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Abstract: The prefabricated composite slab (PCS) is an essential horizontal component in a building,
which is made of a precast part and a cast-in-place concrete layer. In practice, the floor should be split
into many small PCSs for the convenience of manufacturing and installation. Currently, the splitting
design of PCS mostly relies on sound knowledge and valuable experience of construction. While rule-
based parametric design tools using building information modeling (BIM) can facilitate PCS splitting,
the generated solution is suboptimal and limited. This paper presents an intelligent BIM-based
framework to automatically complete the splitting design of PCSs. A collaborative optimization
model is formulated to minimize the composite costs of manufacturing and installation. Individuals
with similar area information are grouped into a subpopulation, and the optimization objective is to
minimize the specifications and quantities of PCSs. Through the correlation information within the
subpopulation and the shared information among each other, the variable correlation is eliminated to
accomplish the task of collaborative optimization. The multipopulation coevolution particle swarm
optimization (PSO) algorithm is implemented for the collaborative optimization model to determine
the sizes and positions of all PCSs. The proposed framework is applied in the optimized splitting
design of PCSs in a standard floor to demonstrate its practicability and efficiency.

Keywords: prefabricated composite slabs; splitting design; building information modeling;
multipopulation coevolutionary algorithm; collaborative optimization

1. Introduction

The prefabricated composite slab (PCS) is an important horizontal component of
buildings, which is manufactured in a controlled environment and transported to the
construction site [1,2]. Due to their ability to accelerate construction timelines, enhance
manufacturing quality control, and reduce on-site labor and material, PCSs are widely
utilized in construction [3,4]. In practice, the sizes of prefabricated components are limited
by convenience and controllability in manufacturing, transportation, and installation pro-
cesses. The PCS is usually not designed as a single large element to directly replace the
traditional cast-in-place slab. Hence, the splitting design of PCSs is intended to strategically
plan the floor space to be filled with smaller precast elements and cast-in-place concrete
areas. In a real project, given the floor spaces for a prefabricated building, the dimensions
and positions of hundreds of slabs need to be determined with the sound knowledge of
construction and valuable experience from an engineer. Layouts of PCSs are provided
in two-dimensional (2D) construction drawing to guide the manufacturing and assembly
process. However, it is essential to comprehensively consider the requirements of logistics,
manufacturing, transportation, installation, and structural aspects in the splitting design to
enhance efficiency and reduce the costs of a construction project [5]. Hence, the optimized
design of PCS splitting is a multiobjective problem. Even with the aid of a computer, a
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splitting design only relies on simple rules and still requires tedious labor due to the com-
plex requirements in a series of construction processes, implying more proneness to human
errors. Hence, the need to provide an automated splitting design of PCSs to improve the
construction efficiency is warranted.

In the architecture, engineering, and construction (AEC) industry, a splitting design is
usually completed using building information modeling (BIM) software (Revit2019) for
automatic PCS layout. Using a few specialized tools in BIM software, the floors are split
into multiple smaller slabs according to predefined rules and parameter settings. With
the aid of BIM technology, the sizes and locations of PCSs for a building can be better
three-dimensionally (3D) represented [6]. While rule-based splitting design can satisfy
fundamental structural performance and functional requirements, the provided results
are not necessarily the optimal solution. The increased quantity and specification of PCSs
not only decrease production efficiency but also incur additional costs for transportation
and installation processes. With the escalation of demands for quality and budget control
in construction projects, the splitting design of PCSs becomes increasingly complex and
variable. Furthermore, the slab size and layout should be flexibly adjusted to eliminate
inappropriate joints and avoid interacting with pipelines and preserved holes. BIM-based
parametric design aims to enable designers to efficiently manipulate adaptive designs [7].
While parameter design tools improve the efficiency of repetitive tasks, the creative and
customized design aspects are limited, thereby increasing the time and effort required
for frequent design changes. Hence, an intelligent BIM-based design tool is essential to
facilitate the splitting design of PCSs to improve design quality and efficiency.

In recent years, many scholars have conducted research to complete the parametric
design of buildings with the aid of BIM. Banihashemi et al. [8] combined parametric design
with modular coordination to reduce construction material waste using the Rhinoceros
3D Grasshopper platform. Zou et al. [9] developed a parameterized design approach to
complete the arrangement and virtual simulation of building machines. The building
machine was parametrically modeled using the visual programming tool Geometry Nodes
in Blender open-source software (2019), and the Unity3D program (2019) was utilized to
visualize the virtual scene. Wang et al. [10] utilized an improved genetic algorithm to
deal with the assembly sequence optimization of prefabricated concrete buildings, and
BIM was used to establish the parametric modeling and visualize the assembly process of
prefabricated component. To improve the constructability of the prefabricated building
design, some researchers incorporate the concept of design for manufacture and assembly
(DfMA) to coordinate construction requirements [11–14]. Yuan et al. [11] proposed a
DfMA-oriented parametric method for prefabricated building design. Bakhshi et al. [14]
introduced an efficient framework of combining the BIM and DfMA approach with mass
customization to assist clients in taking part in the offshore construction configuration
procedure. In the splitting of prefabricated components, Feng et al. [15] developed design
software using the BIM platform to realize the splitting and detailing of PCS in the design
phase. The production data could be exported to bridge the design and manufacturing
process. Dong et al. [16] presented a DFMA-oriented modular design approach applied to
vertical components in a building, aiming to improve the standardization of component
specifications. The mold utilization rates and production efficiency were increased due
to the standardized manufacture and installation of components. Xiao and Bhola [17]
utilized the parametric design platform Dynamo and BIM software Revit to achieve the
prefabricated component splitting according to predefined rules based on the design and
construction requirements. Although existing research can achieve a splitting design based
on parameter settings and predefine rules, it is difficult to obtain an optimal solution.
Moreover, parametric design relying on BIM software is time-consuming, laborious, and
inefficient, encountering large and various projects. Therefore, the development of an
intelligent optimization approach is necessary for the large-scale PCS splitting problem.

In conclusion, the existing literature has some key limitations in solving the splitting
design of prefabricated components. Firstly, the parametric design method based on BIM
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is time-consuming and results in complicated engineering, posing challenges in meeting
the requirements of a creative and customized design. Secondly, it is difficult to obtain
an ideal solution with a method based on parameter settings and predefined rules. In the
splitting design of PCSs, the sizes of PCSs should be optimized to minimize the number
and specification of PCSs, which can reduce the costs and time of manufacturing and
installation. Generally, a high-rise prefabricated building has a significant number of PCSs,
especially if the owner and contractors of the building project emphasize the efficiency and
speed of construction. Hence, the PCS splitting is a large-scale multiobjective optimization
(MOO) problem with multiple constraint conditions and interrelated variables. Most of the
traditional methods for solving large-scale MOO problems are based on mathematical tech-
niques, Pareto techniques, and other implementations [18]. Population-based intelligent
optimization algorithms have no special limitation on objective functions and constraint
conditions and have features such as adaptive search capability. Hence, population-based
algorithms have been widely used in the optimization process of MOO problems [19].
Zhang et al. [20] proposed a multiobjective collaborative particle swarm optimization (PSO)
algorithm, aiming to achieve an energy-saving optimization of multitrains in terms of
stopping time, departure interval, and train speed. Lu et al. [21] proposed a two-stage
PSO algorithm based on population cooperation to solve large-scale MOO problems and
enhance the ability of subpopulation collaboration and overall convergence speed. Xu
et al. [22] proposed a cooperative evolution algorithm to efficiently address MOO problems
through grouping correlated decision variables. Wang et al. [23] proposed an adaptive
differential evolution (DE) mechanism based on coevolution and covariance to reduce
the dimensionality and complexity of the problem, considering the correlation between
variables. Ma et al. [24] proposed a multiobjective evolutionary algorithm based on decision
variable analysis. The interdependent and control variable analysis were introduced to deal
with the high-dimensionality issues of the optimization problem. Du et al. [25] proposed a
multiobjective energy management strategy based on the PSO algorithm to simultaneously
reduce vehicle energy consumption and battery over-discharge. Fan et al. [26] imple-
mented a multiobjective and multiparameter thermodynamic optimal design of a liquid air
energy storage system, employing the PSO algorithm to achieve optimal system perfor-
mance. The PSO algorithm has been widely used and researched in various fields due to its
properties such as a fast convergence, few parameters, simplicity of implementation, and
flexibility [27]. Inspired by the above research, this paper adopts a multipopulation coevo-
lution optimization PSO algorithm to solve the high-dimensional splitting design problem
of PCSs.

Based on the multipopulation coevolution approach, an intelligent BIM-based frame-
work is proposed to complete the splitting design of PCSs. The framework combines the
structural design information and construction requirements for a prefabricated building
to optimize the layouts of PCSs. The outlines and dimensions of each floor, as well as the
subareas utilizing PCSs in the whole building are extracted from structural plan drawings
and BIM models. Based on the structural design information, an intelligent PCS splitting
module using a collaboration optimization is developed to minimize the composite costs
of manufacturing and installation. The sizes of all PCSs are considered as variables in the
optimization process. Due to a large number of PCSs required in a building, the splitting
design is a large-scale discrete combination optimization problem. A multipopulation
coevolution PSO algorithm is introduced to implement the splitting design module. The
global optimization problem can be decomposed into serval solvable low-dimensional sub-
problems to improve the computational efficiency according to variable decomposition and
correlation analysis. The multipopulation approach can effectively solve the dimensionality
curse, and the dimension of the search space in a subpopulation is largely decreased to
find the reliable optimal solution. Furthermore, the BIM models of all PCSs compliant with
the IFC (Industry Foundation Classes) standard are all generated automatically. The IFC
standard is the most common neutral file format for data exchange between heterogeneous
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software. The PCS layout drawing is exported from the IFC model to provide the size and
location of all PCSs.

This paper is organized as follows. In Section 2, the construction requirements of the
PCS layout and the mathematical model of the splitting design optimization are described.
Section 3 proposes an intelligent BIM-based framework for the PCS splitting. In Section 4,
an intelligent PCS layout method is formulated based on the collaboration optimization
and the developed multipopulation coevolution approach for the proposed framework
is described. Section 5 presents illustrative examples to demonstrate the efficiency and
performance of the proposed framework. Conclusions are included in Section 6.

2. Problem Description
2.1. PCS Layouts in Prefabricated Building

As shown in Figure 1, a prefabricated composite slab (PCS) consists of a precast
composite layer and a cast-in-place layer. PCSs are supported by beams and walls and
are categorized into unidirectional slabs and bidirectional slabs considering their force
characteristics and support conditions. According to the construction requirements of a
four-side supported slab in the concrete structure design code [28], if the ratio of the long
side to the short side exceeds or is equal to three, the slabs should be designed according to
the unidirectional slab design; if the ratio of the long side to the short side is less than three,
the slabs are designed according to the bidirectional slab design.

Buildings 2024, 14, x FOR PEER REVIEW 4 of 22 
 

automatically. The IFC standard is the most common neutral file format for data exchange 
between heterogeneous software. The PCS layout drawing is exported from the IFC model 
to provide the size and location of all PCSs. 

This paper is organized as follows. In Section 2, the construction requirements of the 
PCS layout and the mathematical model of the splitting design optimization are described. 
Section 3 proposes an intelligent BIM-based framework for the PCS splitting. In Section 4, 
an intelligent PCS layout method is formulated based on the collaboration optimization 
and the developed multipopulation coevolution approach for the proposed framework is 
described. Section 5 presents illustrative examples to demonstrate the efficiency and per-
formance of the proposed framework. Conclusions are included in Section 6. 

2. Problem Description 
2.1. PCS Layouts in Prefabricated Building 

As shown in Figure 1, a prefabricated composite slab (PCS) consists of a precast com-
posite layer and a cast-in-place layer. PCSs are supported by beams and walls and are 
categorized into unidirectional slabs and bidirectional slabs considering their force char-
acteristics and support conditions. According to the construction requirements of a four-
side supported slab in the concrete structure design code [28], if the ratio of the long side 
to the short side exceeds or is equal to three, the slabs should be designed according to the 
unidirectional slab design; if the ratio of the long side to the short side is less than three, 
the slabs are designed according to the bidirectional slab design. 

 
Figure 1. Composition of prefabricated composite slab. 

As shown in Figure 2, separate joints (Figure 3a) are utilized between unidirectional 
slabs, which can be assembled at any position. The integrated joints (Figure 3b) are used 
between bidirectional slabs. According to the standard drawing set of a truss-reinforced 
concrete composite slab [29], the joint width of a bidirectional slab is 300 mm, and the 
unidirectional slabs adopt a width of zero between them. As shown in Tables 1 and 2, the 
nominal width of a PCS (Figure 4) is the sum of the actual slab width and the joint width. 
The nominal width of both the unidirectional and bidirectional slabs is between 1200 mm 
and 2400 mm, with a total of five grades. As shown in Table 3, the span of a bidirectional 
slab is between 3000 mm and 6000 mm, increasing by 300 mm between each grade. As 
shown in Figure 5, a PCS can be categorized into an edge slab and a middle slab according 
to its arrangement position, and the two types of slabs with the same nominal width have 
different actual widths. As shown in Table 4, the nominal span is the sum of the actual 
span and the joints’ width, and the span of a unidirectional slab is between 2700 mm and 
4200 mm with an increase of 300 mm between each grade. 

Figure 1. Composition of prefabricated composite slab.

As shown in Figure 2, separate joints (Figure 3a) are utilized between unidirectional
slabs, which can be assembled at any position. The integrated joints (Figure 3b) are used
between bidirectional slabs. According to the standard drawing set of a truss-reinforced
concrete composite slab [29], the joint width of a bidirectional slab is 300 mm, and the
unidirectional slabs adopt a width of zero between them. As shown in Tables 1 and 2, the
nominal width of a PCS (Figure 4) is the sum of the actual slab width and the joint width.
The nominal width of both the unidirectional and bidirectional slabs is between 1200 mm
and 2400 mm, with a total of five grades. As shown in Table 3, the span of a bidirectional
slab is between 3000 mm and 6000 mm, increasing by 300 mm between each grade. As
shown in Figure 5, a PCS can be categorized into an edge slab and a middle slab according
to its arrangement position, and the two types of slabs with the same nominal width have
different actual widths. As shown in Table 4, the nominal span is the sum of the actual
span and the joints’ width, and the span of a unidirectional slab is between 2700 mm and
4200 mm with an increase of 300 mm between each grade.

The splitting design needs to consider the constraints of transportation, production,
assembly, and layout areas of PCSs, which should not exceed 6 m in length and 3 m in width.
Due to the edge distance requirements of the truss rebar, the width of the remaining slab in
all splitting areas should be no less than 400 mm and should be maximized for mechanical
properties. In the detailing design process, engineers rely on design specifications and a
priori knowledge to split the floors into different sizes of PCSs. Due to the complexity of
the actual project, it is difficult to obtain the optimal solution in a manual way, and the PCS
splitting optimization design needs to be investigated.
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Table 1. Width of a bidirectional slab.

Grade W12 W15 W18 W20 W24

Nominal width (mm) 1200 1500 1800 2000 2400

Actual width of edge slab (mm) 960 1260 1560 1760 2160

Actual width of middle slab (mm) 900 1200 1500 1700 2100
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Table 3. Span of a bidirectional slab.

Grade DL30 DL33 DL36 DL39 DL42 DL45

Nominal span (mm) 3000 3300 3600 3900 4200 4500

Actual span (mm) 2820 3120 3420 3720 4020 4320

Grade DL48 DL51 DL54 DL57 DL60

Nominal span (mm) 4800 5100 5400 5700 6000

Actual span (mm) 4620 4920 5220 5520 5820
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2.2. Splitting Design Optimization of PCSs

In the manufacturing process, PCSs with the same width or the same span grade can
reduce the quantities of mold types, such as the whole mold, partial end mold, and partial
side mold. In order to accurately describe the splitting design of PCS, a mathematical
model is proposed. In terms of the specification quantities of the PCSs, an optimization
model is developed based on the number of PCS specifications with the same slab span
grade. The objective function is given by Equation (1)

min Rk
total =

gsum

∑
g=1

wgRg
k (1)

where Rk
total is the specification quantities of PCS, gsum is the number of slab span grades,

Rg
k is the span grade of the gth PCS, wg is the weight coefficient of the span grade width

types of the gth slab; the sum of the weight coefficients is one.
In terms of the number of precast composite slabs, an optimization model aims to

obtain the minimum number of slabs, given by Equation (2).

min Rn
total =

fsum

∑
f=1

R f
n (2)

where Rn
total is the number of PCSs, fsum is the number of separating subareas, R f

n is the
number of PCSs arranged in f th subareas.

In this study, a set of optimization strategies is proposed for the correlation analysis
of areas for arranging PCS. There are four types of correlation problems for separating
areas, such as equal length and same grade width, equal length and different grade width,
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unequal length and same grade width, and unequal length and different grade width.
The number (1, 2, 3) stands for different separating areas in the Figure 6. As shown in
Figure 6a, there are two separation subareas with different sizes (4000 mm × 3700 mm,
4000 mm × 3900 mm). Considering the design, the manufacture requirements of two areas,
the optimal PCS splitting solution is that the first area can be split into three PCSs with slab
widths of 1800 mm, 1800 mm, and 400 mm and a slab span of 3700 mm, and the second
area can be split into three PCSs with slab widths of 1800 mm, 1800 mm, 400 mm and a slab
span of 3900 mm. Thus, the solution can reduce the specifications of PCSs and share the
end and side molds. As shown in Figure 6b, there are three PCSs with different separation
areas (3700 mm × 2200 mm, 3700 mm × 2900 mm, 3700 mm × 3200 mm). The optimal split
solution is three separation subareas that can be split into three PCSs with slab widths of
1500 mm, 1500 mm, 700 mm, and slab spans of 2200 mm, 2900 mm, 3200 mm, respectively.
Thus, these strategies can reduce the specifications of slabs to realize the sharing of the end
mold. As shown in Figure 6c, there are two precast floor slabs with different lengths and
widths in the same span grade (3500 mm × 3100 mm, 4000 mm × 3200 mm). The optimal
split strategies are two separation areas that can be split into PCSs with widths of 1500 mm,
2000 mm, 500 mm, and different spans of 3100 mm and 3200 mm, respectively. Thus, these
strategies can reduce the specifications of slabs to realize the sharing of the end and side
molds. As shown in Figure 6d, there are two precast floor slabs with different lengths
and widths in the different span grades (4600 mm × 1500 mm, 3600 mm × 2500 mm). The
optimal split solution is two separation subareas that can be split into three PCSs with
widths of 1800 mm, 1800 mm, 1000 mm, and different spans of 1500 mm and 2500 mm,
respectively. Thus, these solutions can reduce the specifications of PCS to realize the sharing
of the end mold.
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3. BIM-Based Framework for Splitting Design of PCSs

To improve the flexibility and variability of an automated PCS layout, an intelligent
BIM-based framework for the splitting design is proposed to generate the 3D visualization
and 2D drawing providing the sizes and locations of PCSs. As shown in Figure 7, the
proposed framework consists of three modules: (1) a data input module, (2) a PCS splitting
module, and (3) a data output module, discussed in the following.
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3.1. Data Input Module

The data input module aims to extract the necessary data to perform the splitting
design of PCS in the next module. When the design of a prefabricated building enters
the detailing stage, the structural plan drawing or BIM model should be provided. The
outlines and dimensions of each floor in a building can be extracted to determine the entire
slab area, based on the exterior structural components such as beams and columns. The
entire slab area can be further divided into several rectangular subareas that require a PCS
arrangement according to interior components such as beams and walls.

In the structural BIM of a building, the positions and dimensions of components can be
easily obtained to create the splitting scenario of PCSs. The corner columns and the exterior
beams connecting corner columns are taken as vertices and boundaries, respectively, to
form the plan outline for each floor. The position and length of beams and walls in the
interior of the floor are extracted to determine the dividing lines. The enclosed subareas are
formed by the combination of boundary and interior lines and the size and position of each
subarea can be generated. The subareas where PCSs can be arranged are automatically
determined based on the construction requirements of prefabricated structures. Users can
also specify the subareas where to arrange PCSs to enhance design flexibility. Moreover,
the placement orientations of PCSs in each subarea can be specified by users or predefined
rules, in which a PCS is always arranged along the shorter side of the subarea. In the
structural plan drawing, the components are represented by graphical entities like lines,
arcs, circles, etc. DXF (Drawing Exchange Format) is a file format for the exchange of CAD
(computer-aided design) drawings. Graphical entities and information are often organized
into layers to group related elements together [30]. The DXF files of a structural plan
drawing are read and interpreted to obtain the layouts of exterior and interior components
and determine the subareas for PCS arrangement. Hence, the structural plan drawing
or BIM model of a building is prepared and imported in this module to extract the size,
position, and PCS placement orientations used in the next module.
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3.2. PCS Splitting Module

The PCS splitting module was developed to facilitate the intelligent optimization of
the PCS layout. The information extracted from the structural BIM model or plan drawing
for a building can be considered as the input data used in this module. By selecting the
number and specifications of standard PCSs and adjusting the widths of nonstandard PCSs,
the PCSs’ splitting can be optimized to decrease the costs and enhance efficiency in the
manufacturing, transportation, and installation processes.

To address the dimensionality curse problem in global optimization, a collaborative
optimization model for the splitting design of PCSs in large and complex scenarios was
formulated to provide the size, ownership, and placement order of each PCS. Combined
with the information on subareas provided in the previous module, each PCS, considering
its size, position, and placement orientation, can be provided to prepare for the convenient
generation of the BIM model and construction drawing. The proposed optimization model
is described in detail in Section 4.1.

3.3. Data Output Module

According to the optimization results of the PCS splitting module, the BIM model
and construction drawing including the PCS layouts can be exported to the data output
module. As a primary data exchange standard for BIM, the IFC standard is widely used in
the information sharing among different software tools. The IFC model, which includes
the geometric and semantic information of building components, is intended to facilitate
interoperability in the AEC industries. It is a neutral and open standard that is not controlled
by a single contractor or group of contractors [31]. Based on the IFC standard, the BIM
models of PCSs are represented by entity IfcSlab. The size of each PCS obtained in the
precious module are used to create the geometry entity IfcProductDefinitionShape through
the entity IfcExtrucdedAreaSolid. In the IFC standard, components are located using a
relative coordinate system. The related position of each PCS on a floor can be obtained
according to its placement order and the position and PCS placement orientation of the
owning subarea. The entity IfcLocalPlacement is used to create the local placement of the
spatial structure such as the site, building, story, and components. The local placement
of a PCS is created by the entity IfcLocalPlacement based on the position related to the
story. The entity IfcRelContainedInSpatialStructure is used to assign a PCS to a certain
story. All PCSs with customized sizes can be repetitively created and orientated toward
their respective positions. An IFC file of PCSs is automatically generated to improve the
modeling efficiency.

To generate the PCS layout drawing, the IFC file of PCSs is imported to parse the
IfcExtrucdedAreaSolid and IfcLocalPlacement of each IfcSlab. The length, width, and
position of PCSs are obtained to generate a 2D drawing. DWG and DXF are two different
file formats used in AutoCAD software (2019) [32]. DWG is the native file format of
AutoCAD, containing complete design data, including graphics, text, and metadata. DXF
is an open file format used for exchanging data between different CAD programs, typically
containing graphics and basic object information but not including metadata and other
advanced features. Since DXF is open and can be interoperable between different CAD
software programs, it was chosen as the file format for the PCS layout drawings. According
to the geometry and position information, the PCS layouts are drawn in the DXF file of
the structural plan drawing. In the DXF file, each PCS is repetitively drawn by several
lines which are represented by the entity ‘LINE’ and the starting and ending points of each
line are defined to specify the entity properties. The DXF file of the PCS layout drawing is
automatically exported to reduce the drawing time in the splitting design stage.

4. Multipopulation Coevolution Optimization of PCS Splitting Design

The use of population-based intelligent optimization algorithms to solve the splitting
design problem of PCSs needs to consider factors such as multiple constraints, multiple
objectives, the large scale, and the variables in the problem. The traditional global optimiza-
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tion strategy treats all the decision variables in the problem as the element information of
the individuals in population. The number of decision variables determines the individ-
ual’s dimension. In the splitting design of PCSs, the spatial scale is large, and the number
of PCSs is in the dozens or even hundreds. The problem of correlation between variables
needs to be considered, which largely leads to a failure of the global optimization strategy
due to the high dimensionality of the problem. Even if the number of iterations is increased
to find a feasible solution, it may not be optimal for the problem. Therefore, a collaborative
optimization model based on a multipopulation coevolution PSO algorithm is proposed to
solve the high-dimensional PCS splitting design problem.

4.1. Collaborative Optimization Model

The objective of the PCS splitting design problem is to minimize the specifications and
quantities of standard and nonstandard PCSs, given all the subareas for which PCSs need
to be arranged. Certain subareas exhibit similar lengths and widths, and the optimization
results demonstrate a significant correlation with the specifications and quantities of PCSs.
Therefore, the subareas with identical or similar size information were integrated to reduce
the dimensionality of the optimization problem. The subarea integration was achieved
through the following steps: (1) grouping subareas with identical length and width in a set
of solutions, (2) associating subareas with similar width to minimize the specifications and
quantities of standard PCSs, and (3) merging subareas with the same length to decrease
the diversity of PCS widths. In this context, a collaborative optimization model featuring
multiple clusters was introduced to address the splitting design challenge of PCSs.

A multipopulation collaborative optimization algorithm aims to simulates the col-
laborative behavior of multiple populations in nature [33]. It is based on the principle
of population intelligence and collaborative evolution theory in order to find the global
optimal solution through cooperation among multiple subpopulations. The algorithm
involves initializing multiple subpopulations, with each subpopulation independently
searching for the local optimal solution within the solution space using its own search
strategy. Simultaneously, it encourages cooperation between different subpopulations
through information sharing and communication. Throughout the optimization process,
the subpopulations continuously adapt their strategies and share experiences to enhance the
global search capability. This algorithm demonstrates a strong robustness and global search
capability in solving complex optimization problems, effectively addressing challenges
such as multimodality and high dimensionality.

In a typical optimization problem with d-dimensional decision variables, an individual
in the population is represented by X = [x1, x2, x3, . . . , xn−1, xn]. In the splitting design
of PCSs, each xi represents the layout scheme of the ith subarea, each having a certain
dimension. To reduce the dimensionality of the original optimization problem, variables
with higher correlation are combined and treated as a subpopulation for the joint opti-
mization, while variables with no correlation form a separate subpopulation. The original
high-dimensional MOO problem is decomposed into several low-dimensional subproblems
for resolution. As shown in Figure 8, a population with size n is taken as an example in the
global optimization strategy, and the individuals with d-dimensional decision variables
are decomposed into m groups of low-dimensional subpopulations with size n, which
effectively improves the optimization success rate and efficiency.

The subpopulation cooperative mechanism is used to solve the original MOO problem
and the above subgroup decomposition can reduce the dimensionality of the solution.
In the splitting design of PCSs, the regions with variable correlation can be combined as
a subpopulation. In the optimization process, subpopulations of certain subareas find
a local optimal solution with a high variable correlation to decrease the quality of the
optimization results of the whole population. The optimization effect between subpop-
ulations is synergized through information sharing. Therefore, a cooperative approach
is utilized for decomposing the original populations to exchange and share information
within the subpopulations, as well as between different subpopulations, preventing the
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issues of falling into a local optimum. Figure 9 gives the structure of the multipopulation
cooperative optimization. Firstly, the optimal solution sequences of each subpopulation are
obtained by the cooperative optimization approach; then, the subpopulations are gradually
merged based on the information sharing, and the combination of the optimal solution
sequences is corrected; finally, the optimal solution sequence of the original MOO problem
is obtained by integrating the solution sequences of all subpopulations.
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In the PCS splitting optimization of subareas, the optimization objectives are the
specifications and quantities of PCS widths, which can be expressed as follows

f l
best(xi) : min Rk

total , Rn
total (3)
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where f l
best(xi) denotes the optimal solution in subarea i.

To obtain the best combined optimal solution after synergy, the optimal solution rela-
tionships between each subpopulation need to be comprehensively considered. Therefore,
the found optimal solution for each subpopulation is saved and the individual with the
best synergistic effect is selected to accelerate the optimization efficiency of the collabo-
rative optimization process. The subpopulation synergistic optimization model can be
expressed as

f subi
best (xsubi) : min Rk

total , Rn
total , Ek

total

(
option

[
f l_list
best (xsubi_1), . . . , f l_list

best

(
xsubi_j

)]
(4)

where f subi
best (xsubi) denotes the combined optimal solution for the ith subpopulation; the

width of the nonstandard PCS Ek
total is included as one of the objective functions due to the

necessity of regional correlation analysis; and f l_list
best

(
xsubi_j ) represents the selected optimal

solutions in subarea j. Collaborative optimization within the subpopulation facilitates the
discovery of a set of relatively superior solutions.

Similarly, through information sharing among subpopulations, the collaborative opti-
mization is achieved to obtain a set of better solutions for the whole population. Therefore,
the optimization model for the whole population can be represented as:

f g
best(X) : min Rk

total , Rn
total , Ek

total

(
option

[
f sub1_list
best (xsub1), . . . , f subm_list

best (xsubi)
]

(5)

where f g
best(X) denotes the global optimization objective, and f subi_list

best (xsubi) denotes the
optimal solution of the ith subpopulation. The collaborative optimization among subpopu-
lations can effectively increase the solution diversity for the PCS splitting design problem.

In summary, the splitting design problem of PCSs can be summarized as (1) grouping
the subareas based on the length and width information, and decomposing the original high-
dimensional problem into m low-dimensional subproblems for solving; (2) collaboratively
optimizing the objectives within each subpopulation to obtain a set of optimal solution
sequences; and (3) realizing the collaborative optimization of multiple subpopulations
based on the information sharing among them to finally obtain the optimal solution
sequence of the original problem.

4.2. Multipopulation Coevolution Algorithm PSO

The splitting design problem of PCS entails a vast search space dimension, leading to
an exponentially increasing optimization time under the global optimization strategy. The
optimization process may even face failure in obtaining a better solution. In this regard,
the multipopulation collaborative optimization model is introduced to address the original
multiobjective optimization problem. By grouping the variables of the original problem,
the solution dimension is significantly reduced. Simultaneously, the correlation issues
between subpopulations are resolved in the collaborative optimization process to derive a
set of optimal solution sequences for the original problem. Considering the advantages
of the PSO algorithm in solving multiobjective optimization problems, the optimization
framework of the PSO algorithm based on multipopulation coevolution was incorporated
into the optimization process of each subpopulation.

The idea of the PSO algorithm originated from the study of the foraging behavior
of bird flocks, where the flocks share information collectively to enable the group to find
the optimal destination [34]. In the PSO algorithm, the entire population is referred to as
a flock and the individuals are referred to as particles. Each particle has two attributes,
i.e., position and velocity. The optimal position searched by each particle is denoted by
pbesti =

[
pbesti,1, pbesti,2, . . . , pbesti,D

]
, and the optimal position searched by the popula-
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tion is denoted by gbest = [gbest1, gbest2, . . . , gbestD]. During each iteration, the particles
update their velocity and position as

vi,j = ω·vi,j + lr1·rand·(pbest i,j − xi,j

)
+lr2·rand·(gbest j − xi,j

)
(6)

xi,j = xi,j + vi,j (7)

where j (j = 1, 2, . . . , D) is the index of dimension; vi = (vi,1, vi,2, . . . , vi,D) is the velocity
vector of the ith particle; and xi = (xi,1, xi,2, . . . , xi,D) is the position vector of the ith particle.
ω is the inertia weight providing a balance between exploration and exploitation. lr1
and lr2 are the positive learning rates, and rand is a random vector uniformly distributed
in [0, 1].

In the PSO algorithm, the particle velocity is updated using three different parts. The
specific explanation is as follows: (1) The inertia part, which consists of inertia weight ω and
the particle’s own velocity vi,j, represents the particle’s trust in the previous motion state.
(2) The cognitive part represents the particle’s individual cognition, i.e., the own experience
of the particle, which can be understood as the distance and direction between the current
position xi,j of the particle and its own historical optimal position pbesti,j. (3) The social part
indicates the information sharing and cooperation between particles, i.e., the experience
derived from other excellent particles in the population, which can be understood as the
distance and direction between the current position xi,j of the particle and the historical
optimal position gbestj of the population. Based on the guidance of the above heuristic
information, the particle can effectively learn from the population to update its velocity and
further update its position. This search method can effectively speed up the convergence of
the population.

The classical PSO algorithm is mostly employed to tackle continuous optimization
problems. However, in the splitting design problem of PCSs, the standard PCS width,
based on the design specification, constitutes a discrete set of values. Therefore, the variable
part of the classical PSO algorithm was adapted to suit the discrete optimization process
of the original problem. Utilizing the standard PCS widths outlined in the optimization
problem (Section 2.1), the PCS width variables were encoded in integer form, as detailed in
Table 5.

Table 5. Integer code representation of PCS width.

Value of Integer
Coding

Actual Value of PCS
Width (mm)

Value of Integer
Coding

Actual Value of PCS
Width (mm)

0 0 4 2000
1 1200 5 2400
2 1500 6 [400, 1200)
3 1800

The feasible decision variables in the solution process are encoded in integer form,
while the perturbation of the particle velocity is a continuous variable, making the updated
position information a floating-point number. In this regard, the paper modifies the position
information of individuals in the PSO algorithm as follows

xi,j =

{
xi,j , xi,j = round

(
xi,j

)
randint(x_min, x_max) , i f xi,j < x_min or xi,j > x_max

(8)

where round() is a rounding function, using rounding methods to round the individual;
x_min and x_max are the lower and upper bounds of the individual x, respectively, which
determine the range of the feasible decision space of the individual; and randint() is a
function that generates random integers within a given range.

The specific steps of the above optimization process for the PSO algorithm based on
integer coding are as follows:
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(1) Initialize all particles by assigning values to their velocities and positions. Set the
historical optimal pbest of an individual as the current position, and the optimal
individual in the population as the current gbest.

(2) Update the velocity and position of each dimension of each particle i according to
Equations (6) and (7), respectively, and round based on Equation (8).

(3) In each generation of evolution, the fitness function value of each particle is calculated.
If the current fitness function value is better than the historical optimum, update
pbest. If the current fitness function value is better than the global historical optimum,
update gbest.

(4) Determine if the termination condition (maximum number of iterations or accuracy
requirements) has been met; if not, proceed to (2) to continue execution.

The pseudocode for PSO based on integer coding is given in Algorithm 1.

Algorithm 1: Pseudocode for PSO based on integer coding

Buildings 2024, 14, x FOR PEER REVIEW 14 of 22 
 

(1) Initialize all particles by assigning values to their velocities and positions. Set the his-
torical optimal 𝑝𝑏𝑒𝑠𝑡 of an individual as the current position, and the optimal indi-
vidual in the population as the current 𝑔𝑏𝑒𝑠𝑡. 

(2) Update the velocity and position of each dimension of each particle 𝑖 according to 
Equations (6) and (7), respectively, and round based on Equation (8). 

(3) In each generation of evolution, the fitness function value of each particle is calcu-
lated. If the current fitness function value is better than the historical optimum, up-
date 𝑝𝑏𝑒𝑠𝑡. If the current fitness function value is better than the global historical 
optimum, update 𝑔𝑏𝑒𝑠𝑡. 

(4) Determine if the termination condition (maximum number of iterations or accuracy 
requirements) has been met; if not, proceed to (2) to continue execution. 
The pseudocode for PSO based on integer coding is given in Algorithm 1. 

Algorithm 1: Pseudocode for PSO based on integer coding 
   Input: population size 𝑁𝑃 ; dimension 𝐷 ; maximum generation 𝐺௠ ; learning rate 𝑙𝑟ଵ, 𝑙𝑟ଶ; inertia weight 𝜔; fitness function 𝑓(𝑥) 
   Output: the best solution in the final population 
1  𝐺 ← 1; Randomly choose 𝑁𝑃 individuals 𝑥 with 𝐷 dimension; 𝑣 ← 0; 𝑝𝑏𝑒𝑠𝑡 ← 𝑥;𝑔𝑏𝑒𝑠𝑡 ← 𝑥(1);  
2  while 𝐺 < 𝐺௠ do 
3    for 𝑖 ← 1 to 𝑁𝑃 do 
4       for 𝑗 ← 1 to 𝐷 do 
5          𝑣௜,௝  = 𝜔 · 𝑣௜,௝  + 𝑙𝑟ଵ · 𝑟𝑎𝑛𝑑 · (𝑝𝑏𝑒𝑠𝑡௜,௝ − 𝑥௜,௝)  + 𝑙𝑟ଶ · 𝑟𝑎𝑛𝑑 · (𝑔𝑏𝑒𝑠𝑡௝ − 𝑥௜,௝)   
           𝑥௜,௝  = 𝑥௜,௝  + 𝑣௜,௝ ;  𝑥௜,௝ =  𝒓𝒐𝒖𝒏𝒅(𝑥௜,௝)   
6          if  𝑥௜,௝ < 𝑥_𝑚𝑖𝑛 𝑜𝑟  𝑥௜,௝ > 𝑥_𝑚𝑎𝑥 then 
7             𝒓𝒂𝒏𝒅𝒊𝒏𝒕(𝑥_𝑚𝑖𝑛, 𝑥_𝑚𝑎𝑥)  
8          end 
9       end 
10   end 
11   for 𝑖 ← 1 to 𝑁𝑃 do 
12      if 𝑓(𝑥௜) < 𝑓(𝑝𝑏𝑒𝑠𝑡௜) then 
13        𝑝𝑏𝑒𝑠𝑡௜ ← 𝑥௜; 
14      end 
15      if 𝑓(𝑥௜) < 𝑓(𝑔𝑏𝑒𝑠𝑡) then 
16        𝑔𝑏𝑒𝑠𝑡 ← 𝑥௜; 
17      end 
18   end 
19   𝐺 ← 𝐺 + 1; 
20 end 

5. Experiment Result 
5.1. Case Overview 

As shown in Figure 10, a standard floor in a prefabricated building was used as the 
illustrative example for the PCS splitting design to verify the feasibility and efficiency of 
the proposed framework. The length and width of the standard floor were 284 m and 161 
m, and the total area of the floor space was about 384.323 m2. The structural plan drawing 

5. Experiment Result
5.1. Case Overview

As shown in Figure 10, a standard floor in a prefabricated building was used as the
illustrative example for the PCS splitting design to verify the feasibility and efficiency of
the proposed framework. The length and width of the standard floor were 284 m and
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161 m, and the total area of the floor space was about 384.323 m2. The structural plan
drawing of the standard floor was imported into the data input module. The subareas for
arranging PCSs were extracted to provide the related information such as sizes, positions,
and PCS placement orientations, which are shown in Figure 10. In this standard floor, the
quantity of subareas was 14 and the ranges of the length and width of the subareas were
3300 mm~10,450 mm and 3000 mm~3800 mm, respectively. As shown in Figure 10, the red
and cyan colors express the prefabricated areas and the cast-in-place areas, respectively.
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5.2. Comparison of Global and Collaborative Optimization Methods

In this subsection, the performance of the global optimization and that of the proposed
multipopulation coevolution approaches are evaluated. Two methods are utilized to
complete the PCS splitting design in eight subareas (subareas 1, 2, 5, 7, 8, 10, 11, and 12
in Figure 10), and the optimization success rate and obtained solutions were primarily
compared. In order to further strengthen the reliability of the experiment, the parameter
settings of the PSO algorithm needed to be unified. When the particle velocity v is large,
the particle flight speed is fast and the exploration ability is strong, but the particle easily
escapes from the optimal solution. When v is small, the flight speed is slow and the
exploitation ability is strong, but the convergence speed is slow, and it is easy to fall into
a local optimal solution. In order to balance the exploration and exploitation ability of
the algorithm, it is essential to establish a reasonable speed range of the particle velocity.
Meanwhile, when solving practical optimization problems, it is often desired to use a
global search first to make the search space converge to a certain region, and then use a
local fine search to obtain a high-precision solution. In this regard, based on the original
recommended parameters, the adaptive correction method of the PSO parameters was
employed. In the PSO algorithm, the inertia weight ω was linearly reduced from 0.9 to
0.4; learning rates lr1 and lr2 were set to 1.49; and the speed was limited to the interval
[−2, 2]. Individual positions, based on integer coding, were restricted to the discrete integer
solution space Int[0, 6]. The population size P was set to 50, and the maximum number of
iterations G was set to 1000. All the parameters’ information is listed in Table 6, and these
parameter settings were used for subsequent experiments.

Compared with global optimization, the optimization success rate of a collaborative
optimization strategy based on decomposed subpopulations is higher in high-dimensional
optimization problems. At the same time, the introduction of a collaborative optimization
model can consider part of the global information and obtain better solutions. Figure 11
shows the splitting design of eight subareas using two methods. The optimization results
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using two methods are given in Table 7. Each method applying the splitting design was
run independently 20 times to examine the success rate of the algorithm.

Table 6. Parameter settings.

Parameter Values Definition

lr1 1.49 Learning rate for self-cognition
lr2 1.49 Learning rate for group-cognition
ω [0.4, 0.9] Inertia coefficient
v [−2, 2] Velocity of the individual
x Int [0, 6] Location of the individual
P 50 Population size
G 1000 Maximum number of iterations
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Table 7. Comparative results of global optimization and collaborative optimization (20 runs).

Parameter Global Optimization Collaborative Optimization

Number of successes 13 20
Optimal solution [3, 15] [2, 17]

Suboptimal solution [3, 16] [3, 15]

As shown in Table 7, the global optimization method achieved successful solutions
in only 13 out of 20 independent experimental runs, while the collaborative optimization
method ensured a successful resolution in all runs. Moreover, Table 7 presents the optimal
and suboptimal solutions under successful outcomes for both methods. The solutions
represent the types of board width spans and the total number of boards derived from
solving the PCS splitting design problem. The first dimension of the solution represents
the quantity of PCS specifications, while the second dimension represents the total number
of PCSs. In the optimization process, individuals with fewer specifications and quantities
of PCSs were selected as optimal solutions based on the design requirements. The results
indicate that the global optimization method had difficulty guaranteeing to find feasible
solutions and only one feasible solution was obtained, which was not necessarily the opti-
mal feasible solution. In contrast to the global optimization approach, the multipopulation
coevolution approach was more effective at finding the optimal sequence of solutions.

5.3. PCS Splitting Design for a Standard Floor

The splitting design of a standard floor was considered to assess the practicability and
efficiency of the developed framework. The multipopulation coevolution PSO algorithm
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was implemented in the PCS splitting module based on the collaborative optimization
model to provide the size, ownership, and placement order of each PCS. The parameter
settings for the PSO were the same as those presented in Section 5.2. To further assess
the applicability of the proposed collaborative optimization methods, comparisons were
made with two other methods. The multipopulation noncollaborative method was used
for the splitting design of the standard floor. Moreover, a parametric splitting design was
also used for the splitting design of the standard floor and the width of all PCSs was set
as 1200 mm.

The standard floor shown in Figure 10 was taken as the design object, and various
methods, including multipopulation collaborative optimization, noncollaborative optimiza-
tion, and parameter-based methods, were employed for the splitting design of PCSs. Before
the experiments, the span grade of each rectangular region was defined. According to
the PCS splitting design of the standard floor using the three methods, the IFC files and
PCS layout drawings were automatically generated. With the aid of Autodesk Revit, BIM
models including all PCSs in the standard floor are shown in Figures 12a–14a. As shown in
Figures 12b–14b, the PCS layout drawings were automatically exported.
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The evaluation of the solutions was based on the quantity of PCS specifications and the
total number of arranged PCSs recorded in the optimization process, serving as comparative
indicators for each method. Table 8 presents the record design results for the three methods
which indicate that each method had its characteristics. Considering the types of PCS
widths, the parameter-based design method utilized a standardized PCS width, resulting in
relatively fewer types. Considering the quantity of PCSs, the noncollaborative optimization
method treated the optimal solution for each subarea as a local solution for the floor space,
leaning towards a solution with fewer types of PCS widths. Considering the combination
of specification and quantities of PCSs, a set of solutions with a balance of few PCS width
types and a smaller PCS quantity was obtained. In the collaborative optimization method,
the collaborative optimization strategy could comprehensively consider the consistent span
types of split-board information and select solutions based on design requirements with
fewer types or a smaller quantity of split boards. In the collaborative optimization method,
considering the consistent span grades of subareas, solutions with fewer PCS width types
and a smaller PCS quantity were generated.
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Table 8. Optimization results using different methods.

Span Grade
Collaborative
Optimization

Method

Noncollaborative
Optimization

Method

Parameter-Based
Method

SL36 [2, 25] [3, 23] [1, 41]
SL33 [1, 6] [1, 6] [1, 10]
SL30 [2, 7] [2, 7] [1, 13]
DL39 [2, 5] [2, 5] [1, 9]
Total [7, 43] [8, 41] [4, 73]

As shown in Table 8, there were three optimization results using three different design
methods, namely, the collaborative optimization method, noncollaborative optimization
method, and parameter-based method. The collaborative and noncollaborative optimiza-
tion methods had consistent optimization effects in most subareas. However, in subareas
with a higher number of other associated subareas, the collaborative optimization method
tended to yield solutions with fewer specifications of PCS widths. Compared to the noncol-
laborative optimization method, the collaborative optimization method had fewer types
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of PCS widths, even though there were two additional PCSs. However, in the manufac-
turing process, the increase in types of PCS widths has a greater impact on production
costs than having two more PCSs. Compared to the parameter-based design method, the
collaborative optimization method had no advantage in terms of having fewer types of
PCS widths. However, the parameter-based method also had the significant drawback of
an excessive quantity of PCSs (73 PCSs in the table), leading to a sharp increase in trans-
portation costs and labor costs during the production and assembly process. Therefore, the
multipopulation collaborative optimization methods integrated the characteristics of the
other two methods and generated more optimal solution sequences through balancing PCS
specifications and quantities.

For the standard floor in a prefabricated building, five experienced detailing engineers
were invited to independently complete the splitting design of PCSs. The average time
required by the engineers was about 30 min to provide a PCS layout drawing and BIM
model, whereas the total runtime of optimizing the splitting design and generating a
drawing and BIM model completed using the proposed framework was about 30 s, which
was significantly shorter. It is noteworthy that the PCS splitting design generated by an
engineer cannot guarantee an optimal cost. Therefore, the proposed framework offers a
more efficient design.

6. Conclusions

In this study, an intelligent BIM-based framework for the splitting design of PCSs
was proposed to provide the PCS layouts in a building and obtain the PCS take-offs. The
proposed framework considered the PCS layouts in the whole building to minimize the
specifications and quantities of PCSs, reducing the costs in manufacturing, transition,
and installation processes. Integrating the necessary data required from the BIM model
or plan drawing, a PCS splitting module was developed to determine the sizes of all
PCSs. A collaborative optimization model using a multipopulation coevolution algorithm
was proposed to efficiently find the optimal splitting design of PCSs. According to the
optimization results, the BIM models complying with the IFC standard were generated
automatically, and the PCS layout drawing was exported to provide the size and position
of each PCS.

To verify the proposed collaborative optimization model, a multipopulation co-
evolution PSO algorithm was considered in the automatic PCS splitting optimization.
The splitting design of a standard floor in a prefabricated building was realized to validate
the practicability and efficiency of the proposed framework. Based on this study, the
following conclusions can be drawn:

• The collaborative optimization approach was implemented by dividing the original
population into multiple subpopulations, which improved the accuracy and efficiency
of PCS splitting.

• Compared with the global optimization method, the proposed multipopulation co-
optimization strategy can effectively reduce the problem’s dimensions and achieve a co-
optimization among subpopulations, and a set of better solutions are efficiently solved.

• Compared with the parameter-based method and noncollaborative optimization
method, the proposed method can solve the combined solution with better cost per-
formance. This is because it takes into account the information on the type of board
width and the number of split boards in the collaborative optimization process.

However, the developed intelligent splitting design method for PCSs has the follo-
wing limitations:

• Serval specifications of standard PCS were assumed in this study, which limited the
scale of the solution space.

• In this study, the proposed splitting design method was only applied for PCSs. For
other prefabricated components such as walls, the optimization model should be
further improved and extended in future work.
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• In future work, more specifications of PCSs and joints will be added, and the range
of values for the variable will be expanded to enhance the practicality of the PCS
splitting method. Additionally, the splitting design approach of other prefabricated
components, such as beams and walls, needs to be further studied.
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Glossary

Key terms Definition
PCS Precast concrete slab.

W12
The nominal width of the unidirectional or bidirectional slab was 1200 mm
(W15, W18, W20, and W24 had the same definition as W12).

SL27
The nominal span of the unidirectional slab was 2700 mm (SL30, SL33, SL36,
SL39, and SL42 had the same definition as SL27).

DL30
The nominal span of the bidirectional slab was 3000 mm (DL30, DL33, DL36,
DL39, and DL42, DL45, DL48, DL51, DL54, DL57, and DL60 had the same
definition as DL30).

Rk
total Specification quantities of PCS.

gsum Number of slab span grades.
Rg

k Span grade of the gth PCS.
wg Weight coefficient of the span grade width types of the gth slab.
Rn

total Quantities of PCSs.
fsum Quantities of separating subareas.
R f

n Number of PCSs arranged in f th subareas.
f l
best(xi) Optimal solution in subarea i.

f subi
best (xsubi) Combined optimal solution for the ith subpopulation.

Ek
total Width specification of the nonstandard PCS.

f l_list
best

(
xsubi_j ) Selected optimal solutions in subarea j.

f g
best(X) Global optimization objective.

f subi_list
best (xsubi) Optimal solution of the ith subpopulation.

single-directional slab Slab where the ratio of the long side to the short side is greater than or equal to 3.
bi-directional slab Slab where the ratio of the long side to the short side is less than 3.
AEC Architecture, engineering, and construction.
BIM Building information modeling.
DfMA Design for manufacturing and assembly.
DXF Drawing Exchange Format.
MOO Multiobjective optimization.
PSO Particle swarm optimization
IFC Industry Foundation Classes.
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