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Abstract 
California mandated that 100% of vehicles sold must be electric by 2035. As 
electric vehicles (EVs) reach a higher penetration of the car sector, cities will 
need to provide publicly accessible charging stations to meet the charging 
demand of people who do not have access to a private charging spot like a 
personal garage. We have chosen to limit our scope to San Diego County due 
to its non-trivial size, well-defined shape, and dependence on personal ve-
hicles; this project models 100% of current vehicles as electric, roughly 2.5 
million. By planning for the future, our model becomes more useful as well as 
more equitable. We anticipate that our model will find locations that can ser-
vice multiple population centers, while also maximizing distance to other sta-
tions. Sensitivity analysis and testing of our algorithms are conducted for 
Coronado Island, an island with 24,697 residents. Our formulation is then 
scaled to set the parameters for the whole county. 
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1. Introduction 

California Governor Gavin Newsom has mandated that 100% of cars bought and 
sold in California must be electric by 2035 [1]. Other states will likely follow Cal-
ifornia’s bold lead toward electrifying the car market. The current standard 
model for electric vehicle (EV) charging relies on the driver having access to a 
permanent parking spot or garage for nightly charging. As EVs reach higher pe-
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netration, urban residents will need a way to charge their vehicles, despite re-
liance on street parking or an inconsistent rotation of available spots. To meet 
the charging needs of its residents, cities must think critically about placing pub-
licly accessible charging stations such that there is equitable access to all resi-
dents. We define equality as guaranteeing a base local supply for all areas; in 
contrast, we define equity as maintaining consistent local supply across all areas, 
including excess supply. Equity and equality in this report are in terms of dis-
tance to a charging station and number of available chargers. We will be investi-
gating San Diego County because it has well-defined geographical boundaries 
[2] and its residents rely heavily on personal vehicles for transportation [3]. 

Our objective function represents a sum of all charging supplies. Therefore, 
we are minimizing the capacity of charging needed to meet demand, such that 
all people have close access to a charger. We assume that charging demand is 
concentrated at the centroids of the census block groups in the county, which we 
call population centers. The willingness to drive a certain distance from the cen-
ter is modeled as a Gaussian function to determine how well a charging station 
can serve that population center. This population center approach leads to a 
non-convex objective function, as there are approximately 1796 census block 
groups in San Diego County. A trivial result of this optimization is that there is a 
single charging station at every population center, with a number of chargers 
that are proportional to the demand at that point. This is not an optimal solu-
tion, as it would require a minimum of 1796 chargers. The charger supply would 
be greater than the demand and purchasing that many chargers is also econom-
ically infeasible. Hence, we will assign and parameterize a number of charging 
stations that is lower than the number of population centers. 

To test the formulation of our algorithm and parameterize the number of 
charging stations we have used Coronado Island as a ’toy problem’ or smaller 
test case for our algorithm. This allows for easier comparison of charging station 
placement. To meet demand most efficiently, we add the constraints that the 
demand at each population center is met and that the demand on each charging 
station does not exceed supply. Once we have optimized to meet demand, we 
will apply a third constraint that the station is on a road. This will require a 
second round of optimization to determine the road vertex that is closest to the 
charging station location. We are using publicly available Geographical Informa-
tion Systems (GIS) data to get location-based information for variables and pa-
rameters such as population density and road locations [3] [4]. 

2. Problem Statement and Analysis 

For this investigation, we want to determine the minimum amount of geograph-
ically weighted supply (i.e. charging spots) that can still satisfy all geographically 
weighted demand. We did so by modeling the problem as a flow network shown 
in Figure 1 where the supply from charging stations feeds into the demand from 
population centers, with the weights determined by distance. Table 1 shows  
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Figure 1. Charging demand flow model. 

 
Table 1. Model variables and parameters. 

Symbol Description Type Value Units 

xn,i 
The amount of charging  

a station i can supply 
Decision  
variables 

– 
Scaled  

population 

[xlat, xlong]T 
Location of charging  

station i 
Decision  
variables 

– Coordinates 

N 
Total number of charging 
stations (see Appendix A) 

Parameter 1, 2, ∙∙∙, N Stations 

wij 
Willingness to travel from 

center j to station i 
Distribution – – 

Pj 
Location of population 

center j 
Parameter – Coordinates 

oj 
Charging demand of 
population center j  
(see Appendix A) 

Parameter variable 
Scaled  

population 

NP 
Total number of  

population centers 
Parameter 16 

Population  
centers 

Ri 
Road vertex closest to  

station i 
Decision  
variables 

- Coordinates 

β 
Gaussian Scaling  

Coefficient 
Fitting  

Coefficient 
0.001 – 

|| · ||2 Euclidean distance 
Norm 

Function 
– 

Coordinate 
Distance 
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different types of model variable and parameters used for the calculation along 
with their units. 

Minimize: 

( ) ,1

1
P

N
n ii

N
jj

x
f x

P
=

=

= ∑
∑

 Station supply scaled by demand 

With Respect to: 
T

, , N
lat long nx x x x = ∈    Latitude, longitude & station supply 

Subject to: 

( )1, 2 0lat
i i

long i

x
h x R

x
 

= − = 
 

 i∀  Station is on road. 

( ) ( )1, ,1

1 0
10

N
j j n i ijig x o x w

=
= − ≤∑  j∀  Demand at each population center is met. 

( )2, 1 1 0PN
i ijjg x w

=
= − ≤∑  j∀  Station supply must at least meet demand. 

where: 

2
2

1exp long
ij j

lat i

x
w P

x β
  

= − −     
 ,i j∀  Normalized willingness to drive to station. 

32.58 32.72latx≤ ≤  Geographic bounds of Coronado Island 

117.23 117.12longx− ≤ ≤ −  

{ } { }1,2, , , 1,2, , Pi N j N∈ ∈   

2.1. Assumptions  

Several assumptions were made to simplify the problem and arrive at a feasible 
solution. All the assumptions are valid in the feasible domain. These are listed 
below. 
• Optimized station locations are snapped to the closest road assuming that it 

still sufficiently satisfies the demand. 
• Existing EV charging infrastructure has not been taken into consideration. 
• All vehicles are assumed to be EVs compatible with Level 3 charging. 
• Vehicle charging demand is assumed to be linearly dependent on the popula-

tion and the county-wide car/population ratio of 0.73 approximately. 
• A household is assumed to be the central unit for the demand analysis where 

each household consists of 2.73 people and two cars on average [5]. See Ap-
pendix A for further details. 

• Willingness to travel to a public charger is modeled as a Gaussian distribu-
tion centered around the population center and having a variance of 0.00005 
(β = 0.0001). 

2.2. Natural and Practical Constraints 

We have three sets of constraints. First, h1 contains N practical constraints to 
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ensure that the charging stations are accessible by road and do not lie in geo-
graphically infeasible regions. Next, g1 contains Np natural constraints to ensure 
that the demand from every population center is fulfilled by charging supply at 
all the adjacent charger locations. Finally, g2 contains N natural constraints to 
ensure that sufficient charging infrastructure is set up to at least meet the de-
mand. 

2.3. Problem Classification 

Problem Class: The problem is a constrained nonlinear problem for spatial 
optimization. 

Continuity: The objective function and the constraints are formulated to be 
continuous functions.  

Smoothness: The problem is not smooth even though it is continuous since 
the objective function and the constraints are summations, therefore their deriv-
atives are not necessarily continuous. 

Convexity: The problem is non-convex since the inequality constraints are 
governed by the Gaussian function, and it is non-convex. However, the objective 
function and the equality constraints are linear. 

Undefined Regions: There are no undefined regions in the problem formula-
tion. 

Size: There are 3N variables to solve for, N equality constraints and (N + Np) 
inequality constraints. 

2.4. Difficulties in Problem Formulation 

Initially the problem was formulated to minimize the sum of the distances be-
tween population centers and the charging locations. This raised the possibility 
of landing at trivial solutions or not getting any solution at all due to the highly 
non-convex nature of the spatial optimization. 

A new approach was designed to treat the optimization problem as a network 
flow setup where the demand is absorbed by the charging stations, by also vary-
ing the supply at each station. Therefore, the decision space expanded to include 
several chargers at each location in addition to the spatial coordinates. The con-
straints are set up for the demand-supply scenario and willingness to travel to a 
public charging station is modeled by a Gaussian distribution. 

2.5. Scaling Decisions 

Constraint g2, demand at each population center is fully consumed by the 
charging stations, was scaled down by a factor of 10 so that the constraints are 
on the same order of magnitude. The objective function was also scaled down by 
the total demand to keep it on the same order of magnitude as the constraints. 
Additionally, the fitting parameter β was also adjusted to achieve convergence of 
the solution. 
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2.6. Additional Considerations 

There are two additional attributes that are not in the model but could be consi-
dered in the future. The first is the density of housing types, determined by the 
American Community Survey [4]. We could assume that areas with high rates of 
single-family housing will have a lower demand for public charging stations, as a 
family that has the space for a personal charger will probably opt for that option. 
Additionally, we can add the locations of existing charging stations to make the 
analysis more robust [6]. This would reduce the total number of stations that are 
needed to meet demand, and it would further constrain where the new stations 
are located. 

3. Optimization Study 
3.1. Optimization Approach  

As mentioned above, we performed our analysis on a “toy problem” of Corona-
do Island. The island has sixteen population centers located at the centroids of 
the census block groups. This allowed us to understand the algorithm and per-
form a thorough analysis on a much less computationally expensive problem. 

For our algorithm, we took a multi-step approach. The first step is to run a 
genetic algorithm using MATLAB’s “ga” function. We then use the output of the 
genetic algorithm as starting point for MATLAB’s “fmincon” function. We 
chose to use a genetic algorithm to create starting points because we anticipated 
that our objective function would have many local minima and we needed to in-
troduce randomness to find a global minimum. We tested different solvers 
within the “fmincon” function, such as SQP and interior point. After running six 
trials with each, we found that SQP was not able to find the global minimum and 
opted for interior point for the rest of our analysis.  

For the two steps above, we kept the constraint that a station is on a road re-
laxed. We then took the coordinates that were output from MATLAB and input 
them to ArcGIS, which has a built-in function that can identify the nearest road 
vertex. This technically leads to a sub-optimal final solution, but we decided that 
the computation cost of applying the equality constraint along with the others 
far exceeded the benefit. 

3.2. Base Case Results 

A few initial runs of our solver showed that N = 6 stations was a reasonable val-
ue to use as our base case. Because our optimization is partially stochastic, we 
ran 100 trials to determine the global minimum. The optimum we found was 
1499.94. The optimizers are summarized in Table 2. See Appendix C (Table 8) 
for more detailed results of this initial study. 

Note that we converted the values of xn to the number of required chargers 
based on the scaling factors described in Appendix A. To better visualize the re-
sults, we plotted the coordinates in Figure 2 below. The darker colored di-
amonds indicate stations with a higher number of chargers. 
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Table 2. Base case global optimizers.  

 Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Total 

xlong −117.127 −117.200 −117.187 −117.172 −117.150 −117.162 - 

xlat 32.624 32.684 32.677 32.707 32.655 32.683 - 

xn 427.0 130.4 133.6 106.4 375.8 326.7 1499.9 

# of Chargers 7 2 3 2 6 5 25 

 

 
Figure 2. Solution of charging stations’ location with and without snapping to road. 

3.3 Analysis of Results 

For a thorough analysis of this base case solution, see Table 3 below. 
Further, Table 4 below summarizes the constraint activity for the global 

minimum. Note that all of the twenty-two inequality constraints were active to 
some extent. 

As shown above, our Coronado Island solution for charging station locations 
and sizes is intuitive. The locations of the stations are spread in a way where the 
four larger stations surround the most densely populated part of the island, and 
the remaining stations have smaller supply and are located closer to the more 
sparsely populated parts of the island. Our model assumed that demand would 
behave similarly to a population centered Gaussian function. Since the stations 
in our solution are not of infinite or uniform size, are not co-located, and are not 
randomly located, we demonstrate that this assumption holds for this solution. 
This is best demonstrated by how our solutions spread out. In the case where 
our g1 constraint is the only active case, the stations would tend to cluster in the 
middle of the population centers. This case would cause the island’s demand to 
be perfectly supplied, but it would lead to some population centers having more 
supply than others. 
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Table 3. Analysis of solution. 

Termination 
Our solution receives the fmincon exitflag of 1, which indicates that a local minimum is found  

that satisfies the constraints. 

Local optimality 
The solution is a local minima as indicated by the exitflag of 1. fmincon yielding an exit flag of 1  

also indicates that KKT conditions and the second order conditions are met. The Lagrange 
multiplier values in Table 4 are further evidence that the solution meets these requirements. 

Global optimality 

Table 2 and Figure 2 above show our best solution. This solution was found 19% of the time,  
so we are confident that this is the global solution. We also ran a parametric study of the  

parameter N, which is addressed later in the investigation. This only makes us more confident  
that the solution presented is the global optimum. 

Uniqueness 

Our global solution is non-unique for N = 6, since the locations of our stations are not unique.  
This means we have some several cases of the same overall supply with the same locations but 
different supplies at each station. As addressed latter when N values of 7 or greater are used we  

see several solutions where stations are co-located. These solutions have identical values for  
overall supply and since their values are identical these solutions can be seen as the same global 

solution. We are fairly certain we have arrived at a global solution, but there are some local  
minima we found. These would represent stations with sub-globally optimal placements  

that necessitate larger supply to fulfill demand. 

 
Table 4. Constraint summary. 

Constraint µ1 Units Active Constraint µ2 Units Active 

g1,1(x) 1.0e−2 None Yes g2,1(x) 8.6e−2 Scaled Population Yes 

g1,2(x) 2.5e−6 None Yes g2,2(x) 3.1e−1 Scaled Population Yes 

g1,3(x) 8.1e−6 None Yes g2,3(x) 3.4e−1 Scaled Population Yes 

g1,4(x) 2.8e−6 None Yes g2,4(x) 3.3e−1 Scaled Population Yes 

g1,5(x) 4.1e−6 None Yes g2,5(x) 1.1e−1 Scaled Population Yes 

g1,6(x) 2.8e−2 None Yes g2,6(x) 1.4e−1 Scaled Population Yes 

g1,7(x) 8.1e−3 None Yes     

g1,8(x) 8.1e−3 None Yes     

g1,9(x) 8.1e−3 None Yes     

g1,10(x) 1.9e−6 None Yes     

g1,11(x) 3.0e−6 None Yes     

g1,12(x) 2.6e−6 None Yes     

g1,13(x) 6.6e−4 None Yes     

g1,14(x) 6.2e−2 None Yes     

g1,15(x) 1.1e−6 None Yes     

g1,16(x) 2.0e−2 None Yes     
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When the g2 constraint is added each population center cannot be oversup-
plied, which causes the stations to spread out. In this case, the island would be 
oversupplied, but each population center would have a fairly equal supply (see 
Appendix D). When one looks at Table 4 the Lagrange multipliers for constraint 
g2 are larger than g1’s indicating that this constraint is more active. This is de-
sirable because of the equity objective for our problem (equality is guaranteed by 
constraint g1). When our model is run just for the Coronado vs when it is run 
for the entire county (see Figure 3) our Coronado station locations change par-
tially due to these effects. In the county-wide case the non-Coronado population 
centers change how spread out the stations can become, since if they were to 
spread out more the stations would be leading to oversupply of some population 
centers. 

4. Sensitivity Analysis 

4.1. Constraint Sensitivity 

According to Table 4, none of the constraints were truly inactive (i.e. a value of 
zero), but the level of activity did vary. In general, the value of the Lagrange 
multipliers for constraint g1 were much lower than g2. This indicates that the 
result is much more sensitive to the second constraint than the first. 

4.2. Parameterization of Number of Stations 

To understand how sensitive our solution is to the number of charging stations 
(N), we conducted a parametric study. We performed 100 runs for each N = 1 
through N = 15, and Table 5 shows a summary of the results. 
 

 
Figure 3. Full county preliminary results, snapped to roads (Plotted on GIS). 
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Table 5. Parameterized Station Count (N) 

N Minimum % Convergence % Global Min 

3 3354.00 0% 0% 

4 2692.10 66% 0% 

5 1621.00 76% 0% 

6 1499.94 87% 19% 

7 1499.94 90% 19% 

8 1499.94 87% 17% 

9 1499.94 87% 11% 

10 1499.94 77% 10% 

11 1499.94 79% 13% 

12 1499.94 64% 15% 

 
For N = 1 and N = 2, no minimum was found that satisfied the constraints. 

This is because the Gaussian wij decays in such a way that outlying populations’ 
demand cannot be met in any station placement configuration. For N = 3 
through N = 5, a minimum was found that satisfied the constraints, but it was 
not the global optimum. For N = 6 through N = 15 a global optimum of 1499.94 
was found. For a similar reason as N = 1 and N = 2, the distances to outlying 
populations wij decay such that xn need to be inflated drastically in order to meet 
demand. The initial parameterization found an optimum slightly higher for N = 
7 through N = 15 (within 0.2). However, when the constraint tolerance was 
tightened, the higher N values were found to come to the same global optimum, 
albeit much slower and in more iterations than for N = 6. The same global op-
timum for various N gave non-unique placements. As N increased, the {xlat, xlong} 
minimizers remained the same, with some stations doubling up in placement 
and occupying the same {xlat, xlong}. When this occurred, the co-located stations 
split the xn value, which indicates that the solver was trying to force a higher N to 
be equivalent to the global optimum of N = 6. 

4.3. Scaling to Full County 

We ran the full-county problem once, as shown in Figure 3. We used the optim-
al N count from the parameterized Coronado Island problem, N = 6, to scale N 
for the full county. The full county has about 125 times the population, so an N 
= 750 was used as a scaled N value. However, the ideal N value may not scale li-
nearly. To find the ideal N for the full problem, another parameterization would 
need to be conducted. We determined that such an analysis is outside the scope 
of this project.  

The full-county problem contains a few quirks not seen in the Coronado Isl-
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and case. First, with multiple neighborhoods, the algorithm will attempt to make 
one station serve different areas separated by geographic barriers (mountains, 
ravines, freeways). Much of San Diego’s residential areas are located atop mesas, 
which means that some stations were allocated to bridges or mountain roads 
between such areas; others were snapped to freeways after processing in ArcGIS. 
Moreover, in the same way that many unsnapped stations in the Coronado Isl-
and case were placed in water, one station was placed in Mexico (we wager it’ll 
make its way to Zihuatanejo in due time). 

Another issue is the underservice of sparse areas. As the width β of the Gaus-
sian functions used in our problem was tuned for the urban Coronado Island, 
the gradients wij of for many of the outlying settlements of the county vanish to 
zero, which prevents any station to move towards fulfilling their demands (or 
satisfying the constraints in some cases). This can be resolved by tuning β for the 
appropriate population density or modulating β to change as a function of local 
population density to accommodate both dense and sparse areas. 

5. Conclusions 

The problem we address in this investigation is determining the minimum 
charging supply needed to equitably satisfy the electric vehicle demand of Coro-
nado Island. These stations are weighted by their placement relative to the pop-
ulation (demand) centers for Coronado Island. A parametric study of N, the 
number of stations, was conducted. For this study, we performed 100 iterations 
for each N to provide a significant enough sample of our solution space to de-
termine the global solution. The global solution found for Coronado Island was 
N = 6 stations with a total supply of f = 1499.94. The placement of the stations in 
this solution is intuitive. The stations form two clusters, one around the more 
densely populated northern part of Coronado, and the second cluster around the 
less densely populated lower tail of the island. The size of the stations in these 
clusters also makes sense as the northern cluster has larger stations than the 
southern cluster. When the sum of the charging supply is converted to a number 
of chargers, the solution suggests that roughly twenty-five high-speed chargers 
would be needed to fulfill the demand for Coronado Island. If we only consider 
demand and neglect constraints, only seventeen chargers are needed to meet the 
demand for Coronado Island; however, our constraints are set up in order to 
enforce equality and equity of access, both important factors in building infra-
structure networks. Our model reflects a 35% increase in the number of chargers 
needed, which indicates that our model is non-trivial, and that location is im-
portant. 

Our model suggests six optimal locations to place these chargers and therefore 
has some advantages over a centralized or uniform location scheme. However, 
like all models, our model makes assumptions that could affect the real number 
of chargers needed. For example, we assume that the cost at a charger station is 
linear with the amount of chargers at each station xn. In reality, there are fixed 
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costs associated with setting up a station. Our model also assumes that the de-
mand comes purely from the residents of the island and neglects people who 
travel to Coronado during the day and may need to charge. These factors would 
cause the numbers of chargers at each station, the location of stations, and the 
overall number of charging stations to change. Furthermore, we assumed equal 
demand among residents. In reality, factors like type of home and commute dis-
tance may impact charging demand greatly between residents in a way that was 
not factored in for this analysis. While these concerns fell outside the scope of 
this investigation, they provide a basis for future investigations. 
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Appendix A. Total Charging Station Estimation 

The Scope of our investigation is limited to Coronado Island; however, coun-
ty-wide demand data was scaled down to estimate charging demand per person 
for the island of Coronado. Since Coronado Island is a part of San Diego County, 
these county-wide figures were then scaled to Coronado’s population. The pop-
ulation density, based on census block groups was obtained from the 2018 cen-
sus. San Diego county has a population of 3.34 million [2], which is unevenly 
distributed throughout the county. To define the scope of the optimization 
problem, the objective function should represent the number of electric vehicles 
on the road as a function of the population density. More specifically, the num-
ber of vehicles that would require charging at any given time was estimated 
based on some aggregate assumptions and generalizations about San Diego 
County that could then get scaled to the known population of Coronado Island. 
Table 6 shows average distribution of household types with the availability of 
home chargers within San Diego region. 

First, the housing trends statistics from San Diego’s Regional Planning Agency 
(SANDAG) shows that the average household size in the region is 2.73 persons 
per household [5] and each household has 2 cars on average [5]. Therefore, San 
Diego has approximately 2.45 million on-road vehicles; this is consistent with 
total estimates of on-road vehicles (2.5 million) [7] 

The following assumptions were made to estimate the charging requirements 
for EVs: 
• Average daily usage of each car - 25 miles 
• Average maximum range for EVs - 250 miles 
• Level 1 chargers - 32 Amp chargers give 25 mi/hr of charging 
• Level 2 chargers - 50 Amp chargers give 37 mi/hr of charging 
• Level 3 chargers - 300 Amp superchargers give 1000 mi/hr of charging 

Optimistically assuming that the charging infrastructure will support level 3 
fast charge, the total number of charging stations required in a perfect charging 
scenario is as follows: 

Demand: 
6

miles cars DailyMiles 61.2 10 milesD N= ∗ = ∗  
Supply per charger: 

miles 1000 mi/hr 24 hr/day 24,000 mi/dayS = ∗ =  

Now we know the total demand and the amount of demand supplied by each 
type of charger, so we can determine how many chargers we need assuming no 
inefficiencies or down-time: 
 

Table 6. Household statistics. 

 Total Housing Units Single Family Multiple Family Mobile/Others 

San Diego Region 1,040,149 628,652 60% 77,190 7% 78621 8% 208,825 20% 46,861 5% 

Access to charger 50% 40% 70% 90% 90% 0% 
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Number of chargers: 

chargers
Total Demand 2550 chargers

Supplypercharger
N = =  

Based on the regional average distribution of household types, the availability 
of home chargers was estimated. 

Considering only 50% of the household require access to public chargers on a 
regular basis and 50% require access to public chargers for opportunity charging. 
We also factor in 60% charger downtime due to inefficiencies and 
day-time/night-time cycle: 

Effective Number of chargers: 

chargers  2550 0.5 1.25 1.6 2550 chargersN = ∗ ∗ ∗ ≈  

This means with the super charger case we would need 2100 chargers to meet 
the county’s demand for charging. This averages out to approximately 1300 in-
dividuals and about 1000 cars using each public EV charger each day. 

When calculated for Coronado is land’s population of 24,697 people, the con-
stant demand model here suggests 17 super charges for the island (ignoring dis-
tance to chargers and just meeting baseline demand). The 1500.08 supply num-
ber from our model when re-scaled, leads to a supply of 30,000. As one can see 
below this means we would need around 23 super chargers on the island of Co-
ronado. Table 7 shows the number of charges supplied to different charging sta-
tion and scaled according to the number of chargers at each station. 

Coronado population to chargers conversion (no account for equity) uniform 
model: 

chargers
1# 21,400 people 17 chargers

300 people/charger
= ∗ =  

Coronado Supply to chargers conversion our model: 

chargers
1#  1500.8 calculated supply 20 un-scaling factor

1300 people/charger
23 chargers

= ∗ ∗

=
 

 
Table 7. Stations’ supplies scaled to number of chargers. 

 Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 Totals 

Station n 427.02 130.36 133.64 106.35 375.83 326.73 1499.93 

Chargers 6.6 2.0 2.1 1.6 5.8 5.0 23.07585 

Rounded 7 2 3 2 6 5 25 
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Appendix B. Matlab Code 
Optimization Main Function and Constraints & Variable Functions 

function [X_end, F, exitflag, output] = optimization_EV(zip, p_lat, 
p_lng, demand, N, plots) 

%%%%%%%%%%%%%%%%%% Globals %%%%%%%%%%%%%%%%%%%%%%% 
% N = 5; % Number of charging stations 
B = 0.0001; %% fitting parameter 
P = [p_lat'; p_lng'; demand']; % Populations centers (lat, long) 

(j) 
 

%%%%%%%%%%%%% objective function %%%%%%%%%%%%%%%%%% 

avg = sum(demand) / N; 

ga_options = optimop-
tions(@ga,'NonlinearConstraintAlgorithm','penalty');%, 
'InitialPopulationMatrix', pop); 

lb_ga = [-117.2*ones(1, N), 32.55*ones(1, N), ones(1, N)]; 
ub_ga = [-117.1*ones(1, N), 32.75*ones(1, N), avg*N*ones(1, N)]; 
[X_end, ~] = ga(@(X) objective_ga(X), N*3, [], [], [], [], lb_ga', 

ub_ga', @(X) constraints_ga(X, P, B), ga_options); 
X_ga = [X_end(1,1:N); X_end(1,(N+1):(N*2)); X_end(1,(2*N+1): 

(N*3))]; 
 

lb = [-117.2*ones(1, N); 32.55*ones(1, N); ones(1, N)]; 
ub = [-117.1*ones(1, N); 32.75*ones(1, N); avg*N*ones(1, N)]; fmin-
con_options = optimoptions(@fmincon, 'MaxIterations', 

inf, 'MaxFunctionEvaluations', inf, 'Algorithm', 'interior-point'); 
[X_end, ~, ~, ~] = fmincon(@(X) objective(X, P), X_ga, [], [], [], 

[], lb, ub, @(X) constraints(X, P, B), fmincon_options); 
[X_end, ~, exitflag, output] = fmincon(@(X) objective(X, 

P), X_end, [], [], [], [], lb, ub, @(X) constraints(X, P, B), fmincon_options); 
F = sum(X_end(3,:)); 

 

if plots == 1 
figure; 
mapshow(zip, 'edgecolor', 'k', 'facecolor', 'none') 
hold on; 
scatter(p_lat, p_lng, 
'oc'); if size(X_end, 1) == 
3 

scatter(X_end(1,:), X_end(2,:), 20, 
X_end(3, :), '*', 'linewidth', 1.5); 

scatter(X_ga(1,:), X_ga(2,:), '.b', 'linewidth', 1.5); 
disp(sum(X_end(3, :))); 

else 
scatter(X_end(1,1:N), X_end(1,(N+1):(N*2)), 20, X_end(1, 

(2*N+1):(N*3)), '*', 'linewidth', 1.5); 
disp(sum(X_end(1,(2*N+1):(N*3)))); 

end 
end 

end 
function [W, dwdlat, dwdlng] = create_w(X, P, B) % weight function 

 

x_lat = X(1, :); 
x_lng = X(2, :); 
p_lat = P(1, :); 
p_lng = P(2, :); 

 

[x_lat_mesh, p_lat_mesh] = meshgrid(x_lat, p_lat); 
[x_lng_mesh, p_lng_mesh] = meshgrid(x_lng, p_lng); 
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d_lat = x_lat_mesh - p_lat_mesh; 
d_lng = x_lng_mesh - p_lng_mesh; 
D = d_lat.^2 + d_lng.^2; 
W = exp(-D./B); 

 

dwdlat = -2 .* d_lat .* W ./ B;  
dwdlng = -2 .* d_lng .* W ./ B; 

end 
function [g, h] = constraints(X, P, B) % scaled (Fmincon) x_n_i 

= X(3, :); 
p_o_i = P(3, :); 

 
[W] = create_w(X, P, B); 
g1 = ((p_o_i') - sum(x_n_i .*W, 2))/10; g2 = -1 + sum(W, 1)'; 
g = [g1; g2]; 
h = []; 

end 
function [f, df] = objective(X, P) % scaled (Fmincon) 

x_n_i = X(3, :); 
p_o_i = P(3, :); 
f = sum(x_n_i)/sum(p_o_i); 

end 
function [g, h] = constraints_ga(X, P, B) %unscaled (GA) 

Nx = length(X)/3; 
X_ga = [X(1, (1):(Nx));X(1, (Nx+1):(Nx*2));X(1, (Nx*2+1):(Nx*3))]; 
x_n_i = X(1, (Nx*2+1):(Nx*3)); 
p_o_i = P(3, :); 
[W, ~, ~] = create_w(X_ga, P, B); 
g1 = (p_o_i' -sum(x_n_i .* W, 2)); 
g2 = -1 + sum(W, 1)'; 
g = [g1; g2]; 
h = []; 

end 
function [f, df] = objective_ga(X) % unscaled (GA) 

Nx = size(X, 2)/3; 
x_n_i = X(1, (Nx*2+1):(Nx*3)); 
f = sum(sum(x_n_i)); 

end 

Outer Wrapper Function for Running Parame-Terization 

%%%%%%%%%%%%%% Population Data %%%%%%%%%%%%%%%% 
%%%% Full County 
% raw_data = xlsread('toy_data/san_diego_centers.xlsx', 
'san_diego_centers'); % full county 
% zips = shaperead('Full_data/USA_Counties.shp'); % full county 

 

%%%% Toy Problem 
raw_data = xlsread('toy_data/ 

san_diego_centers.xlsx', 'coronado'); % toy 
zips = shaperead('toy_data/2010_Census_5- di-

git_ZIP_Code_Tabulation_Areas.shp'); % toy 
 

%%%% Processing 
zip = zips(1); % creates a polgon 
p_lng = raw_data(:, 4); 
p_lat = raw_data(:, 5); 
demand = raw_data(:, 6); 

https://doi.org/10.4236/jtts.2024.141005


K. Sheth, D. Patel 
 

 

DOI: 10.4236/jtts.2024.141005 80 Journal of Transportation Technologies 
 

stats = zeros(200, 16); 
%%%% Function Call 
for N = 1:15 

plots = 0; %binary plot or not (1 if all plots) 
runs = 100; 
xs = zeros(300, N+3); 
for i = 1:runs 

p = (i)*3; 
[x, n, exitflag, ~] = optimization_EV(zip, p_lat, p_lng, 

demand, N, plots); 
xs([p-2,p-1, p], 4:(N+3)) = x; 
xs(p-2, 1) = i; 
xs(p-2, 2) = n; 
xs(p-2, 3) = exitflag; 
disp([N,i]); 

end 
writematrix(xs,'final_comparison.xls', 'sheet', sprintf('N= 

%f', N)); 
ns = xs(:,2); 
ls = ns(ns > 1); 
[m] = min(ls); 
I = find(ls==m); 
stat = [N; m; I]; 
stats(1:size(stat), N-2) = stat; 

end 
%%%% Summary Tab 
writematrix(stats,'final_comparison.xls', 'sheet', 'stats'); 

Random Multistart Generator for Inside the Is-Land/County Bounds 

function [x, y] = toy_multistart(N, zip) 
stBB = zip.BoundingBox; 
st_minlat = min(stBB(:,2)); 
st_maxlat = max(stBB(:,2)); 
st_latspan = st_maxlat - st_minlat; 
st_minlong = min(stBB(:,1)); 
st_maxlong = max(stBB(:,1)); 
st_longspan = st_maxlong - st_minlong; 
stX = zip.X; 
stY = zip.Y; 
x = zeros(1, length(st_minlong)); 
y = zeros(1, length(st_minlat)); 
for i = 1:N 

flagIsIn = 0; 
while ~flagIsIn 

x(i) = st_minlong + rand(1) * st_longspan; y(i) 
= st_minlat + rand(1) * st_latspan; flagIsIn 
= inpolygon(x(i), y(i), stX, stY); 

end 
end  

end 
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Appendix C. Base Case Results: Frequency of Minima 

Table 8. Breakdown of 100 runs for N = 6 stations. 

Minimum Frequency 

error 7% 

1499.94 19% 

1580.88 1% 

1600.75 10% 

1620.88 15% 

1641 - 4100 48% 

Appendix D. Constraint Activity and Spreading 

See the Figure 4 below for a visualization of how our constraints affect the 
spreading behavior of the stations. This explains our results for the toy problem, 
where most stations spread into the ocean before being snapped back onto roads. 
 

 
Figure 4. Constraint values under various geographical spreads. 
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