty)=|x/1+x—-y/1+y|=|x—y|/(1+x)(1
ty) s =yt lx =yl =lx =yl =[x =y 11+ |x -yl = d(x,

y)—¢(d(x,y)), for all x,y € X.
So T is weakly contractive.

Definition 14 (see [17]). Let X be a nonempty set and s > 1 be
a given real number. A mapping d : X x X — [0,00) is said
to be a b-metric if and only if, for all x, y, z € X, the following
conditions are satisfied:

(i) d(x,y)=0ifand only if x =y and d(x,y) >0if x # y
(il) d(x,y)=d(y, x)
(iii) d(x,y) <sd(x,z) +sd(z,y)

Remark 15 (see [18]). We should note that a b-metric space
with s =1 is a metric space. We can find several examples of
b-metric spaces which are not metric spaces.

Example 16 (see [19]). Let (X, p) be a metric space, and
d(x,y) = (p(x,y))P, where p>1 is a real number. Then, d
(x,y) is a b-metric space with

s=2rL, (3)

Definition 17 (see [20]). Let (X,d) be a b-metric space
with parameter s> 1. Then, a sequence {x,} in X is said
to be

(i) b-convergent if and only if there exists x € X such
that d(x,,x) — 0 as n — 0

(ii) a b-Cauchy sequence if and only if d(x,,x,,) — 0
as n,m — o0, for all n,me N

In addition, a b-metric space is called complete if and
only if each Cauchy sequence in this space is b-convergent.

Example 18. Let X = [0,00) and d(x,y) = (x — )% then, the
space (X, d) is a complete b-metric space.

Definition 19 (see [21]). Let f and g be two self-mappings
on a nonempty set X. If w=fx=gx, for some xeX,
then x is said to be the coincidence point of f and g,
where w is called the point of coincidence of f and g.
Let C(f,g) denote the set of all coincidence points of

f and g.

Definition 20 (see [21]). Let f and g be two self-mappings
defined on a nonempty set X. Then, f and g are said to be
weakly compatible if they commute at every coincidence
point, that is, fx = gx = fgx = gfx, for every x € C(f, g).

Example 21.

(i) f,g: R—> R defined by f(x)=x/3 and g(x)=x%
x €R. In this example, f and g have coincidence
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point at x =0, and x = 1/3 but f and g are not weakly
compatible

(ii) X =0, 3] equipped with the usual metric space d(x
) =lx -yl

Define f, g : X — X by the following:

x, ifxel0,1),
f<x>={ <l

3, ifxe[L,3],

B 3-x,
g(x)—{i

This example shows, for any x € [1, 3], fgx = gfx. There-
fore, f and g are weakly compatible maps on [0, 3].

In this study, motivated and inspired by Yan Hao and
Hongyan Guan [22], we introduce the notion of generalized
proximal weakly contractive mappings in b-metric spaces
and prove a common best proximity point theorem for gen-
eralized proximal weakly contractive mapping defined on
complete b-metric spaces.

if x [0, 1),
if x € [1, 3].

2. Preliminaries

Definition 22 (see [23]). Let A and B be nonempty subsets of
a metric space (X, d). We denote by A, and B, the following
sets:

Ay={x€A:d(x,y)=d(A, B),forsomeyeB}, (5)

By={yeB:d(x,y)=d(A,B),forsomexcA}, (6)

where d(A, B) =inf {d(x, y): x € A, y € B} is the distance
between A and B.

Definition 23 (see [24]). Let A, B be nonempty subset of met-
ric space (X, d). Given a nonself-mapping T : A — B, then
an element x* € A is called best proximity point of the map-
ping if

d(x*, Tx") = d(A, B). (7)
Definition 24 (see [25]). Let f,g: A— B be nonself-
mappings. An element x* € A is said to be a common best

proximity point of the pair (f, g) if this condition is satis-
fied:

d(x*,fx*)=d(A,B) =d(x", gx¥). (8)

Definition 25 (see [26]). Let f, g : A— B be mappings. A

pair (f, g) is said to commute proximally if for each x, u, v
€A,

d(u, fx)=d(v, gx) =d(A, B) = fv=gu. 9)

Lemma 26 (see [19]). Let (X, d) be a b-metric space with
parameter s > 1. Assume that x,, and y, are b-convergent to

x and y, respectively. Then, we have the following:

1
S—Zd(x,y) < lirggd(xn,yn) < linﬁlgd(xn,yn) <s%d(x,y).
(10)

In particular, if x = y, then we have lim,__,_d(x,,y,) =0.
Moreover, for each z € X, we have the following:

d(x,,z) <limsup, . d(x,,z) <sd(x,z).
(11)

Definition 27 (see [22]). A function f : X — [0,00), where
(X, d) is a b-metric space, is called lower semicontinuous if
for all x € X, and a sequence {x,} is b-convergent to x, and
we have

1
—d(x,z) <liminf,
s

f(x) <liminff(x,). (12)

n—-00

Consider the following:

¥ ={y : [0,00) — [0,00) such that y is continuous and
nondecreasing function}.

Also, we denote @ = {¢ : [0,00) —> [0,00) such that ¢ is
nondecreasing and lower semicontinuous, and

$(H)=0 =0}, (13)

Hao and Guan [22] proved the following common fixed
point results for generalized weakly contractive mapping in
b-metric spaces:

Theorem 28 (see [22]). Let (X,d) be a complete b-metric
space with parameter s> 1, and let f,g: X — X be given
self-mappings satisfying g as injective and f(X) C g(X) where
g(X) is closed. Suppose ¢ : X — [0,00) is a lower semicon-
tinuous function and p > 2 is a constant. If there are functions
y eV, ¢ ed such that

y(L[d(fx fy) + @(fx) + @(fy)])

(14)
<y(m(xy.d.f, g:9)) = ¢(I(x. 3, d. f> 9, 9)),

where

m(x,y,d. f, g p) = max {d(gx, 9y) + 9(9%) + 9(9y), é{d(fx, 9%)
+9(fx) + 9(gx) +d(fy, gy) + o(fy) + 9(99)}>
' %{d(f% 9y) + o(fx) + 9(gy) + d(fy> 9%)
+o(fy) +9(gx)

(15)

I(x,y,d. f, g, 9) = max {d(gx, gy) + ¢(gx) + ¢(gy), d(f 1> gy)
+o(fy) +o(9)}>
(16)

then f and g have a unique coincidence point in X.



Moreover, f and g have a unique common fixed point pro-
vided that f and g are weakly compatible.

3. Result and Discussion

Definition 29. Let (X, d) be a b-metric space and A and B be
two nonempty subset of a b-metric space (X, d) with param-
eter s>1 and p>2 is a constant. A pair of map f,g: A
— B is said to be a generalized proximal weakly contrac-
tive mapping, if for all x, y, h, t,r,m € A,

d(h, fx)=d(A, B), (17)
d(t,fy) =d(A, B), (18)
d(r, gx) =d(A, B), (19)
d(m, gy) =d(A, B), (20)

then

Y(L [ 1) + p(h) + 9(1)])
<Y (ma (63, 1t 1, ) = D(La( 3, Bt 7, m, d, ),
(21)

where
md (-x7 y; hs t7 r,m, d; (P)

= max {d(r, m) +@(r) +@(m), =[d(h,r) +@(h) + ¢(r)

NS

+d(t,m) + (1) + g(m)} 5 [d(h m) + 9(0) + ()
+d(tr) + () +o(r)]}-
(22)
L,(x,y,h, t,r,m, d, p) = max {d(r,m) + ¢(r) + p(m), d(

t,m)+@(t)+e(m)y eV, ped, and ¢ : X — [0,00) is a
lower semicontinuous function.

Theorem 30. Let (A, B) be a pair of nonempty subsets of a
complete b-metric space (X, d), and assume that A, and B,
are nonempty such that A, is closed. Define a pair of mapping
f> g : A— B satisfying the following conditions:

(i) f and g are generalized proximal weakly contractive
mapping
(ii) f(Ag) € By, and f(Ag) € g(A,)
(iii) f and g are continuous mapping

(iv) f and g are commute proximity

Then, f and g have a unique common best proximity
point.

Proof. We prove the existence of common best proximity
point.
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Let x,€A,. Since f(A,) Cg(A,), there exists x; € A,
such that

fxo=gx. (23)

Also, x, € A,. Since f(A,) C g(A,), there exists x, € A,
such that

fxi=g%. (24)

Continuing this process in a similar fashion, obtain the
sequence {x,} and {x,,,;} in A, such that

fxn =9Xn41> (25)

for each n>0.
Since f(A,) € B, and A, is nonempty set, there exists
u, € A, such that

d(u,, fx,) =d(A, B), (26)

for all n>0.
Further, we obtain that

d(A, B) = d(u,, fx,) = d(t,> g%u11)> (27)

for all n>0.

Our first goal is to show that fu = gu, for some u € A,.

Suppose that u,, = u,,, for some n >0, by (2) and (3), we
get that

Athyr> fXi1) = d(A B) = d(uy, fx,) = d(t 9Xp01)- (28)

Since f and g commute proximally, fu,=u, , =gu,,
and so we are done.

Assume that u, # u,,,,, for all n > 0. From (3), note that

n+1>

d(un’fxn) = d(un+l’fxn+1) = d(A’ B) = d(un—l’ gxn) = d(un’ gxn+1)’
(29)

for all n>1. Since a pair (f, g) is generalized proximal
weakly contractive map with x =x,, y =x,,,;, we have that

V/(d(”w ”n+1) + (P(un) + (P(unﬂ))
< W(Sp[d(un’ un+1) + (P(un) + (P(unﬂ)])
< W(md(xn’xrwl’ Uy 1 Uy Uy Uy d’ (P))

- (»b(ld(xn’ X1 Up—1> Ups Uy U1 d, (P))’

(30)
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1/1(1”/141(96;1’ Xpa1> Un—1> Ups Upys Uy 115 d’ (P))

- e {11, 0,) -9l 5 (A0, + 00

() + ) + @) + 90 b {00 10)
+ (P(un) + ‘P(un) + d(uml’ un—l) + (P(unﬂ) + (P(un—l)}}

< max {d(un’ un—l) + (p(un) + (p(un—l)’ d(uw un+1) + (P(un)
+ (P(unﬂ)}’

D(La(Xps X1 Uy 1> Ups Uy U y15 A P))
=max {d(u, > u,) +(t,1) + (1), d(ths 1) + (14,
+ (i)}
(31)

If d(un’ un+1) + (P(un) + (P(un+l) > d(“n—l’ un) + (P(un—l)
+¢(u,), for some n € N, in view of (5)-(8), we have

V(AU Upyr) + (1) + 9(U11))
SY(M (X Xy 1> U1 Upys Uys Upy15 s P))
= O(Lg (K> X5 Uy Uy U Uy 1> A5 ) (32)
= V/(d(uw un+1) + go(un) + (P(unﬂ))
= P(d(uy 1) + (1) + P(U01))s

which implies §(d(1s,, 1t,,,) + ¢(1t,) + p(t1,.,)) =O0.
Hence, u, = u,,,, a contradiction.
Thus, we have

d(“n’ unH) + (P(“n) + (p(unH) < d(un—l’ “n) + ¢(un—1) + (P(“n)’
md(xn’xn+l> Up_1> Ups Upys Uy 115 d’ (P) S d(”n—l’ un) + (P(un—l) + ¢(Mn),

ld(xn’ Xn+1> Up—1> Ups Uy Upiys d’ (P) = d(un—l’ un) + (p(un—l) + (P(un)'

(33)

It follows from (10) that {d(u,, u,.,) + ¢(u,) + @(u,,,)}
is a nonincreasing sequence, and so there exists r >0 such
that

lim (d(un’ un+1) + <P(un) + ¢(un+1)) =T. (34)

n—-=00

By (5), (11), and (12), we can obtain

Y(d(tys Upyr) + (1) + @(U11))
SY(M (X Xppy> U1 Upps Uy Upi15 s P))
= Oy (K> X1 15 Uy Uy Uy 15 s ) (35)
Sy(d(u,puy) + (1, 1) +@(uy,))
= P(d(uyys ty) + P(thy) + (1))

Now assume that r>0. Taking the upper limit as n

5
— 00 in (15), we have
limsupy/ (d(u,, ty,y) + (1) + P(Uyy1))
< hmsupl//(md(xn’ Xa1> Up—1> Uy Uy U1 d, (P)>
- hmsup(p(ld (xn’ Kpa1s Un—1> Uy Uy Uy i1 d, (P)) (36)
< limsupy/(d(u,_y> u,) + (1) + ¢(14,))
—liminf¢(d(u,,_, u,) + @(u,,) + @(u,)),

which implies that y(r) <y(r) — ¢(r), a contradiction.
Thus, we have

lim (d(uw un+1) + (P(un) + (p(un+l)) =r=0. (37)

n—~oo

It follows that

lim d(u,,u,,,)=0, lim ¢(u,)=0. (38)
n—00 n—00

Now, we claim that {u,} is a Cauchy sequence.

Suppose contradiction, that is, {u,}, is not a Cauchy
sequence. Then, there exists € > 0 such that there are subse-
quences {umk} and {unk} of {u,} so that for all ke N with
ny > my. > k, we obtain

e<d(u,,u,), 9)
AUy, s thy 1) <e

By triangular inequality in b-metric space and (19) and
(20), we have

e< d(umk, unk) < sd(umk, unk_l) +sd(u, unk) <se+ Sd(“nk-p unk).
(40)

Taking the upper limit as k — oo in the above inequal-
ity, we have

e <limsupd (u,,, , u, ) <se,

00 k k
. (@)
- <limsupd(u,,,u, )<e.
s 00 k k-1

Also, we have
e<d(ty,,u, ) <sd(y, , t, ) +5d(u, i, u, )

< 5d (U, s Uy 1) + szd(umk_l, Uy ) + szd(umk, u,) (42)

<5 (thyy s thyy 1) +57d (U, 1510y, ) + 7€

Then, by taking the upper limit as k — co in (42), we
have

e <limsupsd (u,, 1, u, ) <5’ (43)

n—~oo



which implies

§ <limsupd(u,, ;,u, ) <s’e. (44)
n—~oao
It is from
e<d(ty,,u, ) <sd(t, , th, ) +sd (U, i, u, )
< 5Ad (U sty 1) +5°d (thyy 1ty 1) +57d (4, o1, )
< S (Uyy s thyy 1) + 57 (U 1y, ) + 5 (145 14, 1)
< 5Ad(Uyy s Uy 1) +5°d (1, 1514, ) + 5.
(45)

By taking the upper limit as k — oo in (43), we have

8 .
< limsupd (u,,, _, u, ;) < se. (46)

n—:o00

In similar fashion by taking the lower limit, we can
obtain

e <liminfd(u,, ,u, ) <st,
n—s00 k k
<liminfd(u,, ,u, )<e,

n—:o00

€

s

‘ (47)
- 2

< <

S —l;nl&fd(”mk-p u, ) <s’e,

€

— <liminfd(u,, ,u, ) <se.

s n—s00 k

Since {u,, } and {u, } satisty equations (26) and (27),
we obtain that

d(unk,fxnk) =d(A,B) = d(”nk,p gxnk),

(48)
d(umk,fxmk) =d(A,B) = d(”mk,p gxmk),

for each k € N. Since f and g are generalized proximal
weakly contractive mapping with x=x, and y=x,, , we
have

1//(d(unk’ umk) + (p(u”k) + (P(umk))
s V/(md (x"k’ K> Un Yne Yy > Yy > d, (P))

- ¢(ld (x"k’ x’”k’ u”k’ umk’ unkfl’ u’”lﬂ’ d’ (P))

(49)

From the definition, we have

u"k’ umk’ u“k—\ > umm »d, (P)

< max {d(umk,l, Uy

my (xnk’ xmk’
1

umk’l) + (P(u”k’l)’ 2 {d(uﬂk’ u”‘m)

) +o(
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Taking the upper limit as k — oo, we obtain

Hmsuprg (x, 5 %, 5 Uy > Uy > Uy 5 Uy 6> @)

n—=aoo

{ e+ 528} (51)
< max < sg, 0, = SE.
2s
Also, we have
ld (x”k’ xmk’ u”k’ umk’ unk—l > umk—l, d’ (P)
= max {d(umlﬁl’ u”kfl) + (P(umk*1) + (P(unrl)’ d(llmk, umlﬁl)
+ (P<umk) + (p(umfl) }
(52)
By taking the lower limit as k — oo, we have
se 2 liminfly (X, , Xy Uy U s Uy > Uy >0 P) 2 iz (53)

n—ao0 s
By applying generalized proximal weakly contractive
mapping with x =x, and y=x,, , we have
y(se) <y(sfe) < w(sphmsup [ (thy> ) + (14, ) + ‘P(”nJ])

n—~oo
> u”k’ umk’ unk—l) umk—l’ d, (P))

n—oo

<y (limsupm (%0 X,

- lin;ilgof(p(ld (K> Xy Uy Uy > Uy 5 U5 s @)
<y(se) - gb(hnjl(}ofld( > X Uy U s Uy 5 Uy s @),
(54)
which implies that
Hminf 1 (x, , %, 5 Uy s Uy > Uy s Uy i) =0, (55)

n—-=00

a contradiction to (53). Hence, the sequence {u,} is
Cauchy. Since A, be a closed subset of the complete b-
metric space X, there exists u € A, such that

nli_r)nooun =u. (56)
By the definition of ¢, we have
¢(u) <liminfe(u,) = 0= ¢(u) =0. (57)
Consider, by (2) and (3), that
d(uy, fx,) = d(u,> gx,) = d(4, B). (58)
Since f and g are commute proximally,
fuy1 = gy (59)
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for all n € N. By continuity of f and g,

fu= tim fu, = lim gu,=gu (60)

Now, we claim the existence of common best proximity
point of f and g. Since f(A,) < By, there exists x* € A; such
that

d(x", fu) =

By the assumption that f and g commute proximally,
fx* = gx*.

According to the assumption that f(
exists z* € A, such that

d(z*, fx*) =d(z", gx*) = d(A, B). (62)

d(x*, gu) = d(A, B). (61)

A,) €B,, there

Next, we claim that x* = z*. Suppose that x* # z*, that is,
d(x*,z*)) >0. By applying generalized proximal weakly
contractive mapping with x = u and y = x*, we observe that

y(d(x",27) +(x") + (7))
Y rol ) vole )
<y(my(u,x*,x*, 2", 5%, 2", d, 9))

— ¢(ld(u, x*, x*, Z*,x*> Z*y d) (P)):
where
my(u, x*, x*, 2%, x*, 2%, d, )

= max {d(x*,z*) +o(x") +(z"), %{d(x*,x*) +o(x")

(64)
Li(u, x*, x*, 2%, %", 2", d, )
=max {d(x",2") + ¢(x") + @(z"),d(z",2") + 9(z") + @(z") }
=d(x",2") + o(x*) + @(z").
(65)

From (63)-(65), we have

X2+ e(x7) +9(27)),

(66)
which implies
d(x*,2") +¢(x*) +(z") =0,
=d(x*,z") =0, (67)

p(x")=0.

This contradicts the assumption x* # z*. Thus, x* =z*.
Hence,

d(x*, fx*)=d(A,B) =d(x

That is, the element x* € A is a common best proximity
point of f and g.

Finally, we have to show that the point x* is unique.

Let y* € A be another common best proximity point of f
and g. Then,

d(x", fx7) =d(y", fy") =

*,gx"). (68)

d(A, B) = dy’ gy")-

(69)

d(x*, gx*) =

Since f and g are generalized proximal weakly contrac-
tive mapping, we obtain that

Y(d(x"y") +o(x") +o(y"))

Sy(Lld(x"y") +o(x") + (")) (70)
Sy(my(x™y"x" Y5 x" Y5 d, @)
— (L (x"y" x5y XNy, d, @),

where
md(x*,y*,x*,y*,x*,y*,d, (P)
* * * * 1 * * *
= max {d(e ") 9l +900"), 3 (A7) +91)

+p(x) +d07 ") +907) + 90" 5o {d(xy")
(") +@(y") +d(y, x7) +9(y7) +@(x7) }}
<d(x"y") +o(x7) +9(r),

(71)

Li(x* y*, %,y x", y", d, 9)

=max {d(x", ") +@(x") +(y"), d(y", y") +o(y") + o(y")}
=d(x"y") +o(x") +o(y").
(72)
Now, from (71) and (72), we have
y(d(x"y") +o(x") + ("))
Sy(d(x"y ) +o(x7) +o(r") —¢(d(x" y") + 9(x7) + ("))
(73)
By the properties of ¢ and from (73), we have
d *’ *
) ol ol »
=d(x",y") =0,9(x") =

which contradict the supposition that x* # y*. Thus, x

o

Therefore, f and g have a unique common best proxim-
ity point.
The proof is completed. O



Example 31. Let X=R? and d:XxX-—[0,00) be
defined by d((x;,%,), (11,7,)) = Iy =y, " + %, = [, for
all (x1,%,), (y,7,) €X and (X,d) is a complete b-metric
space with parameter s=2.

Suppose
A={(x,0):0sx<1},
{00521} 5
B={(x,1): 0<x<1}
Let f, g : A— B be the mapping defined by
X
s (1)
(76)

0= (13)1)

¢ : X — [0,00), defined by ¢(x,0)=x and define a
mapping ¥, ¢ : [0,00) — [0,00) with y(¢)=t, and §(t) =
35t/98. Clearly, ¢ is lower semicontinuous function, and v
is continuous and nondecreasing function. Further, ¢ is

nondecreasing and lower semicontinuous, and ¢(t) =0 & ¢
=0.

d(A, B) = inf {d((x, ),( 1)): (x,0) €4, (x1) € B,
which implies that d(A, B) = inf {|x - x|* + [0 - 1|*} = 1 and

implies that d(A, B) = 1
Notice that f and g are continuous. Now, we check that f
and g are generalized proximal weakly contractive mapping.
In fact, for all (x,0), (y,0), (h,0), (¢,0), (r,0), (m, 0)€A,

we have

d((h,0), f(x,0)) =d(A, B) implies that d((h,0), (x/8,1))
=1, which implies that h = x/8

d((+,0), f(y,0)) = d(A, B); this implies d((t,0), (y/8,1))
=1, which implies that t = y/8

d((r,0), g(x,0)) =d(A, B) implies that d((r,0), (7(x/8),
1)) = 1, implies that r = 7(x/8)

d((m,0), g(y,0)) =d(A, B) implies that d((m,0), (7(y/8

), 1)) =1, implies that m =7(y/8)
Then, by applying the generalized proximal weakly contrac-
tive mapping definition with s = p = 2, we have the following:

¥(S[d((h, 0), (0)) +¢(h, 0) + (£, 0)])
<y (my((x,0), (5, 0), (b, 0), (£, 0), (1, 0), (m, 0), d. 9))
= ¢(la((x, 0), (5, 0), (h, 0), (£, 0), (1, 0), (m, 0), d, ).
(77)

Now, we have

y(s” [d((R, 0), (£,0)) + p(h, 0) + (1,

-2 (). () (5
o[a(G0) G+ ('
o[- -0t (4 6)

G0 @b
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y(ma((x,0), (5,0), (h,0), (£, 0), (1, 0), (m, 0), d, 9))
= max {d(('> 0), (m, 0)) + (7, 0) + ¢(m, 0), % {d((h, 0), (r, 0)) +¢(h, 0)

+d((t,0), (m, 0)) +¢(t,0) + ¢(m, 0)}, %W((h’ 0), (m,0)) +¢(h, 0)
+¢(m, 0) +d((1,0), (r,0)) + 9(1,0) + (1 0) } }

= (J1A000) (50)) + 00)+ (5:0) (1,0, (m,0)) + 9(1.0) (. 0)
=3 [a(Goo) (5-0) +0z0) o (50) +a( o) (3-0))
+(p(§,0) +(p(%,0>}

1 7x[? 2 7x\? 7y|? 2 7\?
S | +\0—0|2+(f) () P2 +\070|2+(Z) (2

2(/18 8 8 8 8 8 8 8

11 11 ) )

=5 6—(36x + X% +49x% +36)7 + y +49y)=5.6—4(86x +386y°)

43

:6—("2“’2)

¢(la( (%, 0), (5,0, (h, 0), (£,0), (1, 0), (m, 0), d, 9))
= ¢(max {d((r, 0), (m, 0)) +¢(r, 0) +¢(m, 0),d((t,0), (1m,

0), (m

0)+
i >w< )
o(39)4(G0) (50)) +G0)+o(50)}
:;%mn{lg—g +\0—0\ +<%> +<7§)’>, 712
HO’O‘Z*@Z*(%)2}23_2“’“{%&%;/) :;y} Z(xzwz)-

(78)

0)) +¢(£,0) +¢(m,0)})

According to above inequalities, we get that

y(s[d((h, 0), (£,0)) + ¢(h, 0) + 9(t, 0)])
< ;(x +y) zi(x2+y2) Zi(x +y)
<y (my((x,0), (3, 0), (h,0), (£,0), (1, 0), (m, 0), d, p)

)
= ¢(l((x, 0), (3, 0), (1, 0), (£, 0), (r, 0), (m, 0), d, p)).
(79)

Hence, f and g are generalized proximal weakly contractive
mappings.

Next, consider, by the definition of A, B,, that A, =A
and By =B; thus, f(4,) and g(A,) <B,. Additionally, f
(Ag) ={(x,1): 0<x<1/8} c{(x,1): 0<x<7/8} = g(4,).

Now, it remains to show that f and g commute proxi-
mally. Let x, u, v € A such that

d(u, fx) =d(v, gx) =d(A, B). (80)

Consequently, x = (%, 0), u=(%,0), and v = (¥, 0), where
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7 = x/8 and ¥ = 7x/8. Thus,

fx=f(%0)= @1)
gx=9(%0)= (7—51>

d(u, fx) = d((8,0), f(%0)) = d((’g, o), (g 1)) =1=d(A,B),

(81)
Therefore,
d(u, fx) =d(v, gx) =d(A, B). (82)
Now, we claim that
fv=gu,
_ X 7%
gu:g(u’()):g g’o = a’l > (83)

s =1(Z0) - (Zor),

which implies fv = gu.

Hence, d(u, fx) =d(v, gx) =d(A, B) = fv = gu.

Therefore, f and g are commute proximally.

Finally, by Theorem 30, we can conclude that there is a
unique common best proximity point of the pair (f, g). In
fact, the point (0, 0) is the unique common best proximity
point of (f, g).

To show this, there exists (x*, 0) € A such that

d((x",0), f(x",0)) =d((x",0), g(x",0)) = (4, B) = 1,

(84)

where (x*,0) is common best proximity point of f and g.
Now find x*

d((x",0), f(x

and this implies that

d((x*,O), (’% 1)) =1, (86)

*,0))=d(A,B) =1, (85)

implying that
*12
¥ - +0-17=1. (87)
From this, we get
* |2
X
x*——| =0. 88
d (58)

9
Hence, x* =0, and also, from
d((x,0), g(x*,0)) = (A, B) = 1, (89)
we have
(eofE)s
implying that
x*—7:*2+|0—1|2:1. (91)
From this, we get
X - 7;;* "o (92)

Hence, x* =0.

Therefore, the point (x*,0) = (0,0) € A is a unique com-
mon best proximity point of f and g.

If ¢ =0 in Theorem 30, we can get the following result:

Corollary 32. Let (A, B) be a pair of nonempty subsets of a
complete b-metric space (X, d), and assume that A, and B,
are nonempty such that A, is closed. Define a pair of mapping
f>g : A— B satisfying the following conditions:

(i) For all x,y, h,t,r,m € A,

(93)

then

Y(d(h, 1)) Sy(my( 3. b b7, m, )

(94)
= ¢(la(x.y, bt 1, m, d)),

where

my(x, y, h, t,r, m, d) = max {d(r, m), é[d(h, r) +d(t, m)], % [d(h, m) +d(t, r)]},

Ly(%,y, by t, 7, m, d) = max {d(r, m), d(t, m)},
yveV,¢ed,
(95)

(ii) f(Ag) € By and f(A) € g(Ay)-
(iii) f and g are continuous mapping

(iv) f and g are commute proximity
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Then, f and g have a unique common best proximity
point.

If we consider the corresponding problem in the setting of
metric space, that is, s=1 in Theorem 30, we can obtain the
following:

Corollary 33. Let (A, B) be a pair of nonempty subsets of a
complete b-metric space (X, d) and assume that A, and B,
are nonempty such that A, is closed. Define a pair of mapping
f> g : A— B satisfying the following conditions:

(i) For all x,y,h,t,r,m € A,

d(h, fx)=d(A, B),
d(t,fy) = d(A, B), %)
d(r, gx) =d(A, B),

d(m, gy) = d(A, B),

then

y(d(h, 1)+ p(h) + (1))
<Y (ma (63, 1t 1, ) = B(La( 3, B 7, m, d, ),

(97)

where

my(x, y, h, t,r,m, d, ¢) = max {d(r, m) +¢(r) + ¢(m), [ (h,r) + @(h) + ()

+d(t,m) + (1) + p(m)], é [d(h, m) + ¢(h) + ¢(m)
+d(tr) + () +p(r)]}»

Ly(x, y, h, t,r,m, d, @) = max {d(r, m) + d(t,m)+¢(t) +¢(m)},

(98)

@(r) + @(m),

is the same as Theorem 30, y eV, ¢ €@, and ¢ : X
—> [0,00) is a lower semicontinuous function.

f(Ag) € Bys andf(A) € g(A,) (99)

(ii) f and g are continuous mapping

(iii) f and g are commute proximity

Then, f and g have a unique common best proximity
point.

4. Conclusion

This study is concerned with the existence and uniqueness of
common best proximity point for generalized proximal
weakly contractive mapping in complete b-metric spaces,
and in this study, we have defined the notion of generalized
proximal weakly contractive mapping in b-metric spaces.
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