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Abstract: Autonomous unmanned aerial vehicles (UAVs) have several advantages in various fields,
including disaster relief, aerial photography and videography, mapping and surveying, farming, as
well as defense and public usage. However, there is a growing probability that UAVs could be misused
to breach vital locations such as airports and power plants without authorization, endangering public
safety. Because of this, it is critical to accurately and swiftly identify different types of UAVs to prevent
their misuse and prevent security issues arising from unauthorized access. In recent years, machine
learning (ML) algorithms have shown promise in automatically addressing the aforementioned
concerns and providing accurate detection and classification of UAVs across a broad range. This
technology is considered highly promising for UAV systems. In this survey, we describe the recent
use of various UAV detection and classification technologies based on ML and deep learning (DL)
algorithms. Four types of UAV detection and classification technologies based on ML are considered in
this survey: radio frequency-based UAV detection, visual data (images/video)-based UAV detection,
acoustic/sound-based UAV detection, and radar-based UAV detection. Additionally, this survey
report explores hybrid sensor- and reinforcement learning-based UAV detection and classification
using ML. Furthermore, we consider method challenges, solutions, and possible future research
directions for ML-based UAV detection. Moreover, the dataset information of UAV detection and
classification technologies is extensively explored. This investigation holds potential as a study
for current UAV detection and classification research, particularly for ML- and DL-based UAV
detection approaches.

Keywords: UAV detection and classification; machine learning-based detection; deep learning-based
detection

1. Introduction

Unmanned aerial vehicles (UAVs), sometimes referred to as drones, have garnered
significant attention in recent years. Through the use of a remote controller, UAVs can be
operated without a pilot present from a distance of miles. UAVs are utilized in combat,
surveillance, airstrikes, investigations, and various other operations [1]. In addition, UAVs
are useful instruments in various industries, and they are currently being used for a
wide range of purposes. For instance, authorities utilize UAVs in disaster prevention [2],
remote sensing [3], environmental monitoring [1], and so on. They are also employed
by companies like Amazon, UPS Inc., and others for product delivery [4]. Additionally,
UAVs play a crucial role in agriculture, aiding in crop observation [5] and the application
of pesticides and fertilizers [3]. Furthermore, emergency personnel, along with emergency

Remote Sens. 2024, 16, 879. https://doi.org/10.3390/rs16050879 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16050879
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6792-3825
https://orcid.org/0000-0002-6323-2613
https://orcid.org/0000-0002-1233-7482
https://orcid.org/0009-0004-9419-0702
https://orcid.org/0000-0002-3274-4982
https://doi.org/10.3390/rs16050879
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16050879?type=check_update&version=1


Remote Sens. 2024, 16, 879 2 of 42

medical services and enthusiasts, utilize UAVs for tasks such as rescue operations, medical
assistance, and recreational imaging [1].

However, instead of the emerging applications of UAVs, in recent years, challenges
regarding privacy and safety have been raised by the use of UAV systems [6]. The intro-
duction of recreational UAVs into national airspace has sparked worries about unqualified
and unlicensed pilots entering forbidden areas and interfering with aircraft operations.
Inadequate rules when buying UAVs may be part of the problem. For instance, a national
defense aircraft was struck by a private UAV just over two years ago [7]. The use of UAVs
for unlawful monitoring and terrorist attacks are the most worrisome issues [8]. To pre-
vent the aforementioned incidents, an anti-UAV technology that can identify, classify, and
neutralize unlicensed UAVs collecting data using various sensors is needed [9]. Recently,
for the classification and detection of UAVs, numerous studies have investigated ways to
identify UAVs utilizing a range of technological advances, such as thermal imaging, audio,
video, radio frequency (RF), and radar. Using these technologies, there are many traditional
methods to identify or detect unwanted UAVs, but most of the methods have failed to
provide an adequate prevention rate during the detection of UAVs.

In recent years, the fields of object detection [10], image segmentation [11,12], and
disease recognition [13] have undergone a dramatic transformation due to the emerging ad-
vantages of machine learning (ML) and deep learning (DL) approaches [14]. Consequently,
UAV detection [15] has gained popularity in the scientific community following the advent
of DL techniques. The emerging advantages of ML and DL for UAV detection include data
efficiency, decreased computational intensity, automatic feature learning, high-accuracy
UAV classification, and end-to-end learning capabilities. On the other hand, there are some
disadvantages of ML and DL, such as limited performance on more intricate UAV detection
tasks and DL models requiring large amounts of labeled data for training, which may be a
limitation in scenarios where obtaining labeled data is challenging or expensive. In [16],
the authors proposed a deep neural network (DNN) that classifies multirotor UAVs using
acoustic signature inputs. The primary focus of this research lies in ML-based detection
and classification methods. ML has demonstrated significant benefits in object detection
and classification across a range of domains due to its capacity to identify patterns without
the need for human intervention. Reducing the reliance on human intervention is desirable
for various reasons, including human limitations in identifying tiny or distant objects and
the potential for concentration deficits brought on by boredom or exhaustion. Instead, ML
can recognize patterns using paradigms that are entirely imperceptible to the human eye.
These include transmissions that are not detectable by human sensory systems, such as RF,
optical, and audio messages.

Given the aforementioned advances in object detection and classification using ML, in
this review, UAV detection and classification undergo extensive study regarding challenges,
solutions, and future research directions using ML and UAV detection by highlighting the
advantages and limitations of methods, and the improvement pathway is described in
detail. After that, a thorough critical analysis of the state of the art is presented. In addition,
an extensive review of dataset information is provided for UAV detection classification
technologies. In addition, reinforcement learning-based UAV detection and classification
with a detailed research direction are presented. Additionally, a review of hybrid sensor-
based UAV detection strategies provides detailed datasets and a clear research direction.
The most similar work to our proposed survey is in [17], where the authors present a report
with various literature references without in-depth analysis of each of the methods. In
our proposed survey, we include a detailed discussion regarding state-of-the-art literature,
and the important key difference from [17] is that our report provides detailed dataset
information for all the UAV detection and classification technology using ML and DL
algorithms, which will be helpful for both advanced and beginner researchers in the UAV
detection field. In addition, RL-based UAV detection and classification with a detailed
research direction are presented in the proposed survey report.
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In recent years, many surveys have been conducted on UAV systems, and most works
focus on object detection and classification using UAV-assisted images in the applications
of agricultural crop classification [18,19], vehicle detection [20,21], identification of plant
and crop diseases [22], forestry [23], crop disease detection [24], and so on. In contrast, this
survey report is focused on UAV or drone detection using five different technologies based
on ML and DL algorithms. A few survey reports have been published for UAV detection
and classification in the last few years, and the key differences between those reports and
our survey report are mentioned in Table 1.

Table 1. Contribution of this survey with other works for ML-based UAV classification and detection.

References Contribution

[17] Review on drone detection and classification using ML up to the year
2019. The study provides limited insights into the performance of original
detection approaches and references.

[25] Review on UAV-based communications using ML, focusing on resource
management, channel modeling, location, and security up to the year
2019.

[26] Review of the technical classification and implementation methods of
UAV detection and tracking in urban IoT environment and provided a
limited number of references covering up to the year 2023.

[27] Survey on DL-based UAV detection, with a focus on radar technologies
up to the year 2021.

[28] Survey on ML-based radar sensor networks for detecting and classifying
multirotor UAVs up to the year 2020.

[29] Survey on the detection of unauthorized UAVs up to the year 2022.
However, the study does not cover specific ML types and state-of-the-art
detection approaches.

[30] Review of drone detection strategies that emphasize the use of DL with
multisensor data up to the year 2019.

[31] Review of drone identification, neutralization, and detection, with less
emphasis on detection methods. The study primarily focuses on system
design from the regulatory viewpoint, excluding state-of-the-art detection
techniques and references covered up to the year 2021.

This survey Review on UAV detection and classification that provides an extensive
survey including suggested challenges, solutions, and future research di-
rections using ML (e.g., addressed technologies encompass radar, visual,
acoustic, and radio frequency sensing systems) up to the year of 2023.
This study covers UAV detection by highlighting the advantages and
limitations of methods and the improvement pathway. After that, a thor-
ough critical analysis of the state of the art is presented (e.g., including
different methodologies for different technologies, performance accuracy
with different matrix indexes, and machine learning model types). In
addition, an extensive review of dataset information is provided for UAV
detection and classification technologies (e.g., publicly available and own
experimental datasets with details such as classes, training, testing ratios,
and used experimental drones). In addition, reinforcement learning (RL)-
based UAV detection and classification with detailed research direction
are presented. Moreover, a review of hybrid sensor-based UAV detection
strategies provides detailed datasets and research direction.

In the remaining sections of this survey, classification of four UAV detection techniques
with ML is described in Section 2. Figure 1 illustrates the organization of this paper in
detail. Finally, the conclusion and discussion are presented in Section 3.
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Figure 1. The overview of the organization of this paper.

2. UAV Classification Categories

In this section, the different UAV detection and classification categories based on ML
are described. Figure 2 shows the graphical demonstration of different UAV classification
and detection categories, along with their corresponding advantages and disadvantages. The
detection technologies for UAVs are classified into four groups: (1) RF-based detection, (2)
visual data-based detection, (3) acoustic signal-based detection, and (4) radar-based detection.
In addition, the hybrid sensor-based UAV detection and classification method is described at
the end of this section. Each of the categories is described in the following section.

2.1. UAV Classification Based on ML Using RF Analysis

RF signals are captured and examined using RF-based devices in order to identify
and recognize threats. The benefits of the RF-based detection method are that it operates
day or night and in any kind of weather. Thus, compared with other current technologies,
RF-based monitoring techniques have recently shown higher potential for the UAV com-
munication system. In order to manage and operate the UAV utilizing RF signals, most
UAVs are equipped with an onboard transmitter for data transfer.

UAVs can be detected and located from a considerable distance using RF information.
To improve the challenges of UAV detection and classification rates using RF signals, the
ML-based algorithm has shown excellent performance. The overview of the RF-based UAV
detection and classification operation is illustrated in Figure 3. In addition, a summary of
recent related research on RF-based methods using ML for UAV detection and classification
is shown in Table 2. Furthermore, the dataset information of the current research on
RF-based methods using ML for UAV detection and classification is shown in Table 3.
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Figure 2. The different categories of UAV classification and detection technologies and their corre-
sponding advantages and disadvantages.

Figure 3. The detection and classification mechanism of UAV based on RF signal analysis.

Table 2. Comparison summary of ML-based UAV classification and detection using RF technology.

Reference Detection Target Machine Learning Method Performance Model
Types 1

[32] UAV detection using RF NN, ResNet50 Accuracy: 95% SL, DTL
[33] UAV detection using RF Extreme Gradient Boosting (XG-

Boost)
Accuracy: 99.6%, F-1 score:
100%

SL

[34] UAV detection and classifica-
tion

CNN, Logistic regression (LR),
KNN

Accuracy: 100% for 2 classes
and 98.0% for 10 classes

SL
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Table 2. Cont.

Reference Detection Target Machine Learning Method Performance Model
Types 1

[35] UAV detection using RF CNN Accuracy: 92.5%, F1-score:
93.5%

SL

[36] UAV detection using RF Bayesian, SVM, MLP Accuracy: 99%, Recall: 99.5% SL
[37] UAV detection using RF ANN Accuracy: 82% within 3 km dis-

tance
SL

[38] UAV classification from raw
RF fingerprints

Markov-based naïve Bayes de-
tection, KNN, DA, SVM, NN

Accuracy: 95%, 96.84%, 88.15%,
58.49% with different models

SL

[39] UAV controller detection from
transmitted control RF

CNN N/A SL

[40] Detection of UAV type and
flight mode from raw RF sig-
nals

DNN Accuracy: 99.7% for 2, 84.5% for
4, and 46.8% for 10 classes, F1-
score: 99.5% for 2, 78.8% for 4,
and 43.0% for 10 classes

SL

[41] UAV detection using RF End-to-End CNN Model Accuracy: 97.53%, Precision:
98.06%, Recall: 98.00%, and F1-
score: 98.00%

SL

[42] UAV detection using RF XGBoost, AdaBoost, decision
tree, random forest, KNN, and
MLP

Accuracy: 100%, 99.6%, and
99.3% for 2, 4, and 10 classes, F1-
score: 100%, 99.6%, and 99.3%
for 2, 4, and 10 classes

SL

[43] Swarm of UAV detection using
RF

PCA, ICA, UMAP, t-SNE K-
means, mean shift, and X-means

Accuracy: 99% for the VRF
dataset, 100% for the XBee
dataset, and 95% for Matrice
dataset

USL

[44] UAV detection using RF YOLO-lite, Tiny-YOLOv2,
DRNN

Accuracy: YOLO-lite, Tiny-
YOLOv2, and DRNN were 97%,
98%, and 99%

SL

[45] UAV detection using RF Residual CNN Accuracy: 99%, F1-score: 97.3 to
99.7%

SL

[46] UAV detection using RF Hierarchical ML (KNN and XG-
Boost)

Accuracy: 99.20%, Precision:
99.11%, F1-score: 99.10%

SL

[47] UAV detection using RF CNN Accuracy: 99.80%, Precision:
99.85%, Recall: 99.55%, F1-score:
99.70%

SL

[48] UAV detection using RF KNN Accuracy: 98.13% SL
[49] UAV detection using RF FNN, CNN Accuracy: 92.02%, Precision:

94.33%, Recall: 94.13%, F1-score:
94.14%

SL

[50] UAV detection using RF Hierarchical ML (CNN, SVM) Accuracy: 99% SL
[51] UAV detection using RF signa-

tures
Autoencoder (AE), LSTM, CNN,
and CNN-LSTM hybrid model

Accuracy: 88.02%, Recall:
99.01%, F1-score: 85.37%

SL

[52] UAV detection using RF signa-
tures

Power spectrum density (PSD)
with DNN model called PSD

Accuracy: 89% SL

[53] UAV detection using RF Multiscale-1D CNN Accuracy: 99.89% for 2 class,
98.56% for 4 class, 87.67% for
10 class; F-1 score: 99.96% for 2
class, 98.87% for 4 class, 86.82%
for 10 class

SL

[54] UAV detection using RF MLP-based Model-URANUS Accuracy: 90.0% SL
[55] UAV detection using RF Hybrid (1DCNN + XGBoost

classifier)
Accuracy: 100% for 2 class,
99.82% for 4 class, 99.51% for 10
class

SL

[56] UAV detection using RF Residual network-based autoen-
coder (DE-FEND)

Accuracy: 100% SSL, USL

1 SL = supervised learning, USL = unsupervised learning, DTL = deep transfer learning, SSL = semi-supervised
learning.
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Table 3. Datasets information of UAV classification and detection using RF technology.

Reference Datasets Information

[32] Used own datasets including 5 drones Parrot ANAFI, FIMI X8SE, DJI Phantom 4 Pro V2.0, DJI Mavic Air, and DJI
Mavic Mini 2 collected from the hardware configuration of operating frequency, sampling rate, center frequency, and
receiving bandwidth of USRP X310 set to 100 Msa/s, 5785 MHz, and 100 MHz. The background data undergo random
spectral shifting range of [−40, 40] MHz in every training batch. Training sample SNR or SINR was adjusted by varying
AWGN power and weight coefficient.

[33] Used the datasets called DroneRF datasets (composed of227 recorded segments collected from 3 different drones, size
of datasets 3.75 GB) [57].

[34] BladeRF software defined radio (SDR) was used to collect samples from 3 types of UAV and background activities,
Each dataset entry contains 12, 000, 000 samples.

[35] DroneRF datasets (composed of 227 recorded segments collected from 3 different drones, size of datasets 3.75 GB) [57].
[36] Airborne datasets were collected by measurement device underneath a commercial UAV; ground and airborne sample

numbers are 1535 and 5922.
[37] Used indoor datasets of 1 to 500, 501 to 1000, and 1001 to 1500 correspond to the distance of 5 m, 10 m, and 15 m and

outdoor datasets of 1 to 500, 501 to 1000, 1001 to 1500, 1501 to 2000, 2001 to 2500, 2501 to 3000, 3001 to 3500, 3501 to
4000, and 4001 to 4500 corresponding to a distance of 0.005 km, 0.01 km, 0.02 km, 0.5 km, 1 km, 1.5 km, 2 km, 2.5 km,
and 3 km between Rx and u, respectively. It belongs to the UAV class, non-UAV class.

[38] Used own datasets, which were collected indoors from 14 micro-UAV controllers operating at 2.4 GHz in near-field
mode [58].

[40] Used own datasets containing Parrot Bebop, Parrot AR Drone, DJI Phantom 3 drones with Wi-Fi signals and flight
modes using hardware [59] with totals samples 3720 × 106.

[41] Used publicly available CardRF datasets [60], which contained UAS, Wi-Fi, and Bluetooth with no. of signals 3395, 700,
and 1750, respectively.

[42] DroneRF datasets (composed of 227 recorded segments collected from 3 different drones, size of datasets 3.75 GB). [57]
[43] Used various RF Sources (VRF Dataset) from [57,58,61], which include four different types of drones and two other

RF sources, XBee Dataset from their experiment from 10 identical transceivers based on the ZigBee communication
protocol, and Matrice dataset [62] containing seven identical Matrice 100 (M100 dataset) drones.

[44] Used own experiment using 2.4 GHz operating frequency, antenna X310, receive sampling rate of 100 MSps with
drones, radio controllers, and Wi-Fi Sources from 11 devices.

[45] Used own experimental datasets.
[46] A public dataset is used to train from DroneRF datasets (composed of 227 recorded segments collected from 3 different

drones, size of datasets 3.75 GB) [57].
[47] DroneRF datasets (composed of 227 recorded segments collected from 3 different drones, size of datasets 3.75 GB) [57],

with 454 RF signal records, each consisting of 1 million samples.
[48] Used own datasets, which were collected indoors from 14 micro-UAV controllers operating at 2.4 GHz in near-field [58].

Each controller 100 RF signals contains 5000 k samples. Training (60%) + Cross-validation (20%) and 20% for Testing).
[49] DroneRF datasets (composed of 227 recorded segments collected from 3 different drones, size of datasets 3.75 GB) [57],

containing 22700 elements and 2047 features and training, validation, and testing ratio 70%, 10%, and 20%.
[50] Used own datasets with seven DJI drones; 500 spectrograms are generated; 90% used for training and 10% for validation.
[51] Used DroneRF datasets [57] where out of 22,700 × 7 elements 90%, 20,430 × 7, was used for training and 2270 × 7 used

for testing datasets.
[52] Used own experimental datasets with trained PSD models for 6 UAVs where used 178 data points for every training

example.

In recent years, the use of RF-based UAV detection and classification has dramatically
increased. In the state of the art, many works have been completed using RF technology for
UAV detection and classification [42,57,63–65]. A DL approach based on RF was proposed
in [63] to detect multiple UAVs. To complete the objectives of detection and classification,
the authors suggested the use of a supervised DL model. For RF signal preparation, they
employed short-term Fourier transform (STFT). The higher efficiency of their approach
was largely due to the preparation of the data, which was first conducted by using STFT.
The authors in [64] introduced a model named RF-UAVNet, which was designed with a
convolutional network for UAV tracking systems that used RF signals to recognize and
classify the UAVs. In order to minimize the network dimensions and operational expense,
the recommended setup uses clustered convolutional layer structures. This research took
advantage of the publicly accessible dataset DroneRF [57] for RF-based UAV detection
techniques.



Remote Sens. 2024, 16, 879 8 of 42

The authors in [34] assessed the impact of real-world Bluetooth and Wi-Fi signal inter-
ference on UAV detection and classification by employing convolutional neural network
(CNN) feature extraction and machine learning classifiers logistic regression and k-nearest
neighbor (kNN). They used graphical representations in both the time and frequency
domains to evaluate two-class, four-class, and ten-class flying mode classification.

In a separate study, the authors in [35] proposed a drone detection system recognizing
various drone types and detecting drones. They designed a network structure using
multiple 1-dimensional layers of a sequential CNN to progressively learn the feature map
of RF signals of different sizes obtained from drones. The suggested CNN model was
trained using the DroneRF dataset, comprising three distinct drone RF signals along with
background noise.

Another investigation by the authors in [36] involved comparing three distinct classifi-
cation methods to identify the presence of airborne users in a network. These algorithms
utilized standard long-term evolution (LTE) metrics from the user equipment as input and
were evaluated using data collected from a car and a drone in flight equipped with mobile
phones. The results were analyzed, emphasizing the advantages and disadvantages of each
approach concerning various use cases and the trade-off between sensitivity and specificity.

Furthermore, in [37], the researchers explored the use of artificial neural networks
(ANNs) for feature extraction and classification from RF signals for UAV identification. This
study distinguished itself by employing the UAV communication signal as an identification
marker. Moreover, the research creatively extracted the slope, kurtosis, and skewness
of UAV signals in the frequency domain. Additionally, [38] proposed the detection and
classification of micro-UAVs using machine learning based on RF fingerprints of the signals
transmitted from the controller to the micro-UAV. During the detection phase, raw signals
were divided into frames and converted into the wavelet domain to reduce data processing
and eliminate bias from the signals. The existence of a UAV in each frame was detected
using a naïve Bayes approach based on independently constructed Markov models for
UAV and non-UAV classes.

The authors in [39] described their efforts to locate drone controllers using RF signals.
A signal spectrum monitor was used as an RF sensor array. From the sensor’s output, a
CNN was trained to anticipate the drone controller’s bearing on the sensor. By position-
ing two or more sensors at suitable distances apart, it became possible to determine the
controllers’ positions using these bearings.

In [40], the authors proposed a drone detection method aimed at creating a database for
RF signals emitted by different drones operating in various flight modes. They considered
multiple flight modes in simulations and utilized the RF database to develop algorithms
that detect and identify drone intrusions. Three DNNs were employed to identify drone
locations, types, and flight modes.

For recognizing and identifying UAVs based on their RF signature, [41] suggested an
end-to-end DL model. Different from previous research, this study employed multiscale
feature extraction methods without human intervention to extract enhanced features aiding
the model in achieving strong signal generalization capabilities and reducing computing
time for decisionmaking.

The study in [42] utilized a compressed sensing technique instead of the conventional
sampling theorem for data sampling. The researchers employed a multichannel random
demodulator to sample the signal and proposed a multistage DL-based method to detect
and classify UAVs, capitalizing on variations in communication signals between drones
and controllers under changing conditions. Additionally, the DroneRF dataset was utilized
in [42], The UAV was first identified by the DNN, and then it was further identified by a
CNN model. Nevertheless, it was not feasible to take into account additional signals that
appeared in the 2.4 GHz range when utilizing the DroneRF dataset [65].

In [43], the authors proposed a novel method based on RF signal analysis and multiple
ML techniques for drone swarm characterization and identification. They provided an
unsupervised strategy for drone swarm characterization using RF features extracted from
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the RF fingerprint through various frequency transforms. Unsupervised techniques like
manifold approximation and projection (UMAP), t-distributed stochastic neighbor embed-
ding (t-SNE), principal component analysis (PCA), independent component analysis (ICA),
and clustering algorithms such as X-means, K-means, and mean shift were suggested to
minimize input data dimension.

A study on RF-based UAV detection and classifictaion was conducted in [8], where
the authors considered the interference of other wireless transmissions such as Bluetooth
and Wi-Fi. They extracted and characterized the RF signals using wavelet scattering
transform (WST) and continuous wavelet transform (CWT). The signal was classified and
identified taking into account both transient and stable phases. In order to examine the
effectiveness of coefficient-based approaches (CWT and WST), they also executed several
image-based methods for extracting features. Using PCA in conjunction with several ML
models, including support vector machine (SVM), KNNs, and ensemble, they completed
classification and detection activities with varying degrees of noise.

In [48], the authors demonstrated the use of Markov-based naïve Bayes ML approaches
for the identification and classification of UAVs using numerous RF raw signal fingerprints
from various UAV controllers and under varying SNR levels. To mitigate noise sensitivity
and respond with modulation approaches, the categorization specifically relied on the
energy transient signal and statistically processed it. This approach avoids potential delays
in identifying the transient signal, particularly in low-SNR conditions, due to its lower
processing cost and not relying on the time domain. Several ML techniques, such as
discriminant analysis (DA), NN, KNN classification, and SVM, were trained on the feature
sets for UAV classification and detection.

In addition, low, slow, and small UAVs (LSSUAVs) operating in the 2.4 GHz frequency
range can be detected slowly by using Hash Fingerprint (HF) characteristics based on
distance-based support vector data description (SVDD)-based UAVs detection according to
a proposal provided in [66]. The system started by identifying the primary signal’s starting
point, creating envelope signals, followed by removing the envelopes from the signals. The
HF is then created as a characteristic to train SVDD. To evaluate the system, the authors
gathered a customized dataset. The outcomes showed that the system can identify and
locate LSSUAV signals within an interior setting. Nevertheless, the system efficiency was
decreased when additive white Gaussian noise (AWGN) was supplied.

A framework for UAV detection based on auxiliary classifier Wasserstein generative
adversarial networks (AC-WGANs) was presented in [67]. The model leverages RF fin-
gerprints from UAV radios as input features. The popular image synthesis and analyzing
tool known as the generative adversarial network (GAN) model was modified for UAV
detection and multiclassification. This was accomplished by utilizing and enhancing the
GAN discriminator model. PCA was utilized to further decrease the dimensionality of the
RF signature for feature extraction after the intensity envelope had been used to shorten the
initial signal. Four UAVs, one Wi-Fi device, and a randomly selected signal taken from the
surroundings were used in their test setup. AC-WGAN was able to achieve a 95% accuracy
rate of UAV detection.

A DNN model was trained using the frequency parts of the UAV RF signals that were
extracted using discrete Fourier transform (DFT) in [40]. In the proposed work, three UAVs
were used for the simulation. The UAV detection and classification achieved a precision
of 84.5%. The authors did not take into account additional ISM devices that operate in
the identical 2.4 GHz frequency range, except for UAV-flight controller communication.
Furthermore, the efficacy of the framework at different signal-to-noise ratios (SNRs) was
not evaluated. Additionally, the time required for inference of the classification algorithm
was not considered.

2.1.1. Challenges and Solutions of RF-Based UAV Detection and Classification Using ML

• RF signal variability: Diverse RF signal characteristics due to variations in UAV
models, communication protocols, and flight dynamics. Develop robust feature
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extraction methods capable of capturing and analyzing different RF signal patterns
across various UAVs.

• Background noise and interference: Environmental noise and interference affecting
the accuracy of RF-based detection systems. Investigate advanced signal processing
algorithms and adaptive filtering to mitigate the impact of background noise on RF
signal clarity.

• Signal strength and distance: RF signal attenuation over long distances limits the
effective range of UAV detection systems. Explore novel antenna designs and signal
amplification techniques to improve signal sensitivity and extend detection range.

• UAV classification: Accurately distinguishing between different UAV types based on
similar RF signal features. Implement advanced machine learning models, such as
deep neural networks, for fine-grained classification of UAVs using RF signatures.

• Real-time processing: Processing RF data in real time for prompt detection and re-
sponse. Optimize machine learning algorithms and hardware configurations, possibly
leveraging edge computing techniques, to enable rapid analysis of RF signals.

• Security and adversarial attacks: Vulnerability of RF-based systems to adversar-
ial attacks and signal spoofing. Implement robust encryption and authentication
mechanisms to secure RF signals and prevent malicious intrusions.

2.1.2. Future Directions of RF-Based UAV Detection and Classification Using ML

• Advanced signal processing techniques: Explore advanced signal processing meth-
ods, such as compressed sensing and adaptive filtering, to enhance the extraction of
discriminative features from RF signals for more precise UAV classification [68].

• Multisensor fusion for improved accuracy: Investigate the fusion of RF data with
other sensor modalities (e.g., optical or acoustic) to create more comprehensive and
accurate UAV detection systems capable of handling diverse environmental condi-
tions [69].

• Dynamic adaptation and self-learning algorithms: Develop machine learning models
with adaptive learning capabilities, enabling continuous improvement and adaptation
to evolving UAV signal variations, environmental changes, and new UAV models [17].

• Real-time edge computing for swift decisionmaking: Explore the integration of edge
computing techniques with RF-based UAV detection systems to achieve faster process-
ing speeds, enabling real-time decisionmaking in dynamic and resource-constrained
environments [70].

• Robustness against adversarial attacks: Investigate novel approaches to fortify RF-
based UAV detection systems against adversarial attacks, including intrusion detection
mechanisms and cryptographic protocols [71].

• Standardization and interoperability: Collaborate across academia, industry, and
regulatory bodies to establish standardized protocols and interoperable frameworks
for RF-based UAV detection systems, facilitating compatibility and integration across
different platforms [72].

2.2. UAV Classification Based on ML Using Visual Data Analysis

Due to the intricacy of radar technology and the quick advancements in computer
vision, several researchers are considering the employment of visual information (images or
videos) for UAV detection and classification. Because visual images have a high resolution,
they are frequently utilized for semantic segmentation and object recognition. However,
using visible images also comes with its own set of issues, like shifting light, obscured
areas, and a cluttered background. In addition, there are usually difficulties involved in
carrying out this operation in visible photographs, such as the UAV’s small dimensions,
the disorientation of birds, the presence of concealed regions, and busy backgrounds. For
these reasons, an effective and thorough detection technique must be used. Deep CNN
has recently made significant strides, and the introduction of better technology allows for
faster and more accurate object detection using visual input, especially for visual-based
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UAV detection and classification. The basic detection and classification of UAVs based
on image or video (visual data) using the ML algorithm is demonstrated in Figure 4. The
summary of related research on visual-based methods using ML for UAV detection and
classification is shown in Table 4. Furthermore, the dataset information of the current
research on visual-based methods using ML for UAV detection and classification is shown
in Table 5.

Figure 4. The detection and classification mechanism of UAV based on visual data analysis.

Table 4. Comparison summary of ML-based UAV classification and detection using visual data.

Reference Detection Target Machine Learning Method Performance Model
Types 1

[73] Loaded and unloaded UAV de-
tection using image

YOLOv2 Accuracy: 80.34%, mean aver-
age precision (mAP): 74.97%

SL

[74] Small UAV detection using im-
age

pruned yolov4 Precision: 30.7%, Recall: 72.6%,
mAP: 90.5%, F1-score: 45.2%

SL, DTL

[75] Small UAV detection using the
static wide-angle camera and a
lower-angle camera

lightweight YOLOv3 Can Detect Multiple UAV SL

[76] Flying UAV detection using
fisheye camera images

CNN, SVM, and KNN Accuracy: CNN, SVM, and
KNN of 93%, 88%, and 80%, Pre-
cision: 96%, 86%, and 74%, Re-
call: 91%, 91%, and 94%

SL

[77] UAV detection using RGB im-
ages

YOLOv3 Precision: 95.10%, Recall:
99.01%, mAP:74%

SL

[78] Low-altitude UAV detection YOLOv4, YOLOv3 and SSD Accuracy: YOLOv4, YOLOv3,
and SSD with 89.32%, 89.14%,
and 79.52%, Recall: 92.48%,
89.27%, and 85.31%, mAP:
89.32%, 89.14%, and 76.84%

SL

[79] UAV detection using images Transfer Learning with YOLOv3 Accuracy: confidence rate (CR)
within 60% to 100% and average
CR of 88.9%

SL

[80] UAV Tracking using visual
data

SSD, YOLOv3, and Faster
RCNN

mAP: 98% SL

[81] UAV detection using images YOLOv4 Precision: 0.95, Recall: 0.68, F1-
score: 0.79, and mAP: 74.36%

SL

[82] UAV detection using images Fine-tuned YOLOv2 Precision and recall of 0.90 SL
[83] UAV detection using images VGG16 with Faster R-CNN mAP: 0.66 SL, DTL
[84] UAV detection using video im-

ages
YOLOv2 and Darknet19 Precision:88.35%, Recall:

85.44%, F1-score: 73.3%
SL, DTL

[85] UAV detection using images Faster RCNN Precision recall: 0.93 SL
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Table 4. Cont.

Reference Detection Target Machine Learning Method Performance Model
Types 1

[86] UAV detection using images RetinaNet, SSD, YOLOv3, FPN,
Faster R-CNN, RefineDet, Grid
R-CNN, and Cascade R-CNN

Grid R-CNN achieves best ac-
curacy 82.4% among all de-
tectors, while RefineDet 69.5%.
Among 2-stage models, Cas-
cade R-CNN achieved best ac-
curacy 79.4%, whereas Faster
R-CNN achieved worst 70.5%.
For 1-stage models, SSD512
78.7%and RetinaNet 77.9% both
perform well, whereas YOLOv3
achieved only 72.3%

SL, DTL

[87] UAV detection using images YOLOv4 Accuracy: 83% Recall: 84%,
mAP: 84%, F1-score: 83%, and
Intersection over Union (IoU):
81%

SL

[88] UAV detection using image
data

YOLOv5 and v7 Precision: 95%, Recall: 95.6%,
mAP: 96.7%

SL

[89] UAV detection using image
data

YOLOv4 Average precision: 34.63% SL

[90] UAV Vs. Bird detection using
image data

Cascade R-CNN, YOLOv5, and
YOLOv3

Detection results of Cascade R-
CNN, YOLOv5, and YOLOv3
were 79.8%, 66.8%, and 80.0%

SL

[91] UAV detection using image Deep clustering (YOLOv8 + t-
SNE)

Accuracy: 100% USL

1 SL = supervised learning, USL=unsupervised learning, DTL=deep transfer learning.

Table 5. Datasets information of ML-based UAV classification and detection using visual data.

Reference Datasets Information

[73] Used own experimental dataset from flying multifunctional Quad-rotor system DJI Phantom 2 and the total number of
images for each class was 1000.

[74] Used own experimental dataset with 10 thousand images of drones, 8000 images used for training and 2000 for testing.
[75] Used own experimental dataset where the raw main image plane size was 1600 × 1600 pixels; it was automatically

downsized to 832 × 832 pixels; testing completed with 800 frames from 20 videos.
[76] Used own experimental dataset, which contained drone and bird images where 712 images of drones and birds were

collected and 80% of these data used for training and 20% for testing.
[77] The dataset was created by gathering images from the internet and removing frames from various drone recordings.

More than 10,000 images featuring various drone genres were available.
[78] Used own and public datasets with a total of 1540 visible images obtained, encompassing a range of flight attitudes such

as fast descent, angle rotation, fast flight, steady combat, low-altitude hovering, and high-altitude hovering. Further
expansion dataset collected 556 drone images from the internet.

[79] Images of drones, hexacopters, quadcopters, and UAV images were collected. A total of 1500 images drone images
were manually sorted to remove extrinsic images, and 1435 images were prepared where data augmentation enhanced
the 1435 to 7175 images, and 19.5% of the dataset used for validation and 80.5% as training.

[80] Datasets contained three data: (a) MAV-VID, (b) Drone vs. Bird, (c) Anti-UAV Visual. For Anti-UAV, size of training: 60
videos (149, 478 images), validation: 40 videos (37,016 images), and average object size (AOS) of RGB: 125 × 59 pxs
(0.40% image size), IR: 52 × 29 pxs (0.50% image size). For Drone vs. Bird, size of training: 61 videos (85, 904 images),
validation: 16 videos (18, 856 images), and AOS of 34 × 23 pxs (0.10% of image size). For MAV-VID, size of training: 53
videos (29, 500 images), validation: 11 videos (10, 732 images), and AOS of 215 × 128 pxs (3.28% of image size). For
information about datasets, openly accessible from [92].

[81] Used datasets from Google and Kaggle [93]; collected 2395 images consisting of 479 birds and 1916 drones and dataset
split into 90% for training and 10% for testing.

[82] Dataset collected public domain pictures of drones and birds and videos of coastal areas with a total of 676534 images.
The dataset was divided into training 85% and validation 15%.
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Table 5. Cont.

Reference Datasets Information

[83] Used datasets with experimentation on Bird vs. Drone. The dataset contains 5 MPEG4-coded videos taken at different
times, 2727 frames with a resolution of 1920 × 1080.

[84] Used two datasets: one was from the public domain called USC Drone Dataset [94] comprising 30 YouTube video
segments that feature diverse drone models with diverse appearances. These video clips have a frame resolution of
1280 × 720. The other built by authors; shot 49 experimental videos with HIKVISION DS-2DF7330IW Network PTZ
camera where, for the mainstream and substream, the frame resolutions were 2048 × 1536 and 1024 × 768.

[85] Used two datasets: public domain drone dataset comprising 30 YouTube videos captured in indoor or outdoor
environment with frame resolution of 1280 × 720. The other was from USC Drone Dataset [94], which contained 30
video clips shot at the USC campus with frame resolutions 1920 × 1080 and frame rate was 15 FPS.

[86] Used dataset called Det-Fly [95], which includes 13271 images of a target micro-UAV (DJI Mavic). Every image in the
collection contains 3840 × 2160 pixels, and some of them are taken at 5 FPS from videos.

[87] Used drone and bird visible image datasets where drone dataset used several multirotors, helicopters for training; 70%
used for training and 30% for validation.

[88] Used datasets of quadcopter images where datasets taken from Kaggle [96] and self-builds from camera. The dataset
contained 1847 images and the training and validation ratio was 80% and 20%, respectively, and the training set was
expanded to 4753 images using hue augmentation, which produced two additional images for each image.

[89] Used own dataset images of drones that were downloaded from the internet. They gathered labeled images of
quadcopter drones with varying sizes and backgrounds. The datasets comprised approximately 4500 color images of
drones where 1350 drone images were used for testing and 3150 for training.

[90] Gradiant Team: Utilized Purdue UAV dataset [97] comprised of 70, 250 frames in total, which were then subsampled
to yield 27, 864 frames with 10, 461 bounding boxes, and private data comprised 14, 152 bounding boxes and 22, 236
frames. EagleDrone Team: Used three open-source datasets including Little Birds in Aerial Images, Drone vs. Bird
Competition dataset, and Birds in the background of the Windmills dataset. Alexis Team: A total of 106, 485 frames
were eliminated by the Alexis team out of the 77 available annotated sequences. The Cut, Paste, and Learn paper was
followed by the Alexis team to create 26, 500 synthetic images [98].

The recent advancements in ML models have significantly enhanced the capability
to detect and classify UAVs in both secure areas and public environments. With the
emergence of more powerful deep CNNs and the availability of superior equipment,
the process of identifying objects through visual input can now be accomplished with
greater speed and accuracy [73]. DL networks are specifically designed for instantaneous
UAV recognition, distinguishing them from traditional UAV detection systems. These
networks classify inputs into various UAV classes, identifying the category, position, as
well as the presence or absence of different UAV types [99]. CNNs are among the most
significant NN models for image detection and categorization. The input information for
this network passes through the convolutional layers. Next, the network’s kernel is used to
execute the convolution function in order to detect commonalities. Finally, the generated
feature map is used for feature extraction [100]. CNNs come in several varieties, including
region-based CNN (R-CNN) [101], spatial syramid sooling network (SPPNet) [102], and
Faster RCNN [103]. Convolutional procedures are applied in these networks, enabling
the extraction of additional information and improving both speed and precision in object
detection compared to traditional techniques. Practically, the extracted features serve
as object descriptors for recognition. Region proposal networks (RPNs) are employed
in these networks to initially define suggested regions [104]. Following the application
of convolutional filters to such locations, the convolutional process yields the extracted
features [103]. Additional DL methods, including you only look once (YOLO) [105] and
SSD (single-shot multibox detector) [106], often examine the image, leading to faster and
more accurate item detection than simple techniques [105]. In recent times, the detection of
UAVs has emerged as a promising field within the research community. Numerous studies
have been conducted for UAV detection and classification [73–79,82,83].

Several obstacles, including the UAVs’ tiny dimensions in various images, could be
too small for the YOLOv4 DL network to detect [74]. In this investigation [74], the network
was unable to identify the UAV in a few of the challenging images. These difficulties
are due to the fact that, due to their small size, some drones can be mistaken for birds
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and may be found in concealed or cluttered environments. To address the challenge of
identifying flying UAVs more effectively, the YOLOv4 DL network underwent significant
changes. The primary innovation in this study lies in the modification of the network
design. Additionally, this research successfully identified four types of multirotors, which
include fixed-wing, helicopter, and VTOL (vertical take-off and landing) aircraft.

By employing the YOLOv3 DL system, an autonomous UAV detection system was
implemented in [75]. One of the benefits of this study is its affordability due to the system’s
low requirement for GPU memory. The study successfully detected tiny-sized UAVs
operating at close range. However, a limitation of this research is the inability to accurately
identify different types of UAVs.

The study in [76] utilized CNNs, SVMs, and nearest-neighbor algorithms for UAV iden-
tification using fisheye cameras. The experimental results demonstrated that the efficiency
of CNN, SVM, and nearest-neighbor algorithms was 93%, 88%, and 80%, respectively. The
CNN classifier exhibited good precision when compared to different classifiers operating
under the same test settings. It is worth noting that this study did not take into account
different types of UAVs or account for various detection challenges; it solely focused on
UAV detection

Utilizing the YOLOv3 DL network, the study in [77] successfully identified and
categorized UAVs in RGB images, achieving a mean average precision (mAP) of 74%
after completing 150 epochs. It is worth noting that the paper did not delve into the
topic of differentiating UAVs from birds; rather, it focused solely on the identification of
UAVs at varying distances. Furthermore, the study in [78] addressed low-altitude UAV
detection using the YOLOv4 deep learning network. For performance comparison, the
YOLOv4 detection results were contrasted with those of the YOLOv3 and SSD models. The
investigation revealed that the YOLOv4 network outperformed both the YOLOv3 and SSD
networks in terms of mAP and detection speed. In the simulation, YOLOv4 achieved an
impressive 89.32% mAP in the detection, recognition, and identification of three different
types of UAVs.

In [79], the YOLOv3 DL network was employed to detect and track a UAV. The study
utilized the NVIDIA Jetson TX2 for real-time UAV detection. Based on the findings, it
can be concluded that the proposed YOLOv3 DL network achieved an 88.9% average
confidence score and demonstrated an accuracy range of 60% to 100% for detecting UAVs
of small, medium, and large sizes, respectively. In addition, employing four DL network
architectures in conjunction with a dataset comprising both visual and thermal images, the
study outlined in [80] successfully detected and classified UAVs. This investigation har-
nessed the power of DL networks such as DETR (DEtection TRansformer), SSD, YOLOv3,
and Faster RCNN models for superior detection performance. The results demonstrated
that even diminutive UAVs could be reliably detected from a considerable distance by all
the networks under scrutiny. Notably, YOLOv3 exhibited the highest overall accuracy,
boasting an impressive mAP of up to 0.986, while Faster RCNN consistently demonstrated
the highest mAP for detecting tiny UAVs, peaking at 0.770.

In [81], the authors utilized YOLOv4 to develop an automated UAV detection technol-
ogy. They evaluated the algorithm on two distinct types of UAV recordings, employing a
dataset containing images of both drones and birds for UAV identification. The findings
from this study for the detection of two different kinds of multirotor UAVs are as follows:
precision of 0.95, recall of 0.68, F1-score of 0.79, and mAP of 74.36%. In [82], the authors
proposed an extension of the single-shot object detector CNN model, known as YOLO.
They introduced a regression training approach for UAV identification in the latest version,
YOLOv2, using fine-tuning. With the use of an artificial dataset, they were able to achieve
similar accuracy and recall values, both at 0.90, in their technique evaluation.

In order to detect the UAVs from video data, the authors in [83] examined a variety
of pre-trained CNN models, such as Zeiler and Fergus (ZF) and VGG16 combined with
the Faster R-CNN model. To make up for the absence of a large enough dataset and to
guarantee convergence throughout the model’s training process, they employed the VGG16
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and the ZF model as transfer learning models. The Nvidia Quadro P6000 GPU was used
for the training, and a batch size of 64 was used with a fixed learning rate of 0.0001. They
used the Bird vs. UAV dataset, which is made up of five MPEG4-coded films with a total of
2727 frames and 1920 × 1080 pixel quality, shot during various sessions.

The study in [87] proposed a novel DL-based technique for effectively identifying
and detecting two different types of birds and drones. When the suggested method
was evaluated using a pre-existing image dataset, it outperformed the detection systems
currently utilized in the existing literature. Moreover, due to their similar appearance and
behavior, drones and birds were often mistaken for each other. The proposed technique
can discern and differentiate between two varieties of drones, distinguishing them from
birds. Additionally, it can determine the presence of drones in a given location.

To detect small UAVs, [88] utilized various iterations of state-of-the-art object detection
models (like YOLO models) using computer vision and DL techniques. They proposed
different image-processing approaches to enhance the accuracy of tiny UAV detection,
resulting in significant performance gains.

2.2.1. Challenges and Solutions of Visual Data-Based UAV Detection and Classification
Using ML

• Variability in visual data: Visual data captured by cameras vary due to factors like
lighting conditions, weather, angles, and distances, making consistent detection and
classification challenging. Employ robust preprocessing techniques (e.g., normaliza-
tion and augmentation) to standardize and enhance visual data quality.

• Limited annotated datasets: The lack of diverse and well-annotated datasets specific
to UAVs hampers the training of accurate ML models. Develop and curate compre-
hensive datasets encompassing various UAV types and scenarios for effective model
training.

• Real-time processing: Processing visual data in real time for swift and accurate UAV
detection and classification. Optimize algorithms and hardware configurations to
ensure real-time processing capabilities, potentially leveraging GPU acceleration or
edge computing.

• Scale and complexity: Scaling detection and classification algorithms to handle com-
plex scenes, multiple UAVs, or crowded environments. Explore advanced DL ar-
chitectures capable of handling complex visual scenes for improved detection and
classification accuracy.

• Adaptability to environmental changes: Adapting to environmental changes (e.g.,
varying weather conditions) affecting visual data quality and system performance.
Develop adaptive algorithms capable of adjusting to environmental variations for
robust and reliable detection.

2.2.2. Future Directions of Visual Data-Based UAV Detection and Classification Using ML

• Multimodal integration: Integrate visual data with other sensor modalities (e.g., RF
or LiDAR) for more comprehensive and reliable UAV detection systems [107].

• Semantic understanding and contextual information: Incorporate semantic under-
standing and contextual information in visual analysis to improve classification accu-
racy [108,109].

• Ethical and privacy concerns: Address privacy considerations by implementing
privacy-preserving techniques without compromising detection accuracy [110].

• Interpretability and explainability: Develop methods for explaining and interpreting
model decisions, enhancing trust and transparency in visual-based UAV detection
systems [111].

2.3. UAV Classification Based on ML Using Acoustic Signal

UAVs emit a distinctive buzzing sound during flight, which can be captured by
acoustic sensors and subjected to various analyses to establish a unique audio signature
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for each UAV. The capability to identify a UAV based on its auditory fingerprint, or even
determine its specific type, would be highly valuable. Figure 5 illustrates an example
of a machine learning-based approach for UAV detection and classification using the
acoustic method. Furthermore, Table 6 provides a summary of related research on acoustic-
based methods employing machine learning for UAV detection and classification. In
addition, the dataset information of the current research on acoustic-based methods using
ML for UAV detection and classification is shown in Table 7. In the realm of audio-
based UAV identification, DL techniques are commonly employed to extract features and
achieve optimal UAV detection performance. Recent studies [112–118] also demonstrated
the efficacy of DL models in extracting characteristics from UAV audio signals for UAV
identification.

Figure 5. The detection and classification mechanism of UAV based on acoustic data analysis.

Table 6. Comparison summary of ML-based UAV classification and detection using acoustic data.

Reference Detection Target Machine Learning Method Performance Model
Types 1

[119] UAV detection using acoustic
fingerprints

CNN, RNN, and CRNN Accuracy: CNN, RNN, and
CRNN 96.38%, 75.00%, 94.72%,
Precision:
96.24%, 75.92%, 95.02%/95.60%,
Recall: 95.60%, 68.01%, 93.08%,
F1-score:
95.90%, 68.38%, 93.93%

SL

[112] UAV detection using audio fin-
gerprints

MFCC with CNN Accuracy: 94.5% SL

[113] Amateur UAV detection using
acoustic

LWCNN + SVM Accuracy: 98.35%, Precision:
98.50%, Recall: 98.20%, F1-score:
98.35%

SL

[115] UAV detection using acoustic SVM Accuracy: 97.8%, Precision:
98.3%

SL

[120] Amateur UAV detection using
acoustic

FTT and KNN method Precision: 83.0% SL

[121] Amateur UAV detection using
sound

MFCC and LPCC with SVM Accuracy: 97.0%, Recall: 100% SL

[114] UAV classification using sound GMM, CNN, and RNN Accuracy: RNN, CNN, GMM
0.8109, 0.5915, 0.6932, Precision,
recall of RNN (0.7953, 0.8066),
CNN and GMM precision
(CNN, GMM: 0.5346 < 0.9031)
and recall (CNN, GMM:
0.8019 > 0.3683), F1-score:
RNN > CNN > GMM:
0.8009 > 0.6415 > 0.5232

SL

[122] UAV classification using acous-
tic STFT features

CNN Accuracy: 98.97% SL
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Table 6. Cont.

Reference Detection Target Machine Learning Method Performance Model
Types 1

[117] UAV detection using multiple
acoustic notes

SVM, CNN Accuracy of SVM with STFT
and MFCC of F1-score 78.70%
and 77.90%

SL

[16] UAV detection using acoustic SVM, CNN Accuracy: 94.725%, F1-score:
94.815%

SL

[118] UAV detection using acoustic Plotted image machine learning
(PIL) and KNN

Accuracy of PIL and KNN of
83% and 61%

SL

[123] UAV detection using acoustic To generate the artificial UAV
audio dataset, implemented a
GAN model + CNN, RNN, and
CRNN

Accuracy: 0.9564, Precision:
0.9783, Recall: 0.9738, F1-score:
0.9753

SL

[124] UAV detection using acoustic
signature

MFCCfeatures with SVM Accuracy: 99.9%, Recall: 99.8%,
Precision: 100%

SL

[125] UAV detection using acoustic
signature

SVM Accuracy: 95.6% SL

[126] UAV detection using acoustic SVM Accuracy: 93.53%, Recall:
90.95%, F1-score: 93.19%

SL

[127] UAV detection using acoustic
signal

MFCC with concurrent neural
networks (CoNN)

Accuracy: 94.95%, Precision:
93.00%, Recall: 89.00%, F1-score:
91.00%

SL

[128] UAV detection using acoustic
data

MFCC with multilayer percep-
tion (MLP) and balanced ran-
dom forest (BRF) algorithm

Accuracy of MLP and BRF were
0.83% and 0.75%

SL

[129] UAV detection using acoustic
features

MFCC with CNN model Accuracy: 80.00%, Precision:
90.9%, Recall: 66.7%, F1-score:
76.9%

SL

[130] UAV detection using acoustic
features

SVM Accuracy: 86.7% SL

[131] UAV detection using sound sig-
nals

MFCC, Mel, Contrast, Chroma,
and Tonnetz features with NN,
SVM, a Gaussian naïve Bayes
(GNB), and, KNN

Accuracy: SVM,
GNB, KNN, NN of
100%, 95.9%, 98.9%, 99.7%, Pre-
cision: SVM, GNB, KNN, NN
of 100%, 95.3%, 99.5%, 99.5%,
Recall: SVM, GNB, KNN, NN
of 100%, 96.8%, 98.4%, 100%,
F1-score: SVM, GNB, KNN, NN
of 100%, 96.0%, 98.9%, 99.7%

SL

[132] UAV detection using acoustic Lightweight CNN Accuracy: 93.33% SL
[133] UAV detection using acoustic Linear, MLP, RBFN, SVM, and

Random Forest
Detection probability of error
with 1m range between 20% and
30%

SL

[134] UAV detection using acoustic Transformer-based CNN model F1-score of 88.4% SL
1 SL = supervised learning, DTL = deep transfer learning.

Table 7. Datasets information of ML-based UAV classification and detection using acoustic data.

Reference Datasets Information

[119] The acquired dataset was 1300 drone sound clips from [135]. To replicate actual scenarios, the drone audio samples were artificially enhanced
with noise using publicly accessible noise datasets [136,137]. After reformatting, the sampling rate of audio was 16KHz, and bitrate was
16Kbps. The training, validation, and testing set ratios were 70%, 15%, and 15%.

[113] Used two different datasets: the first dataset consists of bird, airplane, storm, drone, helicopter, and background object classes, and the
second dataset was obtained by flying Parrot Bebop and Mambo drones indoors [119]. The total dataset size consists of 3040 samples
and dataset split into 70% training and 30% validation.

[115] Datasets produced in the surrounding environment were picked up by an audio sensor. A sampling rate of 48 kHz and linear encoding
with 16 bits for the sample were maintained. A total of 4272 samples of audio frames were collected from 5 different classes: drone
flying, nature daytime, street with traffic, train passing, and crowd.
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Table 7. Cont.

Reference Datasets Information

[120] Datasets contained the microphone audio recording signals from several sources, including airplanes, birds, wind, rain, thunder, and
the AmDr. Each of the sources has 10, 000 samples. These signals are obtained through free downloads from various databases [138,
139].

[121] Acoustic data dataset was collected from 4 different sets of sound data: birds, drones, thunderstorms, and airplanes in a real noisy
environment. Training with a total of 138 samples, and testing used 34 sound samples. The length of the samples varies, but the
highest duration was 55 seconds.

[114] Training dataset augmented with raw background and drone sound. The background sound is a combination of data from own
recording and a publicly available dataset [140,141] for DJI, Phantom3, and Phantom4 devices. There were 9556 seconds of audio used
in total for training.

[122] Datasets collected from own experiment with sampling rate 44, 100 Hz and at 10 second intervals. There were 882 samples of 20 ms
frames with 50% overlap in the reconstructed data. The non-drone sound dataset was 41, 958 frames, whereas the drone sound was
68, 931 frames.

[117] Dataset was collected in person, and 6 listening nodes were positioned close to one another to record audio for the training data. The
test data consisted of audio recordings from the 6nodes, arranged in various configurations to form a circle or half circle. The UAV
was flown between each node at a maximum distance of 20m and an altitude of 0 to 10 m above the node.

[16] Training Datasets: UAV class of audio with Multirotor UAV-1, Multirotor UAV-1 + Background-1, No UAV Background-1, Extra
Background-2 size of 3410, 16, 560, 16, 560, 3410, and a total of 39, 940 seconds.

[118] Dataset in a Type 1 test, a DJI Phantom 2 drone without propellers was used, and in a Type 2 test, a YouTube video clip titled "European
football atmosphere [HD]" was used. Trained 70 cases of each drone’s appearance and non-appearance for the PIL ML method. For
KNN training, two types of sound data were collected. The first type is drone-detected sound data. The drones used were “DJI
Phantom 1 and 2” and the type of data collected were non-drone sound data. Sound data utilized 70% for training and left 30% for
testing.

[123] Used two commercially available drones, Bebop and Mambo, to collect acoustic data and created datasets of “RG Drone Audio
Dataset" and “R4 Drone Audio Dataset” using GAN. In “RG Drone Audio Dataset”, recorded drone clips and GAN drone clips
combined created a total of 6603 for 4experiments. In “R4 Drone Audio Dataset”, created a total of 5603 for 4 experiments. The
training, validation, and testing ratios were 70%, 30%, and 20%. More details of datasets in [135].

[124] For the positive (drone audio) and negative (non-drone audio) classes, 2 datasets were used. The drone audio database provided the
drone acoustic datasets [135]. Noisy drone samples were taken from publicly available [137]. The samples have a 44.1 kHz sampling
rate. The ESC-50 database was used for non-drone audio datasets [136]. In total, for the training 2664 audio files, 1332 acoustic samples
for each of the two classes.

[125] A database comprising 7001 drone flight observations and 3818 noise recording observations in a regulated setting where signals are
played 1 at a time was created and each observation consisted of a 0.2 s signal sequence.

[126] UFive different drone models are included in the training materials: the ALIGN M690L Multi-Drone, the SKY-HERO Little Spyder, the
DJI Phantom4, the DJI Mavic, and a custom-built racing drone. Several UAV types that were absent from training dataset recordings
are included in the testing material (DJI F450, Unique Taifun H520). For testing, three UAV kinds that were not in the training set were
employed. A total of 1.9 h were spent recording UAV emissions, of which 68% came from the training dataset and the remaining
48%from the test dataset.

[127] The datasets were established using the Wigner–Ville spectrogram, MFCC, and MIF dictionaries, and training data were collected for
6 different drones with different flying distances (0 to 25 m, 25 to 50 m, 50 to 100 m, 100 to 200 m, and 200 to 500 m). The models of
drones were a DJI Phantom 2 (small class), a DJI Matrix 600 (medium class), and a handmade drone (medium class). The sampling
frequency of the training data was 44 kHz.

[128] The database was derived from datasets 1 and 2, which were two publicly available in [119,142]. The drones in Dataset 1 were Parrot
Bebop and Parrot Mambo, with an audio duration of 11 minutes and 6 seconds. The drones in Dataset 2 were the DJI Mavic Pro,
DJI Spark, DJI Matrice 100, Parrot Bebop 2, and DJI Phantom 4, each of which had 12 signals for 30 s. The No-Drone signals were
from YouTube and the BBC sound database. In total, 26 MFCCs were taken out of the audio signals, and the data were classified as
No-Drone and Drone.

[129] Used a 3DR Iris+, DJI Inspire 2, and A DJI Phantom 4 to record drone sounds using a microphone. The ESC-50 dataset [136] includes
environmental sounds. The dataset contained a 10-second recorded audio clip, which was divided into 5 equal parts.

[130] The audio data collection of drone noises under 1500 Hz frequency with interval 130 −−180 Hz was produced with a 3DR Iris+ drone.
The Iris+ measures ambient sound levels on average at 39.4079 dB outdoors and 33.0261 dB indoors. The drones Holystone Predator,
DJI Inspire 2, Parrot Bepop 2, and DJI Inspire 2 were employed for detection. An audio recording per second for 14, 932 was produced
to train the model.

[131] Used an EVO 2 Pro and a DJI Phantom 4 to record audio and collected 300 sound samples from each UAV, a Total of 600 sound
samples and 102.67 min of recording time; 591 noise samples totaling 201.16 min were gathered. The UAV was deployed at McAllister
Park, Lafayette, IN 47904, and background noise samples were taken.

The authors in [119] created spectrograms from audio samples and fed them into DL
models. The system extracted various characteristics from the spectrograms generated by
the audio sources and used them to train DL models. Additionally, the authors in [113]
employed an STFT to convert the audio signal into the Mel spectrum, creating a visual rep-
resentation. This image was then input into a specifically designed lightweight (LWCNN)
for identifying signal attributes and UAV detection.

To categorize the auditory signals as suggestive of UAV activity or not, the authors
in [112] employed Log Mel spectrograms and Mel frequency cepstral coefficients (MFCC)



Remote Sens. 2024, 16, 879 19 of 42

considered as input and fed them to the CNN model. Additionally, for amateur UAV
identification, the authors in [115] suggested a method that combines ML techniques with
acoustic inputs. Nevertheless, the distinction between things that can be mistaken for
ambient noise and other UAVs was not taken into account in their investigation.

A KNN-based method and Fast Fourier Transform (FFT) were presented in the
study [120] for UAV detection using auditory inputs. Using SVM and KNN based on
the auditory inputs, the signals are classified to determine whether the amateur UAV is
present or not. An amateur UAV is detected based on the similarities that the acquired
spectral pictures have to one another; nonetheless, the precision of this technique is only up
to 83%. In order to discriminate between the sounds of items such as UAVs, birds, aircraft,
and storms, the authors in [121] suggested an ML-based UAV identification system. The
MFCC and linear predictive cepstral coefficients (LPCC) feature extraction techniques are
used to extract the required characteristics from UAV sound. Then, SVM with different
kernels is used to precisely identify these sounds after feature extraction. The findings of
the experiment confirm that the SVM cubic kernel with MFCC performs better for UAV
identification than the LPCC approach, with an accuracy of about 97%.

The authors in [114] proposed a method for identifying the presence of a UAV within a
150-meter radius. They suggested employing classification techniques such as the Gaussian
mixture model (GMM), CNN, and RNN. To address the scarcity of acoustic data from
UAV flights, the authors recommended creating datasets by blending UAV sounds with
other ambient noises. One intriguing aspect of their research involves the use of diverse
UAV models for training and evaluating the classifiers. Their findings revealed that the
RNN classifier exhibited the highest performance at 0.8109, followed by the GMM model
at 0.6932, and the CNN model at 0.5915. However, in scenarios involving unidentified
information, the accuracy of all the predictors experienced a significant drop.

To produce 2-dimensional (2D) pictures from UAV audio data, the authors in [122]
suggested the normalization STFT for UAV detection. Firstly, the audio stream was split
into 50% overlapping 20 ms pieces. After that, a CNN network that had been created was
fed the normalization STFT as an input. Evaluations from outside using DJI Phantom 3
and Phantom 4 hovering were included in the dataset, and 41, 958 non-UAV frames and
68, 931 UAV audio frames were present in the datasets.

In [123], the authors provided a hybrid drone acoustic dataset, combining artificially
generated drone audio samples and recorded drone audio clips using GAN, a cutting-
edge DL technique. They explored the efficacy of drone audio in conjunction with three
distinct DL algorithms (CNN, RNN, and CRNN) for drone detection and identification and
investigated the impact of their suggested hybrid dataset on drone detection.

The author proposed an effective drone detection technique based on the audio
signature of drones in [124]. To identify the optimal acoustic descriptor for drone iden-
tification, five distinct aspects were examined and contrasted. These included MFCC,
Gammatone cepstral coefficients (GaCC), linear prediction coefficients, spectral roll-off,
and zero-crossing rate as chosen features. Several SVM classifier models were trained and
tested to assess the individual feature performance for effective drone identification. This
was completed using 10-fold and 20% data holdout cross-validation procedures on a large
heterogeneous database. The experimental outcome indicated that GaCCs were the most
effective features for acoustic drone detection.

In addition, AWGN was added to the dataset before conducting the testing. With a
detection rate (DR) of 98.97% and a false alarm rate (FAR) of 1.28, the best results were
obtained when training the CNN network with 100 epochs and low SNR ranges.

In [117], a method was proposed to optimize numerous acoustic nodes for extracting
STFT characteristics and MFCC features. Subsequently, the extracted characteristics dataset
was used to train two different types of supervised classifiers: CNN and SVM. In the case
of the CNN model, the audio signal was encoded as 2D images, incorporating dropout
and pooling layers alongside two fully connected and two convolution layers. In the initial
instance, the UAV operated at a maximum range of 20 m, hovering between 0 and 10 m
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above the six-node acoustic setup. The Parrot AR Drone 2.0 was one of the UAVs that
was put to the test. Numerous tests were carried out, and the outcomes show that the
combination of SVM and STFT characteristics produced the best outcomes, as expressed in
terms of color maps.

In addition, the authors in [16] explored the use of DL techniques for identifying UAVs
using acoustic data. They employed Mel spectrograms as input features to train DNN
models. Upon comparison with RNNs and convolutional (CRNNs), it was demonstrated
that CNNs exhibited superior performance. Furthermore, an ensemble of DNNs was
utilized to assess the final fusion techniques. This ensemble outperformed single models,
with the weighted soft voting process yielding the highest average precision of 94.725%.

In order to differentiate between the DJI Phantom 1 and 2 models, the authors in [118]
suggested KNN classifier techniques in conjunction with correlation analysis and spectrum
images derived from the audio data. They collected ambient sound from a YouTube
video, as well as various sound signals from both indoor settings (without propellers) and
outdoor environments, including a drone-free outdoor setting. Each sound was recorded
and subsequently divided into one-second frames. By utilizing image correlation methods,
they achieved an accuracy of 83%, while the KNN classifier yielded an accuracy of 61%.

2.3.1. Challenges and Solutions of Acoustic Signals-Based UAV Detection and
Classification Using ML

• Signal variability: Acoustic signals from UAVs can vary significantly based on factors
like drone model, distance, environmental noise, and flight dynamics. Develop robust
feature extraction methods to capture diverse acoustic signal patterns and account for
variations in different UAV types.

• Background noise and interference: Environmental noise and interference can ob-
scure UAV acoustic signatures, affecting detection accuracy. Employ noise reduction
algorithms and signal processing techniques to filter out background noise and en-
hance the signal-to-noise ratio for improved detection.

• Distance and signal attenuation: Acoustic signals weaken with distance, limiting
the effective detection range for UAVs. Explore advanced signal processing methods
and sensor technologies to compensate for signal attenuation and improve detection
range.

• UAV classification from acoustic signatures: Accurately classifying different types of
UAVs based on similar acoustic features. Implement machine learning models capa-
ble of discerning subtle acoustic signal variations for precise classification, possibly
utilizing DL architectures.

• Real-time processing: Achieving real-time processing of acoustic signals for timely
detection and response. Optimize machine learning algorithms and hardware to
enable faster processing speeds, potentially leveraging edge computing for quicker
decisionmaking.

• Environmental variations: Adaptability to changes in environmental conditions (e.g.,
wind and temperature) affecting acoustic signal characteristics. Develop adaptive
algorithms capable of adjusting to environmental variations to ensure robust and
reliable detection.

2.3.2. Future Directions of Acoustic Signals-Based UAV Detection and Classification
Using ML

• Sensor fusion and multimodal integration: Combine acoustic data with information
from other sensors (e.g., visual or RF) to create more comprehensive and reliable UAV
detection systems [143].

• Advanced machine learning techniques: Investigate advanced machine learning
algorithms capable of handling complex acoustic data for improved classification
accuracy [123].



Remote Sens. 2024, 16, 879 21 of 42

• Privacy and ethical considerations: Address privacy concerns related to acoustic
surveillance by implementing privacy-preserving methods without compromising
detection accuracy [110].

• Robustness against adversarial attacks: Investigate methods to secure acoustic sig-
nals and machine learning models against potential adversarial attacks or spoofing
attempts [144].

2.4. UAV Classification Based on ML Using Radar

Radar-based techniques rely on measuring the radar cross-section (RCS) signature to
recognize airborne objects through electromagnetic backscattering. Radar offers several ad-
vantages, such as wide coverage in both azimuth and elevation planes, extended detection
ranges, and the ability to operate effectively in adverse conditions like fog, where visibility
is poor. This sets it apart from other UAV detection methods such as acoustics and video
camera (computer vision) strategies.

However, the identification of UAVs using RCS is more challenging compared to
airplanes, primarily due to their smaller dimensions and the use of low-conductivity
materials, resulting in a lower RCS. In [145], it was found that the micro-Doppler signature
(MDS) with time-domain analysis outperforms the Doppler-shift signature in enhancing the
discrimination between clutter and targets. However, recently, ML-based UAV detection
and classification tasks using radar have received more attention due to the overcoming of
challenges in detection tasks and providing high-precision systems. The example detection
scenario of the ML-based radar detection mechanism is shown in Figure 6. Additionally,
a summary of related research on radar-based methods using ML for UAV detection and
classification is shown in Table 8. Moreover, the dataset information of current research on
radar-based methods using ML for UAV detection and classification is shown in Table 9.
However, many works have been conducted based on ML techniques for the detection of
UAVs using radar technology [146–155].

Figure 6. The detection and classification mechanism of UAV based on radar data analysis.
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Table 8. Comparison summary of ML-based UAV classification and detection using radar data.

Reference Detection Target Machine Learning Method Performance Model
Types1

[146] UAV recognition using radar DT and SVM The one-stage DT and two-stage DT ac-
quired a true positive classification rate
of 81.83% and 85% with a false positive
rate of 0.87% and 0.37%

SL

[147] UAV recognition using radar Frequency Modulated Continuous Wave
(FMCW) + CNN

Accuracy: 96.86% with computation time
3.2 ms

SL

[148] UAV recognition using radar cross-
section (RCS) signature

complex-valued CNN Accuracy: 93.80% SL

[149] Small UAV (SUAV) detection using radar DCNN-DIAT-RadSATNet Accuracy: 97.3%, Precision and recall:
97.0%, F1-score: 97.3%

SL

[150] Tiny UAVs detection using radar LSTM+EMD Accuracy: CNN, SVM, LSTM of 92.6%,
90.4%, 93.9% and F1-score: 99.95%,
99.86%, 99.95%

SL

[151] 3 different UAV: DJI inspire-1, DJI inspire-
2, and DJI spark detection using radar

FMCW, and micro-Doppler signature
(MDS) with CNN

Accuracy: 97.14% SL

[152] DJI Phantom 3 detection using radar pulse-Doppler radar, nonmaximum sup-
pression (NMS) with CNN

False alarm rate (FAR) of simulated data
0.9850 and real data 0.6667

SL

[153] UAV two modes: hovering and flying
detection using radar

cadence–velocity diagram (CVD) with
Pretained CNN AlexNet

Accuracy: hovering 95.1% and flying
96.6%

SL

[154] 3 types of UAV: hexacopter, helicopter,
and quadcopter detection using radar

FMCW radar with NN3, SVM Accuracy: NN3 of 90.18% and fusing
multipath 95.73%

SL

[155] 2 types of UAV (Inspire 1 and F820) de-
tection using radar

Pre-trained CNN (GoogLeNet) Accuracy: air of 100% and anechoic cham-
ber of 94.7%

SL, DTL

[156] Mini-UAVs detection using radar DNN Accuracy gained of 98% SL
[157] Small and large-UAVs classification using

radar
LSTM adaptive learning rate optimizing
(ALRO)

Accuracy: 99.88%, Precision: 96.30%, re-
call: 95.52%, F1-score: 95.63%

SL

[158] UAV detection using radar SPDNet (Symmetric Positive Definite
Network) type network similar to an
MLP

Accuracy: 0.90 SL

[159] UAV detection using ultra-wideband
(UWB) radar

AlexNet with CNN structure Accuracy: 95% or more DTL

[160] UAV detection using radar Spectral correlation functions (SCFs) with
Deep Belief Network (DBN)

Accuracy: above 90% SSL

[161] UAV detection using radar spectrogram
images

radar spectrogram dataset with modified
ResNet-18 called ResNet-SP model

Accuracy: above 83.39% DTL

[162] Mini-UAVs classification using radar MDS with LSTM-RNN, Soft-max,
GANomaly

Accuracy: LSTM-RNN of 89.0%, Soft-
max and GANomaly achieved area-
under-curve (AUC) ranging 0.5 to 0.8

USL, SL

[163] UAV movement classification using radar AlexNet with CNN Accuracy: 98% DTL
[164] UAV classification using radar DopplerNet with CNN Accuracy: 99.48%, Precision: 98.95%, Re-

call: 98.94%
SL

[165] Multiple UAV classification using radar continuous wave (CW) spectrogram with
GoogLeNet

Accuracy: 99% DTL

[166] UAV classification using radar YOLOv5s Area under curve (AUC) of over 99% SL
[167] UAV classification using radar spectro-

grams obtained using an L-band staring
radar

DT and CNN Accuracy: DT and CNN of 93.33% and
97.22%

SL

[168] UAV classification using radar MDS with CNN Accuracy: over 94.7% SL
[169] UAV detection using radar echo charac-

teristics
MDS with DNN called MLP Accuracy: probability of detection: 0.972,

probability of a false alarm: 0.0034, and
F1-score: 0.976

SL

[170] UAV detection using radar signal STFT with CNN F1-score 0.816 SL
[171] UAV detection and tracking using radar

motion characteristics
Random forest model Accuracy: 85.0% SL

[172] UAV classify using non-cooperative
radar

LSTM-GRU, convolutional bidirectional-
LSTM (CNN-BLSTM), CNN-BLSTM
with attention (CNN-BLSTMA), CNN,
CNN with attention (CNNA)

Accuracy: 0.9775, Precision: 0.9735 and
recall: 0.9822, F1-score: 0.9777

SL

[173] UAV detection using radar micro-
Doppler signatures

CNN with FMCW Accuracy: 78.68% SL

[174] UAV detection using radar time–
frequency (T–F) signatures

Randomized (R-PCA) + SVM Accuracy: 98.00% SL

[175] UAV detection using radar micro-
Doppler signatures

Deep convolutional neural network
(DCNN)

Accuracy: 97.4% SL

1 SL = supervised learning, DTL = deep transfer learning.

A non-cooperative UAV monitoring technique proposed in [146] utilized decision
tree (DT) and SVM classifiers, along with the inclusion of MDS for UAV detection and
classification. In the case of a two-class instance, the one-stage DT achieves a true positive
(TP) ratio of 81.83% with a corresponding false positive (FP) ratio of 0.87%. The two-stage
DT achieves 85.02% and 0.37% for TP and FP, respectively, using identical training and
test datasets. The authors in [147] proposed an approach based on a radar device-based
detection strategy to protect structures from UAV attacks. The real Doppler RAD-DAR
(radar with digital array receiver) dataset was developed by the microwave and radar
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departments. Having a bandwidth of 500 MHz, the radar in operation operates on the 8.75
GHz base frequency range using frequency-modulated continuous wave technology. In
the CNN-32DC, the suggested CNN exhibits variation in terms of the number of filters,
combination layers, and the extraction of feature blocks. The selection process aimed to
achieve the most accurate result, which was then compared to various ML and classification
methods. The CNN-32DC demonstrates higher accuracy compared to similar networks
while requiring less computation in terms of time.

Table 9. Datasets information of ML-based UAV classification and detection using radar data.

Reference Datasets Information

[146] Datasets included non-drones and drones with a total number of data points for training 208, 982 and 4626, respectively. One- and
two-stage models used total training data of 9252 (from 208, 982) and 9244 (from 95, 581).

[147] Datasets taken from [164], where there are more than 17, 000 samples of cars, people, and drones. The dimensions of input data were
11 × 61, and the dataset is divided into 70% training and 30% validation.

[148] Three distinct datasets with varying sampling frequencies and signal durations t have been simulated. There were 160 samples in total
in every radar return. 10000 complex-valued Gaussian noise signals of the same period t were included in each dataset, along with
2000 time series (samples) of each of the 5 drone classes.

[149] A dataset named “DIAT-µ SAT" collected m-D signature T–F image samples, and here the total number of spectrogram images was
[6 × 4849]. More details of datasets can be found in the study in [176].

[150] 12 s data samples at 32 kHz were gathered for each position of every UAV in the two experiments. There were a total of 22, 464
instances in the dataset for the short-distance and 18, 144 instances for the long-distance experiment. Additionally, 2040 instances were
derived from 120 s datasets with no tiny UAV. 70% and 30% of the total were made up of a training set and a testing set.

[151] Datasets contained 700 MDS images per class, resulting in a total of 3500 MDS images. From total images, 80% used for training and
20% for validation.

[152] Datasets were collected with a drone of DJI Phantom 3 and pulse-Doppler radar, height of about 15˘20 m, and detects a drone 2˘3 km
away from the radar, pulse repetition frequency 6000 Hz, sampling rate 30 MHz frequency, and 86 frames of over 5000 R-D maps with
size of 64 × 856 can be labeled and available for training and testing. A total of 11, 000 frames of simulated data were generated, and
the training and testing data ratio was 4 : 1.

[153] Datasets contained using multistatic pulsed radar called NetRAD with DJI Phantom 4 Vision 2+ quadcopter drones. For the hovering
class, a total of 18 recordings and 15 recordings for the flying class were produced.

[154] Datasets contained 3 types of UAV: hexacopter, helicopter, and quadcopter, and 8 different vertical and horizontal positions
are randomly selected to locate the drones. Thus, the total number of the signal segments was (3 drones)× (8 positions)×(10
measurements)×(6 segments) = 1440. The training set comprises 30% of all recordings, whereas the testing set consists of the
remaining 70%.

[155] The image data collection was created with 10, 000 images from outdoors and 50, 000 images from the anechoic chamber. A 256 × 256
pixel image was stored as the output size of the detected radar signal. The training and testing dataset in the ratio was 4 : 1.

[156] Datasets included 4 small drones and several birds; 2 model helicopters were used (Logo 400 or hkp01 and TREX 450 or hkp05). The
total number of radar signal object sequences was 4310, of which 1051 belonged to the "hkp01” class, 871 to “hkp05”, 1301 to “fpl08”,
445 to “uav08”, and 642 to the “bird” class.

[157] The datasets collected from the study [177] constructed an anechoic chamber for RCS calculation and RCS measurement with frequency
ranging from 26 to 40 GHz. More information on the number of drone datasets in this study is provided in [178].

[158] The datasets of following drones were divided in 3 categories: fixedwing (EasyStar_ETS, Microjet_LisaM), rotorcraft (ardrone2,
Bumblebee_Quad, LadyLisa, Quad_LisaMX, Quad_NavGo, bebop, bebop2), versatile (bixler), and others (birds) with total number of
samples around 27, 900

[159] Datasets contained 3 types of drones (Mavic pro, Phantom 3, Matrice 600) with a total of 6 drones. Training data included 50 frames of
radar images (300 frames in total from all drones). The training data were used for 60% of the generated images and the remaining
40% used for testing.

[160] Datasets contained 3 types of source (Bird, Cop, Drone). Training data included 70 data from each class and each set of testing data
with 50 spectral correlation function (SCF) patterns.

[161] The datasets included Metafly, Mavic Air 2, Disco, Walking, and Sit-Walking with the trained dataset of radar spectrogram for five low
altitudes, slow speed, and small radar cross-section (LSS) targets being 2142, 2176, 2196, 2136, and 2112 with in total 10762.

[162] The datasets included the class of Air Trainer, Sky Walker, T-REX 550, QuadroXL, and OktoXL drones with simulated and measured
training signals 506, 475, 956, 477, 480 and 570, 886, 1284, 841, 1370, respectively.

[163] The dataset exhibited changes in elevation angle of 0 to 90 degrees at 1-degree step intervals and azimuth angle of 0 to 180 degrees at
5-degree step intervals. For every movement, a total of 6552 spectrogram images were created.

[164] The database called RDRD [179] is composed of thousands of CSV files. The database contains 17485 samples in total, divided into
three kinds of radar signals: 5720 cars, 6700 people, and 5065 drones, where 32.71% of the samples in the data correspond to cars,
28.97% to drones, and 38.32% to people.

[165] The dataset was produced using a hexacopter (DJI S900) and two quadcopter (Joyance JT5L-404) drones. The characteristics of those
drones’ continuous wave (CW) spectrograms were acquired using coherent low-phase noise radar operating at 94 GHz.

[166] The training dataset included 188 drone range-Doppler images, and the total number of images contained 376. The datasets were split
as 60%, 20%, and 20% for training, validation, and testing.

[167] In the whole dataset, there were 44 drone spectrograms, 5 car spectrograms, and 11 bird spectrograms. Each spectrogram had a set
length of 80 frames, and an FFT with a length of 2048 was used; hence, each spectrogram represented roughly 20 seconds in time. The
data were separated into training and testing with ratios of 60% and 40%.
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Table 9. Cont.

Reference Datasets Information

[168] The dataset comprised five drones: the DJI S1000-A2, DJI Mavic Pro, DJI Phantom 4 Pro, Gryphon, and giant Spyder. The datasets
displayed (from 483.8 to 484.1 seconds) belong to a random portion of a single trajectory. Trajectories taken on different days were
included in the training and testing sets. The training set contains 36730 trajectory chunks, while the testing set contains 4670.

[169] The dataset for UAV detection was constructed using a pulse-Doppler radar. Target locations, signal-to-noise ratios, and flying speeds
have all been taken into account in the labeled radar dataset. The real measured dataset comprises 3135 data frames in total, of which
2508 are used for training and 627 are used for testing.

[170] The datasets included 5 drones: Parrot Disco, Matrice 300 RTK, Mavic Air 2, Mavic Mini, and Phantom 4. For every combination of
radar specification and SNR, a dataset was produced. Each dataset included 1000 spectrogram training samples that were distributed
equally across the six classes (five drones and noise), and 350 examples were prepared for validation.

[171] The training database contains sample amounts of 927, 635, and 1385 for birds, drones, and rain tracks, respectively. Accordingly,
217, 184, and 239 were the numbers for the testing database.

[172] Four high-level intent classes were the focus of the datasets. The telemetry data used to create these classes were sourced from [180–
183]. To create simulated radar data, the telemetry data [184] collected from GPS and inertial navigation system measurements were
transformed. With fewer than 400 real drone flights, the telemetry data transformation was completed.

In [148], the authors proposed a CNN model with a DL foundation that incorporates
MDSs, extensively employed in UAV detection applications. UAV radar returns and
their associated micro-Doppler fingerprints are often complex-valued. However, CNNs
typically neglect the phase component of these micro-Doppler signals, focusing solely on
the magnitude. Yet, crucial information that could enhance the accuracy of UAV detection
lies within this phase component. Therefore, this study introduced a unique complex-
valued CNN that considers both the phase and magnitude components of radar returns.
Furthermore, this research assessed the effectiveness of the proposed model using radar
returns with varying sampling frequencies and durations. Additionally, a comparison
was conducted regarding the model’s performance in the presence of noise. The complex-
valued CNN model suggested in this study demonstrated the highest detection precision,
achieving an impressive 93.80% accuracy, at a sampling rate of 16, 000 Hz and a duration of
0.01s. This indicates that the suggested model can effectively identify UAVs even when
they appear on the radar for very brief periods.

According to the study in [149], the authors proposed a novel lightweight DCNN
model called “DIAT-RadSATNet” for precise identification and classification of small
unmanned aerial vehicles (SUAVs) using the synthesis of micro-Doppler signals. The
design and testing of DIAT-RadSATNet utilized an open-field, continuous-wave (CW)
radar-based dataset of MDS recorded at 10 GHz. Equipped with 40 layers, 2.21 MB of
memory, 0.59 G FLOPs, 0.45 million trainable parameters, and a calculation time complexity
of 0.21 seconds, the DIAT-RadSATNet module was quite powerful. According to studies on
unidentified open-field datasets, “DIAT-RadSATNet” achieved a detection/classification
precision ranging between 97.1% and 97.3%, respectively.

In [150], the authors proposed a novel MDS-based approach, termed MDSUS, aimed at
tackling the detection, classification, and localization (including angle of arrival calculation)
of small UAVs. The synergistic utilization of a long short-term memory (LSTM) neural
network and the empirical mode decomposition (EMD) methodology effectively addressed
the blurring issue encountered in MDS within the low-frequency band. This approach
enables the monitoring of small UAVs by leveraging attributes extracted from the MDS.
In both short- and long-distance experiments, the LSTM neural network outperforms its
two main rivals, namely CNN and SVM. Notably, precision is enhanced by 1.3% and
1.2% in the short- and long-distance experiments, respectively, when compared to the
peak performance of the competing models, resulting in accuracies of 93.9% and 88.7%,
respectively.

In [151], the authors employed a frequency-modulated continuous wave (FMCW)
radar to generate a collection of micro-Doppler images, measuring dimensions of [3× 3500].
These images corresponded to three different UAV models: DJI Inspire-1, DJI Inspire-2, and
DJI Spark. Subsequently, the authors proposed a CNN architecture for the identification and
categorization of these images. However, their research only encompassed one category



Remote Sens. 2024, 16, 879 25 of 42

class, and the maximum operational range of the targets was 412 meters. As a result, they
were constrained in the number of available train/test samples for each class. In [152], the
authors designed a three-layer CNN architecture for utilizing a generated micro-Doppler
image collection of a DJI Phantom-3 UAV, which measured dimensions of [1 × 11, 000]. The
time–frequency (T–F) images were captured using a pulse-Doppler radar operating in the
X-band with a 20 MHz bandwidth. To ensure an adequate number of train/test samples
for their study, the authors combined simulated and experimental data

The authors in [153] utilized a multistatic antenna array comprising one Tx/Rx and
two Rx arrays to independently acquire matching MDS signatures, measuring [6 × 1036],
while operating a DJI Phantom-vision 2+ UAV in two modes: hovering and flying. For
categorization, they employed a pre-trained AlexNet model. In [154], the authors gath-
ered a suitable MDS signature dataset of size [3 × 1440] using three different UAV types:
hexacopter, helicopter, and quadcopter. The categorization of SUAV targets often involves
employing the nearest neighbor with a three-sample (NN3) classifier. In [185], the authors
investigated the feasibility of using a K-band CW radar to concurrently identify numerous
UAVs. They used the cadence frequency spectrum as training data for a K-means classi-
fier, which was derived from the cadence–velocity diagram (CVD) after transforming the
time–frequency spectrogram. In their lab testing, they collected data for one, two, and all
UAVs using a helicopter, a hexacopter, and a quadcopter. They found that the average
precision outcomes for the categories of single UAVs, two UAVs, and three UAVs were
96.64%, 90.49%, and 97.8%, respectively.

In order to categorize two UAVs (Inspire 1 and F820), in [155], the authors examined
the pre-trained CNN (GoogLeNet) for UAV detection. The MDS was measured, and its CVD
was ascertained while in the air at two altitudes (50 and 100 meters) over a Ku-band FMCW
radar. The term ’merged Doppler image’ (MDI) refers to the combination of the MDS and
CVD pictures into a single image. Ten thousand images from measurements conducted
outside were created and fed into the CNN classifier using fourfold cross-validation. The
findings indicate that 100% accuracy in classifying the UAVs was possible. Remarkably,
trials conducted indoors in an anechoic environment showed worse categorization ability.

The authors in [186] proposed a UAV detection and classification system utilizing
sensor fusion, incorporating optical images, radar range-Doppler maps, and audio spectro-
grams. The fusion features were trained using three pre-trained CNN models: GoogLeNet,
ResNet-101, and DenseNet-201, respectively. During training, the parameters, including the
number of epochs, were set to 40, and the learning rate was set to 0.0001. The classification
F1-score accuracies of the three models were 95.1%, 95.3%, and 95.4%, respectively.

Using mmWave FMCW radar, the authors in [187] described a unique approach to UAV
location and activity classification. The suggested technique used vertically aligned radar
antennae to measure the UAV elevation angle of arrival from the base station. The calculated
elevation angle of arrival and the observed radial range were used to determine the height
of the UAV and its horizontal distance from the ground-based radar station. ML techniques
were applied to classify the UAV behavior based on MDS that was retrieved from outdoor
radar readings. Numerous lightweight classification models were examined to evaluate
efficiency, including logistic regression, SVM, light gradient boosting machine (GBM), and
a proprietary lightweight CNN. The results showed that 93% accuracy was achieved with
Light GBM, SVM, and logistic regression. A 95% accuracy rate in activity categorization
was also possible with the customized lightweight CNN. Pre-trained models (VGG16,
VGG19, ResNet50, ResNet101, and InceptionResNet) and the suggested lightweight CNN’s
efficiency were also contrasted.

In [188], the author introduced the inception-residual neural network (IRNN) for
target classification using MDS radar image data. By adjusting the hyperparameters,
the suggested IRNN technique was examined to find a balance between accuracy and
computational overhead. Based on experimental findings using the real Doppler radar
with digital array receiver (RAD-DAR) database, the proposed method can identify UAVs
with up to 99.5% accuracy. Additionally, in [189], the authors proposed employing a CNN
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to detect UAVs using data from radar images. The microwave and radar group developed
the real Doppler RAD-DAR radar technology, a range-Doppler system. They built and
evaluated the CNN by adjusting its hyperparameters using the RAD-DAR dataset. The
highest accuracy in terms of time was achieved when the number of filters was set to 32,
as per the experimental findings. With an accuracy of 97.63%, the network outperformed
similar image classifiers. The research team also conducted an ablation investigation to
examine and confirm the significance of individual neural network components.

The authors addressed the issue of UAV detection using RCS fingerprinting in their
study [190]. They conducted analyses on the RCS of six commercial UAVs in a chamber
with anechoic conditions. The RCS data were gathered for both vertical–vertical and
horizontal–horizontal polarizations at frequencies of 15 GHz and 25 GHz. Fifteen distinct
classification algorithms were employed, falling into three categories: statistical learning
(STL), ML, and DL. These algorithms were trained using the RCS signatures. The analysis
demonstrated that, while the precision of all the techniques for classification was improved
with SNR, the ML algorithm outperformed the STL and DL methods in terms of efficiency.
For instance, using the 15 GHz VV-polarized RCS data from the UAVs, the classification
tree ML model achieved an accuracy of 98.66% at 3dB SNR. Monte Carlo analysis was
employed, along with boxplots, confusion matrices, and classification plots, to assess
the efficiency of the classification. Overall, the discriminant analysis ML model and the
statistical models proposed by Peter Swerling exhibited superior accuracy compared to the
other algorithms. The study revealed that both the ML and STL algorithms outperformed
the DL methods (such as Squeezenet, GoogLeNet, Nasnet, and Resnet-101) in terms of
classification accuracy. Additionally, an analysis of processing times was conducted for
each program. Despite acceptable classification accuracy, the study found that the STL
algorithms required comparatively longer processing times than the ML and DL techniques.
The investigation also revealed that the classification tree yielded the fastest results, with
an average classification time of approximately 0.46 milliseconds.

A UAV classification technique for polarimetric radar, based on CNN and image
processing techniques, was presented by the authors in [191]. The suggested approach
increases the accuracy of drone categorization when the aspect angle MDS is extremely poor.
They suggested a unique picture framework for three-channel image classification CNN
in order to make use of the obtained polarimetric data. An image processing approach
and framework were presented to secure good classification accuracy while reducing
the quantity of data from four distinct polarizations. The dataset was produced using a
polarimetric Ku-band FMCW radar system for three different types of drones. For quick
assessment, the suggested approach was put to the test and confirmed in an anechoic
chamber setting. GoogLeNet, a well-known CNN structure, was employed to assess the
impact of the suggested radar preprocessing. The outcome showed that, compared to a
single polarized micro-Doppler picture, the suggested strategy raised precision from 89.9%
to 99.8%.

2.4.1. Challenges and Solutions of Radar-Based UAV Detection and Classification
Using ML

• Signal processing complexity: Radar signals can be complex due to noise, clutter, and
interference, requiring sophisticated signal processing techniques. Develop advanced
signal processing algorithms to filter noise, suppress clutter, and enhance signal-to-
noise ratio for accurate detection.

• Signal ambiguity and multipath effects: Signal ambiguity arising from multiple
reflections (multipath effects) in radar signals, impacting accurate target localization
and classification. Explore waveform design and beamforming strategies to mitigate
multipath effects and improve spatial resolution.

• Classification from radar signatures: Accurately classifying different UAV types
based on radar signatures exhibiting similar characteristics. Utilize machine learning
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models capable of distinguishing subtle radar signal variations for precise classifica-
tion, potentially leveraging ensemble learning techniques.

• Real-time processing and computational complexity: Processing radar data in real
time while managing computational complexity for timely detection and response.
Optimize machine learning algorithms and hardware configurations for efficient real-
time processing, potentially utilizing parallel computing or hardware acceleration.

• Adverse weather conditions: Performance degradation in adverse weather conditions
(e.g., rain or fog) affects radar signal quality and detection accuracy. Develop adaptive
algorithms capable of compensating for weather-induced signal degradation and
maintaining robust detection capabilities.

• Security and interference mitigation: Vulnerability to interference and potential
security threats in radar-based systems. Implement interference mitigation techniques
and security measures (e.g., encryption and authentication) to safeguard radar signals
and system integrity.

2.4.2. Future Directions of Radar-Based UAV Detection and Classification Using ML

• Multisensor fusion and integration: Integration of radar data with other sensor
modalities (e.g., visual or acoustic) for improved detection accuracy and robust-
ness [107].

• Advanced machine learning techniques: Exploration of advanced machine learning
methods (e.g., reinforcement learning or meta-learning) for adaptive radar-based UAV
detection systems [192].

• Enhanced model interpretability: Development of interpretable machine learning
models for radar-based UAV detection to enhance transparency and trust in decision-
making [193].

• Standardization and collaboration: Collaboration among researchers, industries, and
regulatory bodies for standardizing radar-based UAV detection systems, ensuring
interoperability, and advancing research in this field [194].

In [195], the authors proposed a novel UAV classification technique that integrates DL
into the classification process, specifically designed to handle data from surveillance radar.
To differentiate between UAVs and undesirable samples like birds or noise, a DNN model
was employed. The conducted studies demonstrated the effectiveness of this approach,
achieving a maximum classification precision of 95.0%.

The authors in [173] proposed a unique approach to data augmentation based on
a deterministic model, which eliminates the need for measurement data and creates a
simulated radar MDS dataset suitable for UAV target categorization. Improved prediction
performance is achieved by training a DNN on appropriately generated model-based
data. A 77-GHz FMCW automotive radar system was used to classify the number of
UAV motors into two groups, and the results were summarized. This demonstrated
the effectiveness of the suggested methodology: a CNN trained on the synthetic dataset
achieved a classification precision of 78.68%, while a standard signal processing data
augmentation method on a limited measured dataset resulted in a precision of 66.18%.

2.5. Reinforcement Learning-Based Approach

In reinforcement learning (RL), an agent interacts with the environment and takes
some action. Based on the action, the agent receives a reward by evaluating the action taken
by the agent. This approach learns an optimal policy by trial and error to solve a problem in
the real world [196]. Deep reinforcement learning (DRL) has been widely adopted to solve
problems in different fields of science and engineering. Previous drone-related studies are
mainly focused on path planning, navigation control, and communication coverage [197].
Some of the previous studies have considered drone detection approaches as intrusion
detection. The study conducted in [198] proposed an intrusion detection system by using
a Markov decision process optimization problem via the RL approach. The RL-based
approach was implemented in [199] regarding counter-drone technology to provide a
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safeguarded sky while not clashing the other objects in the neighborhood. Image depth is
considered for RL input and other scalar parameters like velocities, distance of the target,
and elevation angle. Another RL-based study was conducted in [200]; first, the drone is
detected by the YOLOv2 algorithm, and the drone is then tracked. The RL approach is used
by the follower drone to predict the action of the intruder/target drone by using image
frames. Later, a deep object detector and search area proposal algorithm are used to predict
target drones. Another study in [201] proposed a deep Q-network-based method to counter
drones in 3D space. The authors used EfficientNet-B0, a sub-version of EiffientNet, to detect
drones that can capture small objects. Nine models were proposed for countering drone
objects in 3D space, among which Model-1 and Model-2 were chosen as the best models
based on their training and testing performance. RL-based studies are partially used in
drone detection and classification for drone data. However, future research can be focused
on the classification and detection of drones by properly setting the RL environment.

2.6. UAV Classification Using Hybrid Methods

Despite the above-discussed four general detection classification methods, there is
another possible detection method called hybrid sensor-based detection. The hybrid
method is more dependable, durable, and personalized for drone detection techniques in
various situations. Using visible light or optical detection in conjunction with acoustic,
RF, and radar detection is a common trend in hybrid detection. Utilizing the combined
outputs of two sensing technologies to make a detection judgment is a more popular
method of hybrid detection. An alternate method is to generate an early detection alarm
using a long-range non-line-of-sight detection scheme (such as acoustic, RF, or radar) and
then use the alarm’s output to trigger the second sensor (usually a camera) to change its
configurations (such as direction, zoom level, etc.) to perform a more precise and reliable
identification. The hybrid detection scheme of UAVs based on ML and DL is shown in
Figure 7a,b. In addition, the summary of related work based on a hybrid detection scheme
using ML is shown in Table 10. Moreover, the dataset information of ML-based UAV
classification and detection using hybrid sensor data is shown in Table 11. Recently, many
works have been completed using hybrid sensors UAV detection and classification based
on ML algorithms [69,202–206].

Figure 7. The overview of the machine learning classification of hybrid sensor detection: (a) fusion of
sensor using compressed multisensor features to input into single detection and classification system;
(b) detection decisions using combined sensor fusion system.
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Table 10. Comparison summary of ML-based UAV classification and detection using hybrid sensor
data.

Reference Detection Target Machine Learning Method Performance Model
Types1

[69] UAV detection using sensor fusion CNN and DNN Precision: 79%, Recall: 78%, F1-
score: 77%

SL

[202] UAV detection using multisensor GMM and YOLOv2 For Infrared sensor, Precision:
89.85%, Recall: 87.06%, F1-score:
88.44%, For Visible camera, Pre-
cision: 86.95%, Recall: 86.68%,
F1-score: 86.82%, For Audio sensor,
Precision: 93.54%, Recall: 92.93%,
F1-score: 93.23%

SL

[203] UAV detection using thermal imag-
ing, vision, and 2D radar sensor

MLP The system acquired detection ac-
curacy of visual and audio were
79.54% and 95.74%, respectively

SL

[205] UAV detection using visual and
acoustic sensor

MFCC with SVM The system gained of precision, re-
call, and F1-score were 99%, 100%,
and 95% for UAV detection

SL

[206] UAVs detection using radar and
camera sensor

MDS with IMM filters and RNN,
YOLOv5

Accuracy gained of 98% SL

[207] UAV detection using image and au-
dio data

YOLOv5 Accuracy: 92.53% SL

[186] UAV detection using sensor fusion CNN assisted GoogLeNet, ResNet-
101, DenseNet-201

F1-score of (GoogLeNet = 95.1%,
ResNet-101 = 95.3%, DenseNet-201
= 95.4%)

SL

1 SL = supervised learning.

Table 11. Datasets information of ML-based UAV classification and detection using hybrid sensor
data.

Reference Datasets Infomation

[69] Datasets combined RF and images, where RF data were taken from [57] and the combination of image and RF datasets was 80 samples;
this size is extremely small. Created huge datasets later and made more than 5000 images using 1500 images.

[202] The datasets consist of 90 audio clips, 650 videos (365 in infrared and 285 visible, each running 10 seconds), and 203328 annotated
images. The visible video resolution was 640× 512 pixels, while the infrared video was 320× 256 pixels. The maximum sensor-to-target
distance for a drone was 200m. Datasets found in [208].

[203] Dataset consists of 20 sets of images and sound clips. Moreover, 3 audio streams and 30 image streams were included in each data
collection. The image sequence has a frame rate of 25 FPS and a resolution of 1920 × 1080. The audio sampling rate was 48 kHz.
Selected 90% of the data for training and 10% testing.

[205] The result of 15 UAV flight recordings was the dataset. There were 2195 features in the UAV class and 2195 features in the non-UAV
class obtained from the training set, and 432 features in each class were obtained from the test set.

[206] Radar dataset includes radar tracks for 1224 different ground targets (cars, people), 1369 birds, and 9138 UAVs. The sampling rate was
10 samples/s. For optical, around 85 videos totaling 207, 663 frames were gathered; of these, 154, 089 had a UAV,5200 had an OFO
(other flying object), and 48745 were background frames devoid of any objects.

[207] Pitch shifting was employed for data augmentation for acoustic features, and 4220 samples were used for training, 1200 samples were
used for validation, and 308 samples were used for testing.

The authors in [69] presented a detection system based on ANNs. This system pro-
cessed image data using a CNN and RF data using a DNN. A single prediction score for
drone presence was produced by concatenating the characteristics of the CNNs and DNNs
and then feeding them into another DNN. The feasibility of a hybrid sensing-based ap-
proach for UAV identification was demonstrated by the numerical results of the proposed
model, which achieved a validation accuracy of 75%.

The study [202] thoroughly described the process of developing and implementing
an automated multisensor UAV detection system (MSDDS) that utilizes thermal and
auditory sensors. The authors augmented the standard video and audio sensors with
a thermal infrared camera. They also discussed the constraints and potential of employing
GMM and YOLOv2 ML approaches in developing and implementing the MSDDS method.
Furthermore, the authors assembled a collection of 650 visible and infrared videos featuring
helicopters, airplanes, and UAVs. The visible videos have a resolution of 640 × 512 pixels,
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while the infrared videos are scaled to 320 × 256 pixels. The authors focused their analysis
on evaluating the system’s efficiency in terms of F1-score, recall, and accuracy.

The authors of [203] presented a system that continuously monitors a certain region
and produces audio and video feeds. The setup consisted of thirty cameras (visual sensors)
and three microphones (acoustic sensors). Following this, features were extracted from
the audio and video streams and sent to a classifier for detection. For the classification
and training of the datasets, they employed the popular SVM-based ML algorithm. The
efficiency of the visual detection approach was 79.54%, while the audio-assisted method
outperformed it significantly at 95.74%, as indicated by the findings.

A method for detecting tiny UAVs, which utilizes radar and audio sensors, was
presented by the authors in [204]. The system employs a customized radar called the
“Cantenna” to detect moving objects within a specified target region. An acoustic sensor
array is utilized to discern whether the object identified by the radar is a UAV. Furthermore,
the system incorporates a pre-trained DL model consisting of three MLP classifiers that
collectively vote based on auditory data to determine the presence or absence of a UAV.
When the system was evaluated using both field and collected data, it demonstrated
accurate identification of every instance in which a UAV was present, with very few false
positives and no false negatives.

The authors in [205] introduced a multimodal DL technique for combining and filtering
data from many unimodal UAV detection techniques. To conduct UAV identification
predictions, they used a combined set of data from three modalities. Specifically, an MLP
network was utilized to combine data from thermal imaging, vision, and 2D radar in the
form of range profile matrix data. To enhance the accuracy of deductions by combining
characteristics collected from unimodal modules, they provided a generic fusion NN
architecture. Multimodal features from both positive UAV and negative UAV detections
make up the training set. The system achieved precision, recall, and F1-scores of 99%, 100%,
and 95%, respectively.

The authors in [206] proposed a combined classification structure based on radar and
camera fusion. The camera network extracts the deep and complex characteristics from
the image, while the radar network collects the spatiotemporal data from the radar record.
Several field tests at various periods of the year were used to establish synchronized radar
and camera data. The field dataset was used to evaluate the performance of the combined
joint classification network, which incorporates camera detection and classification using
YOLOv5, as well as radar classification using a combination of interacting multiple model
(IMM)) filters and RNN. The study’s results demonstrated a significant enhancement in
classification accuracy, with birds and UAVs achieving 98% and 94% accuracy, respectively.

The authors in [143] introduced a multisensory detection technique for locating and
gathering information on UAVs operating in prohibited areas. This technique employed
a variety of methods, including video processing, IR imaging, radar, light detection and
ranging (LIDAR), audio pattern evaluation, radio signal analysis, and video synthesis.
They proposed a set of low-volume neural networks capable of parallel classification,
which they termed concurrent neural networks. This research focused on the detection
and classification of UAVs using two CNNs: a self-organizing map (SOM) for identifying
objects in a video stream and a multilayer perception (MLP) network for auditory pattern
detection.

2.6.1. Challenges and Solutions of Hybrid Sensor-Based UAV Detection and Classification
Using ML

• Sensor data fusion and integration: Integrating heterogeneous data from various
sensors (e.g., radar, visual, and acoustic) with different characteristics, resolutions, and
modalities. Develop fusion techniques that align and synchronize data from multiple
sensors for holistic UAV detection and classification.
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• Data synchronization and alignment: Aligning data streams from diverse sensors
in real time for accurate fusion and analysis. Implement synchronization methods to
align temporal and spatial information from different sensors for cohesive fusion.

• Complexity in feature fusion: Fusion of diverse features extracted from various
sensor modalities for meaningful representation. Investigate advanced feature fusion
techniques to combine and extract relevant information from heterogeneous sensor
data for robust classification.

• Model complexity and computational cost: Developing complex machine learning
models for fusion sensor-based classification that can be computationally expensive.
Explore model optimization techniques and efficient algorithms to handle the compu-
tational burden without compromising accuracy.

• Scalability and real-time processing: Scaling fusion sensor-based systems to handle
real-time processing of large volumes of data. Optimize hardware configurations and
leverage parallel processing to enable real-time analysis of fused sensor data.

2.6.2. Future Directions of Hybrid Sensor-Based UAV Detection and Classification
Using ML

• Deep learning and fusion models: Advancing deep learning architectures tailored for
sensor fusion to leverage the strengths of multiple sensor modalities for UAV detection
and classification [30,69].

• Dynamic fusion strategies: Developing adaptive fusion strategies capable of dynami-
cally adjusting sensor weights or modalities based on environmental conditions for
improved classification accuracy [209,210].

• Privacy-preserving fusion techniques: Addressing privacy concerns by designing
fusion techniques that preserve privacy while maintaining high accuracy in UAV
detection [211,212].

• Standardization and interoperability: Collaborating across industries to establish
standardized protocols for sensor data fusion, ensuring interoperability and compati-
bility among different sensor systems [72,213].

3. Conclusions and Discussion

In this survey study, ML-aided UAV detection and classification using some of the
latest technologies, such as (1) RF-based UAV detection, (2) visual data (images/video)-
based UAV detection, (3) acoustic/sound-based UAV detection, and finally (4) radar-based
UAV detection, were extensively reviewed. In addition, this survey suggests potential
challenges, solutions, and possible future directions of each detection technique described.
Research on the enhancement of detection accuracy for UAVs is challenging for the four
mentioned detection techniques adopted by traditional algorithms. The overview of
ML-based UAV detection and classification depends on the experimental comparison of
different models with the highest accuracy, as presented in Table 12. It requires current
powerful methods (DL and ML) for incrementally identifying performance automatically.

Table 12. Experimental comparison of different models with the highest accuracy.

Data Collection
Technique

Models and Reference Accuracy Dataset Loss Function Special Feature

RF signal DNN/CNN [42] 100 % DroneRF
Dataset [47]

MSE/Cross-entropy Compressive sensing-based data extrac-
tion.

RF signal CNN, LR, KNN [34] 100% SDR Dataset [47] Unspecified Different deep learning architecture is used
for drone detection and identification.

RF signal CNN [47] 99.7% DroneRF
Dataset [47]

MSE Bluetooth and Wi-Fi signals are extracted
for UAV detection.

Visual data CNN [80] 98.7% Aerial vehicle,
Drone vs. Bird
Detection, Anti-
UAV [90,214,215]

Customized loss function
used

Four methods have been evaluated to
make baseline for UAV detection.

Visual data YOLOv5 [88] 96.7% Kaggle [93] Adam Image processing phase was performed be-
fore training.
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Table 12. Cont.

Data Collection
Technique

Models and Reference Accuracy Dataset Loss Function Special Feature

Visual data CNN, SVM, NN [76] 93% Authors’ dataset Not specified Differentiate between drone and bird.
Acoustic data SVM [124] 99.9% Publicly available

dataset
Different SVM kernels
used

Five acoustic features were considered for
classification.

Acoustic data SVM,GNB, KNN, and
NN [131]

99.7% Authors’ dataset Different parameters are
used for different models

Feature extraction settings altered in order
to maximize performance.

Acoustic data Lightweight CNN and
SVM [113]

98.78% Sound effect
database

For Adam, SVM liner,
Gaussian, and Cubic, ker-
nel is used

Two different models are added to increase
accuracy.

Radar data CNN (GoogLeNet) [155] 100% Authors’ dataset RMSprop Micro-Doppler signature is used for train-
ing data.

Radar data CNN [164] 99.48% RDRD databse Adam Reduce the false alarm
Radar data CNN (GoogLeNet) [165] 99% micro-Doppler

spectrogram im-
ages

RMSprop Continuous wave spectrogram features of
different drones obtained with low phase
noise investigated.

Indeed, highlighting the key areas of development in RF-based UAV detection, visual
data (images/video)-based UAV detection, acoustic/sound-based UAV detection, and
radar-based UAV detection will provide a comprehensive view of advancements in UAV
detection technologies.

One of the most widely used anti-UAV techniques is the RF-based UAV identifica-
tion framework, which utilizes the RF characteristics of UAVs to identify and categorize
them [75]. The aspects of emphasis regarding RF-based UAV detection are as follows:
advancements in RF signal processing techniques for improved detection accuracy; devel-
opment of machine learning algorithms to analyze and classify RF signatures of UAVs;
enhancement of multisensor fusion for combining RF data with other modalities for bet-
ter detection in complex environments; and research on countermeasures for RF-based
detection evasion techniques employed by UAVs.

Computer vision or visual techniques can be employed to identify UAVs without RF
transmission capabilities by utilizing inexpensive camera sensors. These sensors offer the
advantage of providing additional visual data, including the UAV model, dimensions, and
payload, which traditional UAV detection systems cannot deliver. The aspects of emphasis
regarding visual-based UAV detection are as follows: integration of deep learning models
for object detection and recognition in UAV imagery; improvement in real-time processing
capabilities for quick and accurate UAV identification; exploration of computer vision
algorithms to handle various environmental conditions and challenges, such as low light
or adverse weather; and research on the development of robust algorithms to differentiate
between UAVs and other objects in the visual spectrum.

Even in low-visibility situations, very inexpensive acoustic detection systems cat-
egorize certain UAV rotor audio patterns using a variety of auditory sensors or micro-
phones [17]. The aspects of emphasis regarding acoustic-based UAV detection are as
follows: advancements in sensor technologies for capturing and processing acoustic signals
associated with UAVs; integration of machine learning and pattern recognition techniques
to identify unique acoustic signatures of UAVs; research on mitigating challenges such as
background noise and signal interference; and exploration of distributed sensor networks
for triangulation and improved localization of UAVs using acoustic cues.

Radar is a conventional sensor that can reliably identify objects in the sky over ex-
tended distances and is nearly unaffected by adverse weather and light [30,216]. The
aspects of emphasis regarding radar-based UAV detection are as follows: development of
radar systems with enhanced sensitivity and resolution for UAV detection; integration of
machine learning algorithms to analyze radar returns and distinguish UAVs from other
objects; exploration of radar waveform diversity to improve detection performance in
different scenarios; and research on the development of radar-based tracking systems
for continuous monitoring and prediction of UAV movements. By emphasizing these
specific areas within each detection method, the development of UAV detection systems



Remote Sens. 2024, 16, 879 33 of 42

can be more targeted and effective. This approach ensures a comprehensive and nuanced
understanding of the challenges and opportunities within each domain.

The goal of data fusion, or hybridizing sensory data from numerous sensors, is to
integrate information from various modalities to draw conclusions that would be unattain-
able with just one sensor. Domains such as target surveillance and identification, traffic
management, UAV detection, remote sensing, road barrier detection, air pollution sensing,
complex equipment monitoring, robotics, biometric applications, and smart buildings all
benefit from this technique. Multisensor data fusion enables the identification of trends, the
extraction of insights, and the establishment of correlations between diverse sensor types
thanks to the wealth of information available in the real world. While multisensor fusion is
a viable strategy, designing systems to meet specific use cases requires thorough research
and experimental validation. The main drawbacks of sensor fusion include increased
deployment costs, computational complexity, and system intricacy. Synchronization and
latency issues may arise when integrating multiple sensors for joint detection. The recent
surge in the development of AI and DNNs has garnered significant attention for their
ability to represent multimodal data and address the challenges posed by hybrid sensor
detection scenarios [217]. Despite the above technologies of UAV detection, spectral [218]
and multispectral remote sensing imagery [219]-based techniques can be another research
scope for precision UAV classification and detection. In the context of spectral imagery, it
can be explored in the use of advanced spectral–spatial feature extraction methods, which
can enhance accuracy regarding the discriminative power of detection models.

In order to keep abreast of the most recent progress in UAV development and research
trends, researchers, developers, and practitioners might benefit greatly from consulting this
review article. This work adds invaluable insights for future research and development in
this dynamic field of UAVs, offering a thorough analysis that contributes significantly to the
scientific literature on DL- and ML-based UAV detection and classification technologies.
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