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ABSTRACT 
 

An important data-driven model is the artificial neural network. Artificial neural networks have been 
widely used in many domains of chemical processes due to its robustness, fault tolerance, self-
adaptive capability, and self-learning ability. For the chemical process with nonlinearity and strong 
coupling, artificial neural networks can model and control the process well and make up for the lack 
of traditional PID control technology. As a result, ANN has emerged as a significant positive trend 
for chemical process control. In this paper, the principle, development history, and common 
structure of artificial neural networks are first outlined. Then the role of artificial neural networks in 
chemical process control is introduced in three aspects: improved PID control, improved model 
predictive control, and for hybrid models. The important effect of artificial neural networks in 
chemical process control is reflected by comparison. Finally, it is proposed that chemical process 
control can be more developed by applying more deep learning algorithms and developing multiple 
neural networks and hybrid models in chemical process control. 
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1. INTRODUCTION 
  
Since the concept of “deep learning” was 
introduced, the development of artificial neural 
networks (ANN) has been in full swing. ANNs are 
nonlinear, adaptive information processing 
system composed of a large number of 
interconnected processing units. As an effective 
empirical modeling tool, ANNs have functions 
such as associative memory, nonlinear mapping, 
classification recognition, and optimization 
computation [1-3]. ANNs are "black box" model 
that do not require in-depth knowledge of the 
intrinsic connections and patterns of input and 
output data. With a large amount of data, a 
neural network model can be trained and 
validated, and then the model can make effective 
predictions of the output from new inputs [4,5]. 
As the core technology of artificial intelligence, 
ANN has been widely used in intelligent control, 
pattern recognition, and nonlinear optimization. 
  
The chemical industry is an important area for 
the application of ANNs. The data of chemical 
production processes is sea-quantized, high-

dimensional, strongly coupled, nonlinear， and 

dynamic. The complex data brings great 
difficulties to the optimal control and fault 
diagnosis of chemical processes. ANN has the 
advantages of processing such high-dimensional 
nonlinear data. ANN was first applied to chemical 
process fault diagnosis in 1988. Since then, ANN 
has gradually played an important role in CE 
fields such as chemical fault diagnosis, process 
control and optimization, physical property 
estimation, quality control, and cluster analysis 
[6,7]. 
  
Process control occupies an important position in 
the chemical process and is essential to reduce 
costs and increase efficiency and production 
stability in production. In the chemical process, a 
large number of control processes use PID 
control technology, which is a combination of 
proportional, integral and differential control 
algorithms. PID control has the characteristics of 
simple structure, easy realization, good control 
effect, and high steady precision [8]. In 
conventional PID control, there is a linear 
mapping relationship between the change in 
system characteristics and the control variables. 
However, many chemical processes are 
multivariable dynamic nonlinear systems with 
highly nonlinear and time-varying characteristics. 
Therefore, traditional PID control techniques are 
not effective in solving control problems for 
nonlinear chemical processes with large time 

delays. To improve the control performance of 
chemical processes, it is necessary to develop 
more accurate process models. Due to the 
complexity of chemical processes, it is difficult to 
obtain an accurate mathematical model to 
describe the process. Therefore, artificial neural 
networks, the "black box" modeling approach 
with arbitrary nonlinear mapping capability, 
strong fault tolerance, associative memory, and 
strong robustness, have been increasingly 
applied to chemical process control [9]. In this 
paper, the characteristics and development of 
artificial neural networks are sorted out, and how 
artificial neural networks are applied in chemical 
process control is introduced by cases. 
 

2. OVERVIEW OF ARTIFICIAL NEURAL 
NETWORKS 

 

2.1 Basic Principle and Characteristics of 
Artificial Neural Networks 

  
The artificial neural network is developed based 
on the research of the biological neural system. It 
is a distributed parallel information processing 
system built by abstracting and simplifying the 
structure of biological neural network and its 
information processing mechanism [10]. A 
routine neural network generally consists of four 
parts: nodes, connections between the nodes, 
the weights associated with each connection, 
and the recipe for obtaining outputs from the 
inputs of the nodes [11]. These components are 
also associated with the biological nervous 
system, such as weights corresponding to the 
synapses of neurons and output signals 
corresponding to the output pulses. A simple 
neural network structure is shown in Fig. 1. The 
basic network topology is formed by several 
connections between nodes, and the information 
is input and processed by several hidden layers 
according to certain rules, and then output by 
nodes [12]. 
 
Artificial neural networks work in the form of 
curve fitting, which is essentially an empirical 
modeling tool. Compared with other computing 
methods, ANN has the following features: (i) 
Massively parallel distributed processing. This 
enables it to process a large amount of high-
dimensional information simultaneously and 
quickly. (ii) Distributed storage. The data is 
stored in a dispersed form in different but 
interconnected neurons. This storage feature 
also makes ANN highly robust and able to draw 
appropriate conclusions from noisy data. (iii) The 
associative access makes it self-adaptive, self-
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Fig. 1. Structure of artificial neural network 
  
organizing, and self-learning. For example, ANN 
can adjust the strength of signals emitted by 
nodes by back propagation to correct for errors 
[13,14]. 
 

2.2 History of Artificial Neural Networks 
  
In 1943, neurobiologist Warren McCulloch 
cooperated with young mathematician Walter 
Pitts to study the action of nerve cells by using 
mathematical models. The concept of the 
artificial neural network was put forward and an 
artificial neural network based on the simple logic 
operation was established, that is, the threshold 
component model of neurons referred to as MP 
model. This model proves that artificial neural 
networks can calculate any arithmetic and logic 
function in principle [15]. In 1949, Hebb proposed 
that information in neural networks is stored by 
connecting weights and established Hebb rules 
[16]. Since then, the study of the adjustment 
algorithm of the weights has been carried out. In 
1958, Rosenblatt introduced the concept of 
"perceptron" based on the MP model with the 
addition of a learning mechanism. This neural 
network has self-organization and learning 
ability, which led to the first climax of neural 
network research [17]. In 1969, Minsky and 
Papert proved that neural networks can only deal 
with simple linear problems, and many complex 
functional relationships cannot be obtained 
through single-layer network training. At the 
same time, the actual effect of multi-layer 
networks is difficult to prove [18]. This conclusion 
brought the study of ANN to a low point for more 
than a decade. 
 
In 1974, Werbos put forward the principle and 
algorithm of back propagation, which provides a 
feasible way for training multilayer neural 
networks [19]. In 1982, John Hopfield proposed 
the Hopfield neural network, which made it 

possible for neural networks to solve complex 
problems and triggered the second climax of 
neural network research [20]. Hinton et al. 
proposed the restricted Boltzmann machine 
(RBM), then developed the deep Boltzmann 
machine (DBM) and deep confidence network 
(DBN) [21]. In 1986, Rumelhart and McCelland 
rediscovered the backpropagation algorithm of 
multilayer forward neural networks [22]. In the 
same period, Werbos solved the problem of 
weight adjustment by the exhaustive analysis of 
multilayer backpropagation, and also solved the 
problem of the limitations of ANN proposed by 
Minsky [23]. The radial basis function (RBF) 
proposed by Broomhead and Lowe, which 
simulates the local response properties of 
neurons, allows the network to have a fast 
learning convergence rate [24]. In 1987, IEEE 
held the first international academic conference 
on neural networks, with more than 2000 
scholars attending. In the 1990s, simpler 
methods such as support vector machines 
became more popular [25]. This method has no 
local optimal problem and can obtain ideal 
results in the case of fewer samples. Relatively, 
the computer performance and data size at that 
time could not support the training of large-scale 
neural networks. And the BP algorithm is prone 
to fall into local optimum solutions and overfitting 
when the number of hidden layers is too many. 
Neural networks have the disadvantages of 
vague theoretical basis, difficult optimization, and 
poor interpretability. These problems led neural 
network study to a low tide [26]. 
 
In 2006, Hinton and Salakhutdinov introduced 
the concept of "deep learning", which effectively 
solved the problem of difficult training of deep 
neural networks by "pre-training" and "fine-
tuning" [27]. With the significant success of deep 
neural networks for tasks such as speech 
recognition and image classification [28,29], as 
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well as the rapid increase in computer computing 
power and the accumulation of large-scale data, 
ANN has ushered in another climax of 
development and has a wide range of 
applications. The main application areas are 
intelligent driving [30,31], automatic control of 
power systems [32,33], signal processing 
[28,34], health care and medical treatment 
[35,36], process control and optimization [37-39], 
image processing [40,41] etc. For example, 
artificial neural networks were used by                   
Dalibor Petkovic et al. to optimize biodiesel 
emission parameters, estimate wind speed 
fluctuations, and predict calorific value of 
biomass [42-44]. 
 

2.3 Classification of Artificial Neural 
Networks 

  
There are various ways to classify neural 
networks. They can be classified into continuous 
and discrete networks by variable type; 
feedforward and feedback networks by topology; 
and supervised and unsupervised learning 
networks by learning rules. Each type of ANN 
has its own characteristics. When applying, 
several factors such as the number of variables 
for the inputs and outputs of the process and the 
purpose of the application need to be considered 
in order to select the appropriate structure and 
method to increase the accuracy of the model 
[1]. 
  
With the development of ANN, there are 
hundreds of neural network models now [45], 

and some common forms of ANN will be 
introduced as follows. 
 
2.3.1 Multilayer perceptron (MLP) 
  
The multi-layer perceptron, i.e., feedforward 
neural network, has the structure shown in Fig. 2 
[46]. Neurons in one layer are connected to all 
neurons in the next layer. Information is passed 
as indicated by the arrows in the directed 
diagram, so the data flows in one direction. The 
most important feature of this neural network is 
that it can learn and store a large number of 
highly nonlinear mappings without building a 
mathematical equation to describe the mapping 
relationships in advance, exhibiting excellent 
nonlinear matching and generalization 
capabilities [47,48]. The structure of MLP 
consists of input layers, hidden layers, and 
output layers. Among them, the number of 
neurons (nodes) in the input and output layers is 
determined by the actual situation of the problem 
under study, while the number of nodes in the 
hidden layer is determined by you. In an MLP, 
the weights of the connections start out as 
random values. Training is required to make the 
weights into suitable values. The common 
algorithms used for weight adjustment during 
training include back propagation algorithm (BP), 
gradient covariance descent (GCD), and 
Levenberg-Marquardt algorithm (LMA). The BP 
algorithm has become the most widely used 
algorithm for MLP due to its solid theoretical 
basis, rigorous derivation process, clear physical 
concepts, and high generality [6]. 

 

 
 

Fig. 2. The general structure of feed-forward neural networks 
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Fig. 3. Basic neural training method 
  
The BP algorithm is based on the bias between 
the simulated value and the target value 
generated by forward propagation, and it 
continuously learns and corrects the weights and 
thresholds between the layers to minimize the 
error. It consists of a forward propagation 
process and an error backward propagation 
process. Forward propagation process: The 
control sample is introduced to the input layer 
and then transferred to the implicit layer for 
processing, and finally reaches the output layer. 
If the output of the output layer and the expected 
output do not meet the requirements, the whole 
network is transferred to the back propagation 
stage. Error back propagation process: After the 
output error is obtained, the error is transmitted 
from the output layer to the input layer and the 
weights and thresholds are adjusted according to 
the first-order derivatives of the error on the 
weights to reduce the error, which is the back 
propagation of the error. The whole transfer 
process is repeated until the target error is 
reached or the set number of learning times is 
reached, and the neural network ends the 
training [24,49]. Fig. 3 shows the basic training 
logic of ANN [50]. The BP algorithm is a 
supervised learning algorithm because it needs 

to constantly compare the output with the target 
value during the training process. 
 
2.3.2 Radial Basis Function (RBF) networks 
  
The RBF neural network is a three-layer 
feedforward neural network, and its structure is 
shown in Fig. 4. The transformation of the RBF 
neural network from the input layer to the hidden 
layer is nonlinear. The function used by the 
nodes in the hidden layer is the radial basis 
function, which is a non-negative nonlinear 
function with radially symmetric decay to the 
centroid of a local distribution. The commonly 
used radial basis functions are Gaussian 
function, thin-slab spline function, etc. 
Considering that the linear combination of signals 
from the hidden layer is sufficient to model any 
nonlinear function, the output nodes adopt linear 
activation functions [45,46,51]. 
 
When training an RBF neural network, the 
number of input and output units of the network 
is determined by the training samples, and the 
hidden layer has only one layer. The parameters 
to be determined include the number of cells in 
the hidden layer, the center vector and width 

 

 
 

Fig. 4. Topological structure of RBF neural network 



 
 
 
 

Wang and Chen; AJRCOS, 14(1): 22-37, 2022; Article no.AJRCOS.88606 
 

 

 
27 

 

parameters needed for the Gaussian                    
function, and the weights of the connections [52]. 
Compared with BP neural networks, RBF                    
neural networks do not have the problem of                   
local minima and have a faster learning speed 
[53].  
 
2.3.3 Stacked neural networks 
  
ANN is a data-driven model. Sometimes it is 
difficult to make suitable predictions due to the 
size limitation of the training set and overfitting, 
etc. [54]. Therefore, multiple neural networks with 
different structures can be combined into a 
whole, called ensemble neural network or stack 
neural network. In stacked neural networks, 
multiple neural networks have the same relation, 
but the structure and weights of neural networks 
are different. Learning methods and training sets 
may also be different [55]. Different neural 
networks give different results and these results 
are combined to get the output of the stack 
neural network. By this method, the final output is 
better than the outputs of each neural network, 
and therefore the stability of the neural network 
can be improved. An important part of stacked 
neural networks is the method of combining 
neural networks. There are various methods of 
combining neural networks, such as linear, 
nonlinear, super Bayesian, and stacked 
generalization [50]. 
  
Linear combinations of neural networks are more 
common. There are generally two types of linear 
combinations: simple averaging and weighted 
averaging. The common weighted averaging 
methods are principal component regression 
(PCR) and multiple linear regression (MLR). 
Non-linear combination methods are more 
complex, including majority voting, Tumer, and 
Ghosh method, etc. [56]. The structure of the 

stacked neural network is shown in Fig. 5 
[57,58]. 
 
2.3.4 Artificial neural networks for hybrid 

modeling 
  
The artificial neural network model is a data-
driven model, which is obtained based on a large 
amount of data and certain algorithms. It does 
not require a lot of process mechanisms in the 
training phase and has the advantages of low 
computational effort, fast solution speed, and 
high accuracy in the range of data established by 
the model when applied. However, the 
complexity of the data affects the modeling and 
model performance, while the low interpretability 
and extrapolation of the neural network model 
become its disadvantages. Therefore, by 
combining the neural network model with the 
mechanistic model of the process, better model 
performance can be obtained by taking 
advantage of different sub-models [59,60]. 
Compared with the mechanism model, the hybrid 
model is easier to build and can accelerate the 
computation speed by replacing part of the 
mechanism model, which is beneficial to online 
assignments. Compared with the neural network 
model, the hybrid model brings certain physical 
meaning to the structure and parameters of the 
model, which is convenient for making decisions 
based on process knowledge, and also facilitates 
the downscaling and updating of the model to 
improve the applicability of the model. 
  
The hybrid model has three structures: series, 
parallel, and hybrid. As shown in Fig. 6, FPM is 
the first-principles model, and DM is the data-
driven model. When building hybrid models in 
general, a simplified dynamics model is built with 
FPM, while ANN is used to provide more 
accurate dynamics parameters for FPM [61]. 

 

 
 

Fig. 5. Stacked neural networks 
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Fig. 6. Schematic of the structure of the hybrid model 
 

3. APPLICATION OF ARTIFICIAL 
NEURAL NETWORK IN CHEMICAL 
PROCESS CONTROL 

 

3.1 Neural Network-Based PID Control 
  
Chemical processes are often complex time-
varying nonlinear systems, and traditional PID 
control faces challenges in the face of such 
systems. Combining ANN with PID control, using 
the learning function of ANN to determine and 
adjust parameters of the PID control can 
effectively improve the performance of traditional 
PID control, and finally, make the control system 
with good self-adaptive or self-tuning ability [14]. 
At this point, the controller can be divided into 
two parts: one part is the structure of a traditional 
PID controller, which processes the deviation 
signals of the system by proportional, integral, 
and differential processing, and the results are 
weighted and summed by proportional, integral 
and differential coefficients respectively; the 
other part is a neural network model, which 
provides a part of the required parameters 
through iterative learning and adjustment based 
on the input and output information of the system 
[8]. 
  
Cheng et al. [62] optimized PID control using BP 
neural network to make the control system self-
tuning. The control system comes from the FCC 

light gasoline etherification process. PID is 
utilized to control the concentration of light 
gasoline in this process. The control flow is 
shown in Fig. 7. θ and Φ represent the given and 
actual values of the flow rate of FCC gasoline, 
and the deviation between the two is denoted by 
e. In each sampling interval, PID controls the 
flow rate of gasoline by controlling the valve. To 
achieve a good control effect, the most    
important thing is to adjust the proportion of 
proportional, integral, and differential in the 
controller to find the optimal ratio of valve 
opening. Cheng et al. used a BP neural network 
to adjust the parameters Kp, Ki, and Kd of PID 
control.  
 
Cheng et al. built a three-layer BP neural 
network, as shown in Fig. 8. The input layer 
depends on the state of the system, such as the 
inputs and outputs of the system at different 
moments, and the outputs are the three 
important parameters Kp, Ki, and Kd. The neural 
network continuously adjusts weights and biases 
through learning to achieve adaptive adjustment 
of PID control parameters. By building a 
simulation process with MATLAB, the 
researchers demonstrated that compared to 
traditional PID control, BP neural network-based 
PID control has smaller overshoot, shorter 
adjustment time, smaller steady-state error, and 
enhanced immunity to disturbances. 

 

 
 

Fig. 7. Control principle of the gasoline concentration [62] 
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Fig. 8. Structure of BPNN 
  
Similarly, Zhang et al. [63] used BP neural 
network to PID temperature control system of a 
beer fermentation tank, and established NNPID 
system as shown in Fig. 9. The BP neural 
network uses a sigmoid function as the activation 
function for the hidden layer and a non-negative 
sigmoid function as the activation function for the 
output layer. The momentum term is also added 
to prevent falling into a local minimum. The 
results of the simulation are shown in Fig. 10, 
where BPPID exhibits better static and dynamic 
performance. Zhu et al. [64] applied similar 
control systems to the main steam temperature 
system of boilers, and achieved good results. 
Ubaid et al. [65] used an inverse neural network 
in the temperature control system of a bioreactor 
for ethanol production and improved the steady-
state performance of the system. 

3.2 Neural Network-Based Model 
Predictive Control 

  
In addition to combining traditional PID control 
techniques with ANN, more advanced control 
techniques have been gradually developed to 
achieve better control performance. Among 
them, model predictive control (MPC) has been 
widely used in plants since the late 1970s [66]. 
MPC is a class of computer control algorithms 
that directly use dynamic models to predict the 
future behavior of processes [67]. MPC 
manipulates controlled variables through 
predictions of the process model so that the 
future state of the process meets certain 
requirements, such as maximizing yield, 
minimizing cost, etc. The performance of MPC 
depends heavily on the quality of the process 

 

 
 

Fig. 9. The structure of NNPID 
 

 
 

Fig. 10. The result of simulation 
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model, so the development of an effective 
process model is an important task required for 
MPC. In comparisons conducted by many 
researchers, MPC has better performance than 
PID control [68,69]. 
  
MPC can be divided into two categories: linear 
MPC and nonlinear MPC. Linear MPC is simpler 
to compute. However, for systems with nonlinear 
characteristics, nonlinear MPC has higher 
modeling accuracy. When MPC uses 
optimization functions, a large number of iterative 
operations need to be performed. The more 
complex the process model is, the more 
computation time is required to perform the 
optimization, which becomes a limiting factor in 
applying MPC [70]. For some chemical 
processes with many operating variables and a 
high degree of nonlinearity, real-time optimization 
by MPC is less effective [71]. Therefore, the 
MPC can play a better role in the chemical 
process with ANN's ability to predict future 
behavior with high accuracy. 
  
Karol and Martin [72] applied ANN to a fixed 
univariate MPC system. The model predictive 
controller uses an algorithm called receding 
horizon policy proposed by Mayne et al. [73]. The 
repeated complex computation in the algorithm 
brings difficulties to industrial applications. 
Therefore, Karol et al. used a neural network 
model instead of a controller. The model takes 
the process variable x(t) as input and the 
manipulated variable u(t) as the training target. 
The initial training set is 
 

                                                    (1) 
 
For each data point in the training set, the 
corresponding control action is calculated to form 
the set  .   and   together form the learning 
data set for the hidden layer nodes of the neural 
network model. Eventually all nodes are 
aggregated. Karol et al. tested the performance 
of the experimental model with a multi-
component chemical reactor. Reaction is 
     . The process variable is the 

concentrations, and the feed concentration of 
component C is the manipulation variable. Thus, 
the input layer of the neural network includes 
three nodes and the output layer is one node. 
There are four hidden layers and each hidden 
layer has four nodes. 600 simulations were 
conducted after the model training, and the 
results are shown in Fig. 11. The controller 
performed with the optimality decrease below 1% 
in 94.5% of cases. 
 
In 2020, Shin et al. [74] combined dynamic 
neural networks with MPC to develop a neural 
network model predictive control system 
(NNMPC). It was used in the control of a 
depropane tower to ensure that the variables 
would reach the set point smoothly in case of 
disturbances in the distillation system. The 
distillation process of the depropane tower is a 
typical multivariate nonlinear process. The 
operating variables in the process can be seen in 
Table 1. The ANN used is a three-layer 
feedforward neural network. The input layer 
consists of 14 nodes and the hidden layer 
consists of 15 nodes. The output layer includes 2 
nodes, that is, the temperature of a specific tower 
plate and the propane molar fraction at the top of 
the tower. The model design process started with 
a mathematical model of the distillation column 
using Aspen HYSYS, and the neural network 
model was trained with the data generated from 
the dynamic simulation. After training was 
completed, the ANN model was integrated with 
the MPC system. The control flow of the system 
can be seen in Fig. 12. 
 
Shin et al. compared the control performance of 
the NNMPC and PI controllers. As shown in Fig. 
13, both control schemes were effective in 
ensuring the quality of the propane product 
ground when the disturbance occurred. However, 
the NNMPC was able to reach the set point 
faster, while the PI controller had a longer 
oscillation control time. Therefore, the NNMPC 
exhibits superior performance over the PI 
controller. 

 
Table 1.  Operational variables in the depropanizer 

 

Manipulated variables (MVs) Disturbance variables (DVs) Controlled variables (CVs) 

Condenser duty Feed composition Tower top pressure 
Reboiler duty Feed flow rate Reflux drum liquid level 
Reflux flow rate Feed temperature Reboiler liquid level 
Overhead flow rate  Propane mole fraction in the 

overhead 
Bottom flow rate  Tray temperature 
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Fig. 11. Control performance of the NN-based controller with various initial conditions 
  

 
 

Fig. 12. Data flow diagram of NNMPC system 
 

3.3 Neural Network-based Hybrid Model 
  

As explained in Section 2.3.4, the combination of 
first-principles models (FPM) and data-driven 
models (DM) such as ANN can better model 
complex nonlinear, time-varying chemical 
processes [42]. These FPM-DM hybrid models 

with different structures are called "grey box" 
models. They avoid both the difficulties of 
building mechanistic models of chemical 
processes and the excessive desire for data by 
neural network models and can be better used in 
chemical process control [75]. 
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Fig. 13. Disturbance rejection and set-point tracking with NNMPC and PI controller 
 
Xiong and Jutan [76] compared different control 
methods for temperature control of the 
continuous stirred tank (CST). First, there is the 
GMC controller using the mechanistic model. 
The approximate model of CST is expressed as 
a linear model: 
 

     
                   

                                 (2) 

  

The control performance of the GMC controller 
using the linear model is shown in Fig. 14. The 
controller can perform well in the range of 40°C 
to 50°C, but as the set point gradually moves 
away from this range, the system gradually loses 
control. At 70°C, the controller completely failed. 
From this figure, we can also see that this linear 
model is only suitable to describe the variation of 
CST in the range of 40°C to 50°C. 
 

Then a grey-box model GMC controller with the 
parallel structure combined with a neural network 
is used. Fig. 6 is a diagram of the structure. The 
control performance is shown in Fig. 15. The 
peak value that appears at the beginning of the 
experiment is due to the initial weights of the 
ANN being randomly given. Although the 
application range of the linear model is from 

40°C to 50°C, this controller can still complete 
the task at 60°C to 70°C. This is because the 
self-learning capability of the ANN model 
compensates for the deficiency of the linear 
model. 
 
From the comparison of the two controllers, the 
complementary advantages of the artificial neural 
network-based hybrid model (gray-box model) 
emerge. The combination of accuracy and model 
applicability has led to many applications of the 
hybrid model. For example, a tandem mixing 
kinetic model under the framework of a 
continuous stirred reactor (CSTR) was proposed 
by Chen et al. [77] The mechanistic model in the 
model was chosen as the easily determined 
linear CSTR mass balance equation, and then 
the more complex nonlinear part of the model 
was completed using an ANN model. The hybrid 
model effectively reduces the dimensionality of 
the input variables of the model, simplifies the 
model structure, and has good interpretability. 
The model was used in in-line internal model 
control (IMC) and used in an industrial distillation 
tower. The results show that under closed-loop 
IMC control, the spread of the error distribution 
around the setpoint is three times less. 

 

 
 

Fig. 14. CST temperature under GMC controller with linear model 
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Fig. 15. Controlled CST temperature profile using grey-box model 
  

4. CONCLUSION 
  
This paper reviews the contribution of artificial 
neural networks to achieving control objectives 
for chemical nonlinear processes by assisting 
PID control for parameter self-tuning, providing 
process models for model predictive control, and 
participating in constituting hybrid models. It has 
been proved that artificial neural networks have 
played a significant role in the modeling and 
control of chemical processes, showing superior 
performance to the traditional control techniques 
for chemical processes. In particular, methods 
such as using stacked neural networks

[33]
 and 

hybrid models to refine and complement neural 
networks may play a greater role in chemical 
processes. However, the structures of neural 
networks applied in chemical processes are 
relatively simple and still have great potential for 
development. The development and application 
of more complex and expressive models, along 
with enhanced database extraction for chemical 
processes, can take neural networks further in 
the field of chemical process modeling and 
process control. 
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