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Abstract

The power series generalised power Weibull class of distributions were developed in this study
by compounding the power series family of distributions and the generalised power Weibull
distribution. The statistical properties of this new class were derived. Maximum likelihood
parameter estimators were derived for the parameters of the power series generalised power
Weibull class of distributions. Four sub-families of distributions were developed from the power
series generalised power Weibull class of distribution; the generalised power Weibull geometric
distribution, generalised power Weibull Poisson distribution, generalised power Weibull binomial
distribution and the generalised power Weibull logarithmic distribution. The hazard rate and
probability density function plots of the four sub families of distributions showed that, they can
model both monotonic and non-monotonic lifetime data. Monte Carlo simulations performed on
these sub-distributions showed that, their estimators were consistent estimators. Application of
these sub-distributions to failure data from air conditioning system of an aircraft showed that,
the generalised power Weibull geometric distribution provides a better fit to the data. Also, the
generalised power Weibull Poisson distribution provides a better fit to the data on service times
of 63 aircraft.
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1 Introduction

In reliability and survival modelling, probability distributions are usually used for modelling time
to failure data. In probability distribution theory, significant efforts have been made in developing
new classes of standard statistical distributions for many lifetime situations. Nonetheless, there are
several significant situations where empirical data set do not follow these standard and traditional
statistical distributions. Also in reliability and biological studies, a component or system may
contain sub-systems connected in series with each of the sub-systems functioning independently and
with their failure rate following independent distributions. For such system, the main component
will fail if any or all of the sub-systems fails. There are however limited statistical distributions
developed for modelling lifetime data from such systems in series. Also, there is a possibility
that some lifetime data sets obtained from such systems might not follow any of the existing
distributions. This might be due to the fact that, the time of life or failure can have different
interpretations depending on the area of applications [1]. Hence, there is the need to generate
more flexible distributions for modelling the failure rate of various kinds of random variables from
components connected in series.

One approach of achieving this is by compounding two or more distributions. This technique allows
for greater flexibility of the tails of a distribution and can be used for engineering and biological
applications. Besides, compounding families might be suitable for complementary risk problems
based on the presence of latent risks. The compounding technique was pioneered by Adamidis and
Loukas [2]. Compounding two or more distributions have been shown to be very useful in discovering
various skewed and tailed properties of many distributions and for improving the goodness-of-fit of
the traditional distributions Cordeiro et al. [3].

This study developed the power series generalised power Weibull (PGPW) class of distributions.
This class of distributions was developed on the assumptions that, the failure rate associated with
the two sub-components are independent random variables.

The generalized power Weibull (GPW) model derived by Bagdonavicius and Nikulin [4] is a
modification of the Weibull distribution on the bases of accelerated failure time models. The GPW
distribution was developed by Bagdonavicius and Nikulin [4] for building accelerated failure time
models to investigate the dependence of a lifetime distribution on prognostic variables. Nikulin and
Haghighi, [5] showed that, the hazard rate of the GPW model can be constant, monotonically and
non-monotonically shaped. Lai [1] described the GPW distribution as one of the generalisations of
the Weibull model which is mostly essential to describe the non-monotonic nature of the observed
hazard rates. On the concept of exponentiated distributions, Fernando et al. [6] obtained the
exponentiated generalised power Weibull distribution. If T follows the GPW distribution, then its
cumulative distribution function (CDF), probability density function (PDF) and hazard functions
are given respectively as;

F (t) = 1− e(1−(1+λtγ)θ), t > 0, γ > 0, θ > 0, λ > 0, (1.1)

f(t) = λγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ), t > 0, (1.2)

and
h(t) = λγθtγ−1(1 + λtγ)θ−1, t > 0, (1.3)

where γ represents the scale parameter and λ, θ represents the shape parameters.

The power series class is a technique of deriving new distributions. Several distributions have been
derived using the power series approach. Some of these are; Chahkandi and Ganjali [7] proposed
the exponential power series family. Eisa and Mitra [8]’s exponentiated Weibull power series class of
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distributions was gotten by compounding the exponentiated Weibull and power series distributions.
Others are Jose et al. [9]’s complementary exponential power series distribution with increasing
failure rate which was introduced as a supplement to the exponential power series distribution
proposed by Chahkandi and Ganjali [7]. Baitshephi et al. [10]. Webull-G Power Series family of
distributions among others.

Let N be the number of independent subsystems of a series system functioning at a given time.
Then the zero truncated power series distribution has probability mass function (PMF) given as;

P (N = n) =
anα

n

C(α)
, n = 1, 2, .... (1.4)

C(α) =

∞∑
i=1

anα
n, (1.5)

where an > 0, α ∈ (0, s), an is the coefficient of the power series, C(α) is the generating function
and s is the parameter space. The power series family are; binomial (Bin), Poisson (Poi), geometric
(Geo) and logarithmic (Log) distributions. Some useful quantities of this family are;

Table 1. Power series family

Dis an C(α) C′(α) C′′(α) C′′′(α) s C−1 α

Geo 1 α(1 − α)−1 (1 − α)−2 2(1 − α)−3 6(1 − α)−4 1 α(α + 1)−1 (0, 1)

Poi 1
n!

eα − 1 eα eα eα ∞ log(α + 1) (0,∞)

Log n−1 − log(1 − α) (1 − α)−1 (1 − α)−2 2(1 − α)−3 1 1 − e−α (0, 1)

Bin
(
M
n

)
(1 − α)m − 1 m

(1−α)1−m
m(m−1)

(1−α)2−m
m(m−1)(m−2)

(1−α)3−m ∞ (α − 1)
1
m − 1 (0,∞)

2 The Power Series Generalised Power Weibull Class of
Distributions

Consider N to be a discrete random variable from the power series distribution (truncated at zero)
and N gives the number of failures of system with independent subsystem functioning in series at
a given point in time with PMF given in equation (4).

Assume also that, T1, T2, ..., TN represents the lifetime failures associated with this system of
independent and identically distributed continuous random variables following the GPW distribution
with CDF in equation (1). Then Ti, i = 1, ...., N gives the time to failure of the ith series subsystem.
Since the subsystems are in series, T1 is defined by;

T(1) = min(T1, T2, ...., TN ). (2.1)

Then the conditional CDF of T(1)|N=n is given as;

FT(1)|N=n(t) = 1−
n∏

i=1

[1− Fi(t)]. (2.2)

Hence,

FT(1)|N=n(t) = 1−
[
e[1−(1+λtγ)θ ]

]n
, t > 0. (2.3)

Proposition 1. The marginal CDF of T(1) is given by;

F (t;α, λ, γ, θ) = 1−
C
[
αe[1−(1+λtγ)θ ]

]
C(α)

, t > 0, α > 0, γ > 0, θ > 0. (2.4)
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Proof. Using the concept of compounding,

F (t;α, λ, γ, θ) =

∞∑
n=1

P (N = n)FT(1)|N=n(t). (2.5)

Inputting P (N = n) from the power series family and FT(1)|N=n(t), we have;

F (t;α, λ, γ, θ) =

∞∑
n=1

[
1−

(
e(1−(1+λtγ)θ)

)n]
× anα

n

C(α)

=

∑∞
n=1 anα

n∑∞
n=1 anαn

−
∞∑

n=1

anα
n

C(α)
en(1−(1+λtγ)θ)

= 1−

∑∞
n=1 an

[
αe(1−(1+λtγ)θ)

]n
C(α)

.

Since C(α) =
∑∞

n=1 anα
n, the PGPW class of distributions has a CDF given as;

F (t;α, λ, γ, θ) = 1−
C
[
αe[1−(1+λtγ)θ ]

]
C(α)

, t > 0, α > 0, γ > 0, θ > 0. (2.6)

The PDF of the PGPW class of distributions is given as;

f(t) = αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)
C

′
[
αe[1−(1+λtγ)θ ]

]
C(α)

, t > 0, (2.7)

where α > 0, λ > 0 are scales parameters and γ > 0, θ > 0 are shape parameters.
The survival function s(t) and hazard function of the PGPW class of distributions are given
respectively as;

s(t) =
C
[
αe(1−(1+λtγ)θ)

]
C(α)

, t > 0, (2.8)

and

h(t) = αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)
C

′
[
αe[1−(1+λtγ)θ ]

]
C
[
αe(1−(1+λtγ)θ)

] , t > 0. (2.9)

From the PGPW class of distributions, three sub-distributions can be developed. Thus;

• The power series Weibull distribution (that is when θ = 1 ) with CDF given as;

FPW (t) = 1−
C
[
αe−λtγ

]
C(α)

. (2.10)

• The power series exponential distribution (that is when θ = 1 and γ = 1) with CDF given
as;

FPE(t) = 1−
C
[
αe−λt

]
C(α)

. (2.11)

• The power series NH distribution (that is when γ = 1) with CDF given as;

FPNH(t) = 1−
C
[
αe(1−(1+λt)θ)

]
C(α)

. (2.12)
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Proposition 2. For α → 0, the GPW is a limiting distribution of the PGPW class of distributions.

Proof. Using the CDF of the PGPW class of distributions, we obtain the limits as;

lim
α+→0

(F (t)) = 1− lim
α+→0

C
[
αe[1−(1+λtγ)θ ]

]
C(α)

.

Using C(α) =
∑∞

n=1 anα
n, we have;

lim
α+→0

F (t) = 1− lim
α+→0

∑∞
n=1 anα

nen[1−(1+λtγ)θ ]∑∞
n=1 anαn

.

Using the concept of the L’ Hopital rule to simplify, we obtain

lim
α+→0

F (t) = 1− lim
α+→0

∑∞
n=1 nanα

n−1en[1−(1+λtγ)θ ]∑∞
n=1 nanαn−1

.

Hence,

lim
α+→0

F (t) = 1− e[1−(1+λtγ)θ ].

This is the CDF of the GPW.

Proposition 3. The density function of the PGPW class of distributions has an expanded linear
representation of the form;

f(t) = nλγθ

∞∑
n=1

P (N = n)tγ−1(1 + λtγ)θ−1en[1−(1+λtγ)θ ]. (2.13)

Proof. Substituting C′(α) =
∑∞

n=1 nanα
n−1 into the PDF of the PGPW class of distributions, we

have;

f(t) =
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ) ×

∑∞
n=1 nan

[
αe[1−(1+λtγ)θ ]

]n−1

C(α)
,

which is further simplified into;

f(t) = λγθ
∞∑

n=1

nanα
n

C(α)
tγ−1(1 + λtγ)θ−1 × en[1−(1+λtγ)θ ].

but P (N = n) = anαn

c(α)
. Therefore,

f(t) = nλγθ

∞∑
n=1

P (N = n)tγ−1(1 + λtγ)θ−1en[1−(1+λtγ)θ ].

2.1 Statistical Properties of the PGPW class of distribution

The properties considered are; the quantile function, ordinary (non-central) moments, moment
generating function, order statistics, incomplete moment, mean deviation, median deviation, Lorenz
and Bonferron curves, mean residual life and stochastic ordering property.
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2.1.1 Quantile function of the PGPW class of distribution

The quantile function can be used for generating random numbers from a given distribution. It
can serve as an alternative way of describing a probability distribution other than the probability
density function, CDF or characteristic function.

Proposition 4: The quantile function of the PGPW class of distributions is;

QF (p) =


[
1− log

(
C−1(1−p).C(α)

α

)]1/θ
− 1

λ


1/γ

, (2.14)

where C−1(.) is the inverse of C(.) and pϵ[0, 1].

Proof. By definition, the quantile function is defined as; F (Xp) = P (x ≤ xp) = p. Thus by
setting, QF (p) = p in the marginal CDF of the PGPW, we have,

1−
C
[
αe[1−(1+λtγ)θ ]

]
C(α)

= p.

To make t the subject, we first make the exponent function the subject, hence we have;

e[1−(1+λtγ)θ ] =
C−1(1− p).C(α)

α
.

Taking logarithm on both sides and making t the subject gives the quantile function as,

QF (p) =


[
1− log

(
C−1(1−p).C(α)

α

)]1/θ
− 1

λ


1/γ

.

Using the quantile function above, the median of the PGPW class of distributions evaluated at
p=0.5 is;

QF (0.5) =


[
1− log

(
C−1(0.5).C(α)

α

)]1/θ
− 1

λ


1/γ

. (2.15)

2.1.2 Moments of the PGPW class of Distributions

This section presents the moments of the PGPW class of distributions.

Proposition 5. The rth non-central moment of the PGPW class of distributions is given as;

U
′
r =

∞∑
n=1

∞∑
j=1

λ
−r
γ P (N = n)en(−1)j

(
r
γ

j

)
n
−
(

r−γ(j−θ)
θγ

)
Γ

[(
r − γ(j − θ)

γθ
, n

)]
, (2.16)

where Γ
[(

r−γ(j−θ)
γθ

, n
)]

is a complementary incomplete gamma function.

Proof. By definition, The rth non-central moment of a random variable is given as;

µ
′
r =

∫ ∞

−∞
trf(t)dt.
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For the PGPW class,

µ
′
r =

∫ ∞

0

tr
∞∑

n=1

P (N = n)g1(t)dt.

Substituting the linear expanded form of the PDF of the PGPW class of distributions, we have;

µ
′
r =

∫ ∞

0

trλγθn
∞∑

n=1

P (N = n)tγ−1(1 + λtγ)θ−1en[1−(1+λtγ)θ ]dt

= λγθn

∞∑
n=1

P (N = n)

∫ ∞

0

trtγ−1(1 + λtγ)θ−1en[1−(1+λtγ)θ ]dt.

Further simplifying using integration by substitution, we obtain;

µ
′
r =

∞∑
n=1

P (N = n)enλ
− r

γ

∫ ∞

n

((u
n

) 1
θ − 1

) r
γ

e−udu.

Using the binomial expanded form to further simplify we obtain the moments as;

µ
′
r =

∞∑
n=1

∞∑
j=1

λ
−r
γ P (N = n)en(−1)j

(
r
γ

j

)
n
−
(

r−γ(j−θ)
θγ

)
Γ

[(
r − γ(j − θ)

γθ
, n

)]
.

2.1.3 Moment Generating Function of the PGPW class of distributions

The moment generating function (MGF) are distinct functions used to determine the moments of
a random variable.

Proposition 6. The MGF of the PGPW class of distributions is given as;

Mt(z) =
∞∑

n=0

∞∑
j=1

∞∑
r=0

Zr

r!
en(−1)j

(
r
γ

j

)
n
−
(

r−γ(j−θ)
θγ

)
P (N = n)Γ

[(
r − γ(j − θ)

γθ
, n

)]
. (2.17)

Proof. By definition MGF is given as;

Mt(z) =

∫ ∞

0

etzf(t)dt.

Using Taylor series to expand we have

Mt(z) =

∞∑
r=0

zr

r!
µ

′
r.

Inputting µ
′
r we obtain the MGF.

2.1.4 Order Statistics of the PGPW class of distributions

Let X1:n ≤ X2:n ≤ ... ≤ Xn:n be a random sample of size n, then the PDF of the pth order statistic
is given as;

fp:n(t) =
n!

(n− p)!(p− 1)!
[F (t)]p−1 [1− F (t)]n−p f(t). (2.18)

Assuming X1:n ≤ X2:n ≤ ... ≤ Xn:n comes from the PGPW class of distributions, then;

fp:n(t) =
n!

(n− p)!(p− 1)!
f(t)

1− C
[
αe(1−(1+λtγ)θ)

]
C(α)

p−1 C
[
αe(1−(1+λtγ)θ)

]
C(α)

n−p

. (2.19)
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Proposition 7. The PDF of the largest order statistics of the PGPW class of distributions is given
as;

fp:n(t) = nαλγθtγ−1(1+λtγ)θ−1e(1−(1+λtγ)θ)

C′
[
αe(1−(1+λtγ)θ)

]
C(α)

1− C
[
αe(1−(1+λtγ)θ)

]
C(α)

n−1

.

(2.20)
Proof. For the largest order statistics, p = n, hence;

fp=n(t) = nf(t)

1− C
[
αe(1−(1+λtγ)θ)

]
C(α)

n−1

.

Inputting the PDF of the PGPW class of distributions, we obtain the largest order PDF.

Proposition 8. The PDF of the smallest order statistic of the PGPW class of distributions is
given as;

fp:1(t) = nαλγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)

C′
[
αe(1−(1+λtγ)θ)

]
C(α)

C
[
αe(1−(1+λtγ)θ)

]
C(α)

n−1

.

(2.21)
Proof. For the smallest order statistic, p = 1, hence we have;

fp:1(t) = nf(t)

C
[
αe(1−(1+λtγ)θ)

]
C(α)

n−1

.

Inputting the PDF of the PGPW class of distributions, the smallest order PDF is obtained.

2.1.5 Incomplete Moments, mean deviation and median deviation

Incomplete moment plays a vital role in computing the mean deviation, median deviation, inequality
measures and mean residual life of the distribution of a random variable. Incomplete moments can
also be used to describe the shape of a distribution of a random variable.

Proposition 9. The rth incomplete moment of the PGPW class of distributions is given as;

Mr(y) =
∞∑

n=1

i∑
j=1

λ
− r

γ enP (N = n)(−1)j
(

r
γ

j

)
n
−
(

r−γ(j−θ)
γθ

)

×
[
Γ

(
r − γ(j − θ)

γθ
, n

)
− Γ

(
r − γ(j − θ)

γθ
, n (1 + λyγ)θ

)]
. (2.22)

Proof. By definition, the rth incomplete moment is given as;

Mr(y) =

∫ y

0

trf(t)dt.

Using the linear expanded form of the PDF of the PGPW class of distributions, the incomplete
moment can be written as;

Mr(y) = nλγθen
∞∑

n=1

P (N = n)

∫ y

0

trtγ−1(1 + λtγ)θ−1e−n(1+λtγ)θdt.
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Using integration by substitution by considering u = n(1 + λtγ)θ, then when t −→ 0, u → n and
when t −→ y, y → n(1 + λyγ)θ.
Also,

dt =
du

nλγθtγ−1(1 + λtγ)θ−1
.

Therefore the incomplete moment is given as;

Mr(y) = enλ
− r

γ

∞∑
n=1

P (N = n)

∫ n(1+λyγ)θ

n

((u
n

) 1
θ − 1

) r
γ

e−udu.

Further simplifying using binomial expansion, we have;

Mr(y) =

∞∑
n=1

i∑
j=1

λ
− r

γ enP (N = n)(−1)j
(

r
γ

j

)
n
−
(

r−γ(j−θ)
γθ

)

×
[
Γ

(
r − γ(j − θ)

γθ
, n

)
− Γ

(
r − γ(j − θ)

γθ
, n (1 + λyγ)θ

)]
.

Proposition 10. The mean deviation of the PGPW class of distributions is given by;

D(µ) = 2µF (µ)− 2

∞∑
n=1

i∑
j=1

λ
− 1

γ enP (N = n)(−1)j
(

1
γ

j

)
n
−
(

1−γ(j−θ)
γθ

)

×
[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λµγ)θ

)]
. (2.23)

Proof. The mean deviation of a random variable is given as;

D(µ) = 2µF (µ)− 2

∫ µ

0

tf(t)dt.

But
∫ µ

0
tf(t)dt = m1(µ) is the first incomplete moment (r = 1). Substituting M1(µ), the mean

deviation is obtained.

Proposition 11. The median deviation of the PGPW class of distributions is given by;

D(M) = −µ+ 2

∞∑
n=1

i∑
j=1

λ
− 1

γ enP (N = n)(−1)j
(

1
γ

j

)
n
−
(

1−γ(j−θ)
γθ

)

×
[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λmγ)θ

)]
. (2.24)

Proof. By definition the median deviation is given as;

D(M) = −µ+ 2[M1(m)].

Inputting M1(m), the median deviation is obtained.

2.1.6 Residual and mean residual life

Mean residual life (MRL) function at time y can represent the estimated added life span for a unit
alive at time y. For an operating system, its residual life at time y is Ty = T − y|T > y which has
PDF given as;

f(t, y) =
f(t)

1− F (y)
. (2.25)
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Proposition 12. The MRL of the Ty from the PGPW class of distribution is given as;

MRL =
AΓ
[(

1−γ(j−θ)
γθ

, n
)]

−B
[
Γ
(

1−γ(j−θ)
γθ

, n
)
− Γ

(
1−γ(j−θ)

γθ
, n (1 + λµγ)θ

)]
C
[
αe(1−(1+λtγ )θ)

]
C(α)

− y, (2.26)

where

A =

∞∑
n=1

∞∑
j=1

λ
−1
γ P (N = n)en(−1)j

(
1
γ

j

)
n
−
(

1−γ(j−θ)
θγ

)
,

and

B =

∞∑
n=1

i∑
j=1

λ
− 1

γ enP (N = n)(−1)j
(

1
γ

j

)
n
−
(

1−γ(j−θ)
γθ

)
.

Proof. The MRL (t > 0) is defined as;

MLR = E (T − y|T > y)

=

∫∞
y

(t− y)f(t)dt

1− F (t)

=
µ

′
1 −

∫ y

0
tf(t)dt

1− F (t)
− y.

But
∫ y

0
tf(t)dt = M1(y) gives the first incomplete moment and µ

′
1 gives the first non-central moment.

Substituting these, the MRL is obtained.

2.1.7 Lorenz and Bonferroni Curves

Lorenz and Bonferroni curves are used to measure the inequalities in the distribution of a random
variable (for example income inequality). These curves are mostly applicable in reliability, medical,
demographic, insurance and economic fields. For the PGPW class of distributions, the Lorenz curve
is given as;

L(p) =
1

µ

∞∑
n=1

i∑
j=1

λ
− 1

γ enP (N = n)(−1)j
(

1
γ

j

)
n
−
(

1−γ(j−θ)
γθ

)

×
[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λyγ)θ

)]
. (2.27)

Proof. By definition, the Lorenz curve is given as;

L(P ) =
1

µ

∫ y

0

tf(t)dt.

But
∫ y

0
tf(t)dt = M1(y) is the first incomplete moment. Hence imputing M1(y) in L(P ), the Lorenz

curve expression is obtained.

Also, the Bonferroni curve is defined as;

B(P ) =
L(P )

F (y)
. (2.28)

Therefore the Bonferroni curve for the PGPW class of distributions is given as;

B(p) =
A×B

1−
C
[
αe(1−(1+λyγ )θ)

]
C(α)

, (2.29)
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where

A =
1

µ

∞∑
n=1

i∑
j=1

λ
− 1

γ enP (N = n)(−1)j
(

1
γ

j

)
n
−
(

1−γ(j−θ)
γθ

)
,

and

B =

[
Γ

(
1− γ(j − θ)

γθ
, n

)
− Γ

(
1− γ(j − θ)

γθ
, n (1 + λyγ)θ

)]
. (2.30)

2.1.8 Stochastic Ordering

This is used to compare two random variables to know which of them is larger or smaller. Stochastic
ordering is an ordering mechanism in lifetime distribution.

Proposition 13.. If T1 ∼ PGPW (t, α, λ, γ, θ) and T2 ∼ PGPW (t, λ, γ, θ), then T1 is said to

be greater than T2 in likelihood ratio order if
fT1

(t)

fT2
(t)

is an increasing function of T .

Proof. For T1 ∼ PGPW (t, α, λ, γ, θ) and T2 ∼ PGPW (t, λ, γ, θ),

fT1(t)

fT2(t)
=

αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)
C

′
[
αe[1−(1+λtγ )θ ]

]
C(α)

λγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)

=
αC

′
[
αe[1−(1+λtγ)θ ]

]
C(α)

.

d

dt

[
fT1(t)

fT2(t)

]
= −α2λγθtγ−1(1 + λtγ)θ−1

C
′′
[
αe[1−(1+λtγ)θ ]

]
C(α)

,

since d
dt

[
fT1

(t)

fT2
(t)

]
< 0 for all t > 0, d

dt

[
fT1

(t)

fT2
(t)

]
is a decreasing function for α > 0.

2.2 Sub-families of the PGPW class of distributions

From the PGPW distribution, four major sub-families of distribution are obtained. These are; the
GPW geometric (GPWG) distribution, the GPW Poisson (GPWP) distribution, the GPW binomial
(GPWB) distribution and the GPW logarithmic (GPWL) distribution.

2.2.1 Generalised power Weibull geometric distribution

The geometric distribution truncated at zero is a distinct case of the power series distributions
with an = 1, C(α) = α(1 − α)−1 and C

′
(α) = (1 − α)−2. By inputting these functions into the

PGPW class of distributions, we obtain the GPWG distribution with PDF and hazard function
given respectively as;

f(t) =
(1− α)λγθtγ−1(1 + λtγ)θ−1e(1−(1+λ)θ)(

1− αe[1−(1+λtγ)θ ]
)2 , (2.31)

and

h(t) =
λγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)

e[1−(1+λtγ)θ ]
(
1− αe[1−(1+λtγ)θ ]

) . (2.32)

The plot of the PDF of the GPWG distribution is displayed in Figures 1. The plots shows that, the
PDF of this distribution can be decreasing, increasing, decreasing-constant-increasing, increasing-
decreasing, right-skewed and symmetric.
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Fig. 1. PDF plot of the GPWG distribution

Also, the hazard plots of the GPWG distribution are displayed in Fig. 2. It is seen that the hazard
can be increasing, decreasing, bathtub and unimodal. This shows that the GPWG distribution can
model failure rate data which are both monotonically and non-monotonically shaped.
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Fig. 2. Hazard plot of the GPWG distribution

2.2.2 Generalised power Weibull Poisson distribution

The poison distribution (truncated at zero ) is a special form of the power series distribution with

an = 1
n!
, C(α) = eα − 1 and C

′
(α) = eα. By inputting these functions into the PGPW class of

distributions, we obtain the PDF and hazard function of the GPWP distribution as;

f(t) =
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ) × eαe[1−(1+λtγ )θ ]

eα − 1
, (2.33)

39



Abonongo et al.; AJPAS, 17(2): 28-51, 2022; Article no.AJPAS.84754

and

h(t) =
αλγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)eαe[1−(1+λtγ )θ ]

eαe[1−(1+λtγ )θ ] − 1
. (2.34)

The plot of the PDF of the GPWP distribution displayed in Fig. 3 shows that, its PDF can be
decreasing, increasing, increasing-decreasing and right-skewed.
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Fig. 3. PDF plot of the GPWP distribution

Also, the GPWP distribution’s hazard rate is seen to be monotonically increasing, decreasing,
bathtub, unimodal, modified bathtub and modified unimodal as shown in Fig. 4. This shows that
the GPWP distribution can model both monotonically and non-monotonically shaped failure rate.
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Fig. 4. Hazard plot of the GPWP distribution
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2.2.3 Generalised power Weibull binomial distribution

The zero truncated binomial distribution is a special form of the power series distributions with
an =

(
m
n

)
, C(α) = (1 + α)m − 1 and C′(α) = m

(1+α)1−m . Considering these in the PGPW class of

distributions, we obtain the PDF and hazard functions of the GPWB distribution respectively as;

f(t) =
mαλγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)(
1 + αe[1−(1+λtγ)θ ]

)1−m
((1 + α)m − 1)

, (2.35)

and

h(t) =
mαλγθtγ−1(1 + λtγ)θ−1e(1−(1+λtγ)θ)(

1 + αe[1−(1+λtγ)θ ]
)1−m

((1 + αe[1−(1+λtγ)θ ])m − 1)
. (2.36)

As displayed in Fig. 5, the PDF of the GPWB distribution can be increasing, decreasing, unimodal
and positively skewed.
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Fig. 5. PDF plot of the GPWB distribution

Also, its hazard function, as shown in Fig. 6, can be increasing, decreasing, bathtub and unimodal.
This shows that the GPWG distribution can model failure rate data which are both monotonically
and non-monotonically shaped.

2.2.4 Generalised power Weibull logarithmic family of distributions

The zero truncated Logarithmatic distribution is also a special class of the power series family with
an = 1

n
, C(α) = − log(1 − α) and C′(α) = (1 − α)−1. Considering these in the PGPW class of

distributions, we obtain the PDF and hazard functions of the GPWL distribution respectively as;

f(t) =
αλγθtγ−1(1 + λtγ)θ−1e[1−(1+λtγ)θ](
αe[1−(1+λtγ)θ] − 1

)
(log(1− α))

, (2.37)

and

h(t) =
αλγθtγ−1(1 + λtγ)θ−1e[1−(1+λtγ)θ](

αe[1−(1+λtγ)θ] − 1
)(

log
(
1− αe[1−(1+λtγ)θ]

)) (2.38)
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Fig. 6. Hazard plot of the GPWB distribution
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Fig. 7. PDF plot of the GPWL distribution

As displayed in Fig. 7, the GPWL has an increasing, decreasing and unimodal PDF.

The GPWL also has an increasing, decreasing, bathtub and unimodal hazard rate function. Thus
can model failure rate data which are both monotonically and non-monotonically shaped.

2.3 Maximum likelihood estimation

Maximum likelihood estimation (MLE) finds the parameter estimates by determining the values of
the parameters that maximize L(θ;X). Assuming X = (X1, X2, ..., Xn) are measurement values of a
random variable with density function f(X; θ), where θ is the parameter value from the distribution,
then MLE finds the value of the model parameter θ, that maximizes L(θ;X). MLE’s were obtained
for the four sub-families of the PGPW class of distribution.
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Fig. 8. Hazard plot of the GPWL distribution

For the GPWP distribution, the likelihood function is given as;

L = n log(αλγθ) + (γ − 1)

n∑
i=1

log(ti) + (θ − 1)

n∑
i=1

log(1 + λtγi ) +

n∑
i=1

(1− (1 + λtγi ))

× α

n∑
i=1

e1−(1+λt
γ
i )θ − n log(eα − 1). (2.39)

For the GPWL distribution, the likelihood function is given as;

L=nlog(αλγθ) + (γ − 1)
∑n

i=1 log(ti) + (γ − 1)
∑n

i=1 log(1 + λtγi ) +
∑n

i=1(1− (1 + λtγi )
θ)− n log(α)

−
n∑

i=1

(1− (1 + λtγi )
θ)− n log(log(1− α)). (2.40)

For the GPWG distribution, the likelihood function is given as;

L = n log(1− α)(λγθ) + (γ − 1)
n∑

i=1

log(ti) + (θ − 1)
n∑

i=1

log(1 + λtγi ) +
n∑

i=1

(1− (1 + λtγi )
θ).

− 2

n∑
i=1

(1− αe(1−(1+λt
γ
i )θ)). (2.41)

The PGWB distribution has its likelihood function defined as;

L = n log(mαλγθ) + (γ − 1)

n∑
i=1

log(ti) + (θ − 1)

n∑
i=1

log(1 + λtγi )

+

n∑
i=1

(1− (1 + λtγi )
θ)− n log((1 + α)m − 1)− (1−m)

n∑
i=1

(1 + αe(1−(1+λt
γ
i )θ)). (2.42)

To obtain the MLE of the parameters for each class of distribution, we maximises its score function
by taking the first derivative of it.
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2.4 Monte Carlo Simulation

Simulation analyses were conducted to assess the performance of the maximum likelihood estimators
for the parameters of the sub-families of the PGPW distribution (thus the GPWG, GPWP, GPWB
and GPWL). Three parameter value combinations of each distribution were specified. The quantile
function of each distribution was then used to generate five different random samples of sizes,
40,80,120,160,200. These were then used to obtain the maximum likelihood estimates of the
parameters. With a replication for N=1000 times, the average bias (ABias) and mean square
error (MSE) were calculated for the estimators of the parameters of each distribution. For the
GPB family, m=5 was used for the simulation. The results of the simulation analyses are shown
in Tables 2 to 5. The results showed that, the maximum likelihood estimates of the parameters of
each distribution converges to the true parameter value since the average bias of each parameter
decrease as the sample size increases and the mean square errors also approaches zero as the sample
size increases. All simulations in the work are done using R-software.

Table 2. Monte Carlo simulation results for the Parameters of the GPWG
distribution

n Parameter value ABiase MSE

40

80

120

160

200

α λ γ θ

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

α λ γ θ

0.288 59.780 1.332 0.438

0.283 13.181 0.632 0.417

0.281 0.861 0.447 0.412

0.189 0.724 0.350 0.348

0.119 0.635 0.304 0.327

α λ γ θ

0.093 4.897 5.073 1.403

0.091 3.103 0.965 0.870

0.089 4.000 0.369 0.921

0.088 2.297 0.221 0.677

0.080 0.767 0.164 0.569
40

80

120

160

200

0.3 0.4 2.8 0.3

0.3 0.4 2.8 0.3

0.3 0.4 2.8 0.3

0.3 0.4 2.8 0.3

0.3 0.4 2.8 0.3

0.295 6.678 1.568 0.128

0.292 0.456 0.702 0.097

0.287 0.346 0.511 0.079

0.275 0.275 0.420 0.074

0.275 0.274 0.372 0.061

0.103 75.756 8.628 0.035

0.100 0.922 1.054 0.031

0.097 0.543 0.581 0.024

0.090 0.133 0.353 0.060

0.092 0.120 0.262 0.007

Table 3. Monte Carlo simulation results for the parameters of the GPWP
distribution

n Parameter value ABiase MSE

40

80

120

160

200

α λ γ θ

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

α λ γ θ

0.579 0.693 0.625 0.648

0.554 0.525 0.436 0.330

0.535 0.334 0.345 0.248

0.329 0.145 0.129 0.072

0.318 0.142 0.129 0.061

α λ γ θ

0.377 2.854 0.859 5.462

0.354 2.502 0.400 0.454

0.340 0.208 0.189 0.231

0.329 0.145 0.129 0.072

0.324 0.110 0.111 0.047
40

80

120

160

200

0.4 0.4 2.7 0.3

0.4 0.4 2.7 0.3

0.4 0.4 2.7 0.3

0.4 0.4 2.7 0.3

0.4 0.4 2.7 0.3

0.482 0.281 0.913 0.273

0.458 0.164 0.535 0.134

0.454 0.146 0.413 0.089

0.451 0.128 0.338 0.069

0.446 0.118 0.294 0.055

0.265 0.706 2.756 0.604

0.249 0.046 0.599 0.062

0.245 0.033 0.282 0.020

0.244 0.024 0.195 0.014

0.238 0.022 0.143 0.006
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Table 4. Monte Carlo simulation results for the parameters of the GPWL
distribution

n Parameter value ABiase MSE

40

80

120

160

200

α λ γ θ

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

0.3 0.7 2.5 0.5

α λ γ θ

0.358 0.980 0.651 0.284

0.358 0.341 0.392 0.237

0.355 0.310 0.309 0.186

0.346 0.298 0.255 0.148

0.344 0.297 0.229 0.136

α λ γ θ

0.158 111.428 1.039 0.451

0.161 0.428 0.279 0.234

0.156 0.176 0.165 0.132

0.152 0.138 0.115 0.056

0.150 0.143 0.090 0.044
40

80

120

160

200

0.4 0.7 2.5 0.5

0.4 0.7 2.5 0.5

0.4 0.7 2.5 0.5

0.4 0.7 2.5 0.5

0.4 0.7 2.5 0.5

0.322 1.385 0.666 0.355

0.301 0.370 0.413 0.219

0.279 0.329 0.353 0.198

0.278 0.279 0.248 0.153

0.280 0.271 0.250 0.145

0.126 144.378 1.078 0.760

0.110 0.481 0.316 0.125

0.100 0.325 0.245 0.148

0.100 0.108 0.099 0.064

0.099 0.104 0.097 0.056

Table 5. Monte Carlo simulation results for the parameters of the GPWB
distribution

n Parameter value ABiase MSE

40

80

120

160

200

α λ γ θ

0.5 0.7 2.5 0.5

0.5 0.7 2.5 0.5

0.5 0.7 2.5 0.5

0.5 0.7 2.5 0.5

0.5 0.7 2.5 0.5

α λ γ θ

0.368 0.696 40.963 0.454

0.343 0.688 40.781 0.454

0.331 0.685 39.344 0.441

0.310 0.680 38.716 0.438

0.303 0.501 48.699 0.420

α λ γ θ

0.164 0.484 1362.307 0.207

0.148 0.482 1343.548 0.204

0.140 0.479 1109.620 0.191

0.128 0.475 2300.550 0.189

0.123 0.429 1070.184 0.182
40

80

120

160

200

0.6 0.8 2.1 0.4

0.6 0.8 2.1 0.4

0.6 0.8 2.1 0.4

0.6 0.8 2.1 0.4

0.6 0.8 2.1 0.4

0.326 0.788 32.353 0.377

0.297 0.785 31.972 0.362

0.282 0.777 31.235 0.360

0.268 0.777 30.872 0.358

0.248 0.769 30.738 0.355

0.124 0.632 2559.651 0.142

0.109 0.621 2100.949 0.132

0.100 0.619 1966.925 0.125

0.091 0.537 1943.259 0.123

0.081 0.537 1729.232 0.117

2.5 Applications of the PGPW class of distributions

The derived GPWG, GPWP, GPWB (with m=5) and the GPWL distributions were applied to
two sets of data (failure times data of air conditioning system of aircraft and the service time of
63 aircrafts. The performance of these distributions, in terms of providing good parametric fit to
the two data sets, were compared using the Kolmogorov-Smirnov (KS) statistic, Cramér-Von Mises
statistic (CVM), Anderson-Darling statistic (AD), log-likelihood and model selection criteria such
as the AIC, AICc and BIC.

2.5.1 Application I: Failure times of air conditioning system of an aircraft

The first application used 30 observations from the failure times of air conditioning system of an
aircraft. This data is displayed in Appendix. The TTT transformed plot of the failure times of air
conditioning systems of an aircraft as shown in Fig. 9 is first convex in shape followed by a concave
shape which indicates that the hazard function of the data set is bathtub shaped. The detailed
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Fig. 9. TTT plot of failure times of the air conditioning system of an aircraft

maximum likelihood parameter estimates for the four fitted families of distributions for the failure
times of the air conditioning systems of an aircraft are shown in Table 6. By using the estimated
standard errors and p-values for the four distributions, it is seen that all the parameters of the
GPWB, GPWG and the GPWL distributions are all significant at 5 percent significance level since
their standard errors are less than half of their parameter estimates and their p-values are also less
than 0.05. For the GPWP family, all the parameters were significant at 0.05 significance level with
the exception of the parameter θ.

Table 6. MLE, SE and p-values of failure times of air conditioning system of an
aircraft

Distribution α̂ λ̂ γ̂ θ̂

GPWB 1.336 11.132 17.890 0.017

(0.413) (0.002) (0.003) (0.001)

0.001 < 0.0001 < 0.0001 < 0.0001

GPWG −5.833 200.002 100.505 0.003

(1.223× 10−8) (6.034× 10−12) (5.730× 10−9) (1.845× 10−4)

< 0.0001 < 0.0001 < 0.0001 < 0.0001

GPWP 2.8117 0.0071 0.9601 0.9601

(1.0306) (0.0079) (0.2546) (2.0963)

0.006 0.042 0.001 0.559

GPWL −39.157 99.891 105.586 0.003

(1.202× 10−9) (1.066× 10−11) (5.285× 10−9) (1.857× 10−4)

< 0.0001 < 0.0001 < 0.0001 < 0.0001
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Table 7 presents the likelihood, information criteria and goodness-of-fit measures for the fitted
distributions for the failure times of the air conditioning system of an aircraft. Among the four
fitted distributions, the GPWG distribution has the largest log-likelihood value with the smallest
KS, AD, CVM, AIC, AICc, and BIC statistic values. This indicates that, the GPWG distribution
provides a better fit to the failure times of the air conditioning system of an aircraft as compared
to the other fitted family of distributions.

Table 7. Goodness-of-fit and information criteria of failure times of air conditioning
system of an aircraft

Dist. LL −2 logL AIC AICc BIC CVM AD KS(p-value)
GPWB −151.190 303.386 312.386 313.986 319.392 0.075 0.471 0.118(0.798)

GPWG −151.170 302.348 310.348 311.948 315.953 0.074 0.433 0.116(0.808)

GPWP −151.710 303.428 311.428 313.028 317.033 0.097 0.523 0.1387(0.611)

GPWL −151.990 303.984 311.984 313.584 317.589 0.075 0.517 0.183(0.268)

Fig. 10 gives the plot of the empirical CDF and the CDFs of the GPWG, GPWP, GPWB and the
GPWL distributions for the failure times of the air conditioning systems of an aircraft. From the
figure, the GPWG, GPWP and the GPWL distributions provides a better fit to the data than the
GPWB.
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Fig. 10. Empirical CDF and CDF plots of failure times of the air conditioning
systems of an aircraft

2.5.2 Application II: Service times of 63 aircrafts Data Set

The second application of the four families of distributions used failure data on service times of 63
aircrafts given in Murthy et al. (2004) and recently studied by Tahir et al. [11]. This failure rate
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data is given in Appendix.

The TTT transform plot in Fig. 11 indicates that, the data set has an increasing failure rate.

Fig. 11. TTT plot of service times of 63 aircraft
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Fig. 12. Empirical CDF and CDF plots of service times of 63 aircrafts

The maximum likelihood parameter estimates, standard errors and p-values of the GPWB, GPWG,
GPWP and the GPWL distributions are presented in Table 8. Using the standard errors of the
parameters, all the parameters estimates of the GPWB, GPWG and the GPWL distributions are
significant at 5 percent significant level. However, for the GPWP distribution, λ, θ and γ are
significant at the 5 percent significance level whiles α is not.

The likelihood, goodness-of-fit and information criteria for the fitted distributions are presented in
Table 9. The GPWP distribution provides a better fit among the four fitted distributions since it
has the highest log-likelihood and the minimum AIC, AICc, BIC, KS, AD, CVM and -2log L values.
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Table 8. MLE Parameter Estimates, SE and p-values of the service times of 63
aircrafts

Distribution α̂ λ̂ γ̂ θ̂

GPWB 7.209 0.009 1.595 2.871

(0.001) (0.002) (0.165) (0.001)

0.000 0.000 0.000 0.000
GPWG −65.228 197.833 1.910 0.253

(0.002) (0.001) (0.279) (0.016)

0.000 0.000 0.000 0.000
GPWP 1.742 0.048 0.955 8.759

(1.825) (0.026) (0.312) (0.012)

0.340 0.055 0.002 0.000
GPWL −199.196 155.418 2.962 0.209

(0.002) (0.001) (0.364) (0.0126)

0.000 0.000 0.000 0.000

Table 9. Goodness-of-fit and Information Criteria of service times of 63 aircrafts

Dist. LL −2 logL AIC AICc BIC W∗ A∗ K-S(p-value)
GPWB −100.010 200.019 210.019 210.709 220.735 0.098 0.597 0.107(0.439)

GPWG −100.690 201.388 209.385 210.075 217.958 0.101 0.620 0.085(0.717)

GPWP −98.020 196.039 204.039 204.729 212.611 0.033 0.225 0.065(0.940)

GPWL −104.380 208.769 290.656 291.346 299.228 0.045 0.286 0.462(0.268)

The plot of the empirical CDF and the CDF of the GPWB, GPWP, GPWG and GPWL are shown
in Fig. 12. From the plots, the GPWG and the GPWP provide a better fit as compared to the
other distributions considered.

3 Conclusion

By discrete-continuous compounding the zero truncated power series family and the GPW distribution,
the PGPW class of distributions was developed in this paper. The PGPW class of distributions
contains the GPW geometric (GPWG), GPW Poisson (GPWP), GPW binomial (GPWB) and the
GPW logarithmic (GPWL) as sub-distributions. As presented, the four sub-families of distributions
of the PGPW class of distributions can adequately model both monotonic and non-monotonic
lifetime data sets since their PDFs and hazard functions exhibit various shapes such as monotonically
increasing, decreasing, bathtub, unimodal, among others. From the Monte Carlo simulation analysis,
the estimators of each sub-family of distributions were consistent estimators since their mean square
error and average bias approached zero as the sample size increase. Application of the four family
of distributions to failure time data of air conditioning system of an aircraft showed that, the
GPWG distribution provides a better fit among the other competing distributions whiles the GPWP
distribution also provided a better fit for failure rate data of the service times of the aircrafts.
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APPENDIX

Table 1. Failure times data of air conditioning system of an aircraft

23 261 87 7 120 14 62 47 225 71 246 21 42

20 12 120 11 3 71 11 14 11 16 90 1 16

52 95 14 5
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