

International Journal of Plant & Soil Science

Volume 35, Issue 20, Page 1-7, 2023; Article no.IJPSS.106507 ISSN: 2320-7035

Evaluation of Response of Different Varieties of Major Crops for Organic Farming under North Gujarat Condition

Desai L. J. ^a, Patel K. M. ^{a*}, Patel P. K. ^a, Patel V. K. ^a and Patel R. R. ^a

^a Centre for Research on Integrated Farming Systems, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar-385 506, Dist. Banaskantha, Gujarat, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJPSS/2023/v35i203779

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/106507

Original Research Article

Received: 10/07/2023 Accepted: 12/09/2023 Published: 15/09/2023

ABSTRACT

A field experiment was conducted during 2015-16 to 2021-22 at Centre for Research on IFS, S.D.A.U., Sardarkrushinagarto study the evaluation of response of different varieties of major crops for organic farming under north Gujarat condition. Total eight different varieties of each crop groundnut, wheat and green gram were taken for study during the *kharif, rabi* and summer season, respectively. The experiment was laid down in randomized block design with three replications. Significantly higher groundnut pod yield (1813 kg/ha) and haulm yield (2755 kg/ha) were recorded in GJG 17 (S) in pooled results and also in individual years. The significantly higher groundnut equivalent yield (2115 kg/ha), economic performance in terms of net return (82404 ₹/ha) was recorded higher in case of GJG 17 (S) as compare to other variety. In case of wheat variety, significantly higher groundnut equivalent yield (1850 kg/ha), gross return (1,18,047 ₹/ha) and net return (50,239 ₹/ha)) was recorded under GW 451, which was at par with GW 496 wheat variety.

Int. J. Plant Soil Sci., vol. 35, no. 20, pp. 1-7, 2023

^{*}Corresponding author: E-mail: drkmpatelagronomist@sdau.edu.in;

During summer season, significantly highest groundnut equivalent yield (612 kg/ha), gross return (39031 ₹/ha) and net return (9730 ₹/ha) were recorded with greengram variety GM4. There was improvement in soil nutrients status over its initial value by using the organic manure in cropping system. The percent increase in soil organic carbon was 32.6%, available nitrogen 17.3%, available phosphorus 78.9%, available potassium 5.8%.,while 21% increase in water holding capacity and 4.3% reduction in bulk density due to continuous use of organic manures as a sources. The bacterial population, *actinomycetes* and fungi population were increased over first year after conversion period and recorded higher in last year 2021-22 under groundnut-wheat-greengram crop sequence.

Keywords: Crop sequence; greengram; groundnut; microbial counts; organic; variety; wheat.

1. INTRODUCTION

In the agricultural economy of India, oilseeds are important next only to food grains in terms of area, production and value. Wheat (Triticum aestivumL.) is the most important among all cereals used as a food grain in the world. It ranks first in the world cereal production and is a staple food of about one third of the world's population. Green gram (Vigna radiate L.) is one of the most vital and third important pulse crop cultivated throughout India (after chickpea and pigeon pea) for its versatile uses as vegetable, pulse, fodder and green manure crop. Organic manures have traditionally been the important input as sources of plant nutrients. They play a direct role in supplying macro and micronutrient and indirectly improve the physical, chemical and biological properties of soils [1]. Further organic farming in recent years is gaining impetus due to better price for the farm produce. Use of farmyard manure with other organic amendments like vermicompost. neem seed cake. phosphocompost and poultry manure, etc.. provide a safer and environment friendly way of applying nutrients to crops [2]. Integrated approach of nutrient supply by organic sources combination *i.e* FYM, vermicompost, caster cake and biofertilizers is gaining importance because they not only reduces the use of inorganic but completely stopped fertilizers. the dependence of inorganic fertilizer, sustaining the crop productivity by improving soil health and is also an human and environment friendly approach [3]. At present the breeding criteria and evolution strategy to bread the variety for high potential yield under regular package of practices for nutrient management mostly based on chemically nutrient management supply system. In each crop different variety are being tested for the adaptability, nutrient and water management and optimum geometry. Very merger attempt has been made by various scientists of the state as well as nation to identify the variety/ varieties for

their potential evolution under certain nutrient supply system that is organic, inorganic and integrated nutrient management. Farmers now come forward for organic crop production but there is no information to answer the question regarding suitable variety under organic production system. Because there may be certain hidden potentiality to produce more under production system rather organic than chemical nutrient supply system. Hence it is necessary to test different verities of crops of this region under organic production system. Therefore the following experiment is planned to assess the performance of different verities of groundnut, wheat and summer greengram under North Gujarat condition" at Centre for Research on IFS, SDAU, Sardarkrushinagar.

2. MATERIALS AND METHODS

A field experiment was conducted during 2015-16 to 2021-22 at Centre for Research on IFS, S.D.A.U., Sardarkrushinagar to study the the evaluation of response of different varieties of major crops for organic farming under north Gujarat condition. The soil was very low in organic carbon and available nitrogen (147 kg ha⁻¹) and medium in available P (10.92 kg ha⁻¹) and available K (170 kg ha-1). Total eight varieties of each crop were taken as treatment crop, viz;1. GJG HPS-1(Sprading), GG 20 (Semi sprading), GG 7 (Bunch)), TG 37 (A) (Banch), GJG 9 (Banch), GG 5 (Banch), GJG 17 (Sprading) and KDG 123 (Banch) of groundnut, GW 451, GW 366, GW 322, GW 273, GW496, GDW 1255, GW1139, and HI 8498 of wheat and. GM 4, Meha, K 851, PDM 139, IPM 410-3, GM 5, PKVAKM 4 and greengram BGS 9 were taken. The organic manure were applied based on recommended dose of nitrogen of each crop by using the FYM, vermicompost and castor cake as a sources of organic manure in the ratio of one third of each sources. The soil was very low in organic carbon and available nitrogen (141 kgha⁻¹) and medium in available P (13.47 kg ha⁻¹) and available K (180 kg ha⁻¹). The all crops were fertilized as per treatments details and sown as per recommended spacing for each crops by using recommended varieties and seedrate. The castor cake was applied 10 days before sowing of crops.

3. RESULTS AND DISCUSSION

3.1 Groundnut

Yield attributes, vield and economics of different groundnut varieties showed significant variations among tested varieties. Significantly higher groundnut pod yield (1813 kg/ha) and haulm yield (2755 kg/ha) were recorded in GJG 17 (S) in pooled results and also in individual years (Table 1). The significantly higher groundnut equivalent vield (2115 kg/ha), economic performance in terms of net return (82404 ₹/ha) was recorded higher in case of GJG 17 (S) as compare to other variety under organic condition and at the same time groundnut variety GG 5 (B1) performed lowest in groundnut equivalent yield (1345 kg/ha) and economics (33321₹/ha) parameter under organic package of practices (Table 4). These results are in accord with those reported by Elayaraja and Singaravel [4] and Panwar and Munda [5].

3.2 Wheat

After application of organic package of practices in different variety of wheat plant population at initial and at harvest, plant height at 30 and 60 DAS, effective tillers per meter row length, number of grain per ear head and test weight of grain noted non significant results during course of investigation, whereas plant height at harvest of wheat showed significant variation among different wheat varieties. In case of grain yield, straw yield and economics performance point of view GW 451 variety recorded significantly higher grain yield (2873 kg/ha), straw yield (3804 kg/ha) (Table 2). The significantly higher groundnut equivalent yield (1850 kg/ha), gross return (1,18,047 ₹/ha) and net return (50,239 ₹/ha)) was recorded under GW 451, which was at par with GW 496 wheat variety. The lowest GEY and economic performance was recorded with wheat variety GW 322 (Table 4).

Attainments of particularly higher or lower yield attributing character among the different varieties are the genetically controlled phenomenon [6-8].

3.3 Green Gram

The data revealed that the plant population at initial and at harvest and 1000 seed weight were found non significant, while remaining plant height at 30 DAS, plant height at harvest, number of branches/plant, number of pods/plant, number of seeds/pod, seeds yield and stover yield of green gram showed significant variation among different green gram varieties (Table 3). Significantly higher seed vield (598 kg/ha) and stover yield (1079 kg/ha) in pooled were recorded in GM 4 as compare to other variety. The significantly highest groundnut equivalent yield (612 kg/ha), gross return (39031 ₹/ha) and net return (9730 ₹/ha) were recorded with GM4. Under organic condition even as IPM 410-3 variety of green gram performed lowest in groundnut equivalent yield (382 kg/ha) and negative economics under organic package of practices(Table 4).Such variations in yield attributes among the mungbean varieties have also been observed by Goswami et al. [9] and Bekele et al. [10].

3.4 Soil Fertility Statusand Microbial Counts at the End of the Crop Sequence

Data presented in Table 5 shown that there was improvement in soil nutrients status over its initial value by using the organic manure in cropping system. The percent increase in soil organic carbon was 32.6 %, available nitrogen 17.3%, available phosphorus 78.9%, available potassium 5.8%., while 21% increase in water holding capacity and 4.3% reduction in bulk density due to continuous use of organic manures as a sources. From the data presented in the Table 6 in can be seen that the bacterial population, actinomycetes and fungi population were increased over initial year (2019-20) of conversion period and recorded higher in last groundnut-wheat-2021-22 under vear greengram crop sequence. Soil microorganisms play a significant role in regulating the dynamics of organic matter decomposition and availability of plant nutrients.

Treat.	2018-19	2019-20	2020-21	2021-22	Pooled	2018-19	2019-20	2020-21	2021-22	Pooled
		Pod yi	eld (kg/ha)							
V ₁	1258	1898	1389	1247	1448	2028	3488	vield (kg/ha) 2407	1713	2409
V2	1428	1944	1636	1410	1605	2341	3611	2685	1898	2634
V ₃	1152	1759	1019	1145	1269	1826	2623	2006	1537	1998
V4	1379	2037	1543	1333	1573	2015	3580	2593	1759	2487
V ₅	1184	1852	1173	1185	1349	1924	3272	2099	1682	2244
V ₆	1135	1420	988	1114	1164	1504	2068	1481	1559	1653
V7	1549	2346	1728	1627	1813	2238	3673	2901	2207	2755
V ₈	1256	1883	1296	1238	1418	1872	2963	2253	1682	2193
SEm+	134.7	162.7	91.48	95.88	45.4	154.5	241.2	132.4	131.3	104
CD (P=0.05)	NS	NS	277.5	290.8	133	468.8	731.7	401.7	NS	307
Y*V	SEm+				124					170
	CD (P=0.0	5)			353					484
CV %	18.06	[´] 14.89	11.77	484.3	14.8	13.6	13.22	9.96	12.96	12.8

Table 1. Pod yield, haulm yield, GEY and economics of groundnut (pooled)

Table 2. Grain yield (kg/ha), straw yield (kg/ha), groundnut equivalent yield, and economics of of wheat(pooled)

Treat.	2018-19	2019-20	2020-21	2021-22	Pooled	2018-19	2019-20	2020-21	2021-22	Pooled
		Grain y	ield (kg/ha)		Straw yield (kg/ha)					
V ₁	3964	3287	3935	3565	3688	5630	4907	4722	4456	4929
V ₂	3433	2407	3206	2604	2913	4741	3912	4028	3843	4131
V ₃	3250	2338	2727	2530	2711	4711	3681	3750	3507	3912
V4	3639	2824	3241	3102	3201	4963	4398	5023	4109	4623
V ₅	3862	3102	3542	3380	3471	5304	4676	4769	4259	4752
V ₆	3624	2546	2975	2854	3000	4830	4167	3727	4132	4214
V7	3604	2477	3067	2771	2980	5170	3958	3889	3935	4238
V ₈	3364	2315	2507	2676	2716	4659	3472	3495	3912	3885
SEm <u>+</u>	194	185	249	232	66	194	264	280	258	118
CD (P=0.05)	NS	561.8	754.9	NS	193.4	588	802	850	NS	348
Y*V	SEm+				216					251
	CD (P=0.0	5)			614					712
CV %	9.37	12.05	13.69	13.68	12.1	6.71	11.04	11.62	11.14	10.0

Treat.	2018-19	2019-20	2020-21	2021-22	Pooled	2018-19	2019-20	2020-21	2021-22	Pooled	
		Seed y	ield (kg/ha)		Stover yield (kg/ha)						
V ₁	487.4	697.5	679.0	756.2	655	903	925	1419	1064	1078	
V ₂	425.2	472.2	617.3	614.2	532	883	864	1334	972	1013	
V ₃	357.0	425.9	601.9	611.1	499	785	709	1080	941	879	
V ₄	296.3	373.5	447.5	567.9	421	746	601	972	824	786	
V ₅	288.9	354.9	416.7	561.7	405	765	540	825	753	721	
V ₆	471.1	555.6	663.6	713.0	600	888	895	1396	978	1039	
V7	349.6	413.6	555.6	608.0	481	798	679	1034	938	862	
V ₈	346.7	401.2	540.1	583.3	467	740	663	987	861	813	
SEm+	28.9	27.6	48.1	41.9	16.8	44.8	51.6	78.8	70.9	37.1	
CD (P=0.05)	87.7	83.6	145.8	127.1	49.4	NS	156.6	239.0	NS	109	
Y*V	SEm+				37.6					63.0	
	CD (P=0.0	5)			106					178	
CV %	13.25	[´] 10.34	14.73	11.58	12.8	9.53	12.17	12.06	13.40	12.1	

Table 3. Seed yield (kg/ha), stover yield (kg/ha), GEY (kg/ha) and economics of greengram (Pooled)

Table 4. GEY (kg/ha) and economics of groundnut, wheat and greengram (Pooled)

Treat.		Groundnut			Wheat		Greengram			
	GEY kg/ha	GP Rs/ha	NP Rs/ha	GEY	GP	NP Rs/ha	GEY	GP	NP	
	•			kg/ha	Rs/ha		kg/ha	Rs/ha	Rs/ha	
V1	1712	109250	56732	1850	118047	50239	612	39031	9730	
V2	1894	120816	68298	1472	93944	26136	506	32262	3221	
V ₃	1488	94926	42407	1374	87653	19846	470	29963	355	
V ₄	1846	117776	65258	1622	103506	35699	399	25474	-4594	
V ₅	1595	101746	49228	1747	111453	43646	382	24379	-5845	
V ₆	1345	85839	33321	1515	96633	28825	564	36001	6596	
V ₇	2115	134922	82404	1507	96149	28342	454	28980	-841	
V ₈	1659	105834	53316	1447	92348	24541	440	28049	-1612	
SEm <u>+</u>	53	3413	3413	45.62	2910	2910	14.72	939	821	
CD (P=0.05)	157	10041	10041	134	8561	8561	43	2762	2416	
CV %	8.89	8.89	17.4	5.82	5.82	18.1	6.15	6.15	18.8	

Treatment	EC (dSm ⁻¹)	рН	SOC (%)	N (kg/ha)	P (kg/ha)	K (kg/ha)	MWHC (%)	BD (gm/cc)
T ₁	0.137	7.72	0.252	171.4	18.85	168.0	32.21	1.417
T ₂	0.132	7.99	0.238	164.1	19.04	178.8	31.26	1.428
T₃	0.141	7.81	0.226	167.2	19.60	167.2	31.17	1.422
T 4	0.125	7.96	0.233	172.5	17.55	169.5	30.78	1.419
T ₅	0.127	8.09	0.226	165.1	17.64	166.5	31.16	1.429
T ₆	0.130	7.99	0.238	166.2	19.23	172.5	29.98	1.426
T ₇	0.126	8.02	0.233	163.1	17.64	177.0	30.76	1.421
T ₈	0.129	7.92	0.240	172.5	18.57	179.9	31.06	1.427
Initial	0.090	7.14	0.190	147.0	10.92	170.0	26.62	1.480

Table 5. Year wise soil nutrients and properties after completion of crop sequence (at the end of 2022 summer greengram)

Table 6. Microbial count at the end of year (2021-22) in different varieties of crop sequence

Treatments	ts	2019-20			2020-21		2021-22		
	Bacteria (× 10 ⁶)	Actinomycete (× 10⁵)	Fungi (× 10⁴)	Bacteria (× 10 ⁶)	Actinomycetes (× 10⁵)	Fungi (× 10⁴)	Bacteria (× 10 ⁶)	Actinomycet (× 10⁵)	tes Fungi (× 10⁴)
T ₁	6.03	0.322	1.02	205.33	453.2	183.5	244.87	323.5	201.5
T ₂	34.3	0.251	5.51	128.24	326.8	117.6	218.27	272.8	142.7
T₃	2.05	0.515	7.54	55.34	72.3	40.1	198.34	312.7	221.2
T ₄	18.1	3.21	4.25	12.39	23.8	46.9	202.39	242.8	102.8
T ₅	27.2	2.28	3.4	67.25	92.3	51.3	240.08	194.7	174.8
T ₆	8.02	0.87	6.06	31.56	65.6	29.1	237.11	227.8	133.3
T ₇	10.4	62.9	629	83.18	144.1	83.1	205.37	184.5	214.6
T ₈	13.6	71.3	537	5.25	33.3	34.5	233.41	308.1	193.3
1. S	elling price of g	roundnut pod(25% p)	₹ 63.8/kg	4. 1	FYM		₹ 0.6/kg	
		heat (25% premium			₹ 28/ kg	5. [\]	Vermi compost	Ę	₹ 6/kg
	Selling price of green gram(25% premium price)				₹ 54/kg	6. (Castor cake		₹ 7.8/kg
4 La	Labour charge				₹ 340/day				-

4. CONCLUSION

This study clearly established the effect of different vareties of groundnut, wheat and greengram under organic farming. In view of the results obtained from the present investigation, it is concluded that the farmers growing crops under organic farming are recommended to grow the groundnut GJG-17(S), wheat GW 451 or GW 496 and greengram GM 4 with recommended dose of nitrogen of respective crop in the ratio of one third of each sources (FYM, vermicompost and castor cake on the nitrogen base) for achieving higher yield and economics of each crop variety and improving soil health.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Palaniappan SP, Siddeswaran K. Integrated nutrient management in ricebased cropping systems. (In:) Proceedings of the XIII National Symposium on Integrated input Management for Efficient Crop Production. February 22-25, 1994. Tamil Nadu Agriultural University, Coimbatore, India. 1994;41–53.
- 2. Prasad R. Modern agriculture vis-à-vis organic farming. Current Science. 2005;89: 252–54.
- Lal G, Chaudhary N, Lal S, Choudhary MK. Production of seed spices organically: A review. Annals of Horticulture. 2019; 12(1):11-19.
- 4. Elayaraja D, Singaravel R. Study on the use of organicwastes in coastal sandy soil

for groundnut production. Plant Archives. 2007;7(2):545–48.

- 5. Panwar AS, Munda GC. Response of groundnut (*Arachis hypogaea*) to organic and inorganic sources of nutrient supply under mid-hill altitude conditions. Indian Journal of Agricultural Sciences. 2007; 77(12):814–18.
- 6. Gorade VN, Chavan LS, Jagtap DN, Kolekar AB. Response of green gram (*Vigna radiata* L.) varieties to integrated nutrient management in summer season. Agriculture Science Digest. 2014;34(1):36-40.
- Patel KH, Shah KA, Patel HB. Response of summer green gram [*Vigna radiata* (L.) Wilczek] varieties to different nutrient management under south Gujarat condition. International Journal of Current Microbiology and Applied Sciences. 2020; 9(5):1043-1050
- Sandeep Sahu, Abhishek Raj Ranjan, Shweta Gupta, Anchal Singh, Amar, Singh Gaur, Deepak Prajapati, et al. Effect of integrated nutrient management on green gram (Vigna radiata) growth and productivity, soil health and It's economics: An overview. The Pharma Innovation Journal. 2023;12(6):2721-2725.
- Goswami KR, Choudhary H, Sharma MK, Sharma D, Bhuyan J. Evaluation of green gram genotypes for morphological, physiological traits and seed yield. Annals Plant of Physiology. 2010;24(2):115-120.
- 10. Getachew Bekele, Nigussie Dechassa, Ta mado Tana. Effect of inorganic and organic fertilizers on productivity of groundnut (*Arachis hypogaea* L.) varieties in East Hararghe, Eastern Ethiopia. Oil Crop Science. 2022;7(3):112-121.

© 2023 Desai et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/106507