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Abstract 
 

Background: Different discretization methods have been proposed to provide a better fit to count 

observations with characteristics resembling a given continuous distribution. This is done to provide discrete 

distribution with characteristics resembling a chosen continuous distribution. This study compares 

discretization through survival function and mixed Poisson processes. 

Methodology: The Ailamujia distribution is extended using the cubic rank transmutation map. The shapes 

and some moment based properties of the continuous distribution are obtained. Two discretized versions of 

the distribution obtained are unimodal and skewed, depicting characteristics of the continuous distribution. 

Parameters of the new discrete distributions are estimated using the method of maximum likelihood, and both 

AIC and chi-square are used for model comparison. 

Results: Real-life assessment using five count data shows that the two propositions provide a better fit than 

the three competing distributions considered. Also, discretization through the mixed Poisson process offers a 

better fit than the survival function technique. 

Conclusion: Various moment-based mathematical properties of the discretization through the mixed Poisson 

process are easily obtainable and hence, can be easily characterized. 
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1 Introduction 

 
Some real lifetime data are discrete in observation even when they are primarily continuous in the real sense [1]. 

The discretization procedure was developed to improve efficiency in modelling count observations with shapes 

similar to a specific continuous distribution. The process involves using different mathematical concepts to 

derive discrete analogous to continuous distributions. Different approaches to discretizing a continuous 

distribution have been developed [2–4]. Among the prominent techniques for achieving this is the survival 

function of the continuous distribution, as was first used on the Weibull distribution [5–6]. A detailed survey of 

recent introductions in the discretization process has been reported [7].  

 

If a continuous random variable has its CDF (distribution function) given as 𝐺𝑥 and 𝑆𝑥 is its survival function 

indexed with parameter vector Θ, the PMF (probability mass function) of a new discrete random variable 𝑃𝑥 is 

obtained [8–9] as: 

 

𝑃𝑥 = 𝑆𝑥 − 𝑆𝑥+1 

 

where 

 

𝑆𝑥 = 1 − 𝐺𝑥 

 

An advantage of this technique is that the survival function for discretized count distributions has a functional 

form resembling its corresponding continuous distributions [10]. Leveraging on these advantages, many notable 

continuous distributions have been discretized. Among these are the discrete Weibull [5,11,12]; discrete 

Rayleigh [9]; the discrete Lindley distribution [13]; the discrete Lomax distribution [14]; the discrete 

generalized exponential distribution [15]; discrete Marshall-Olkin Weibull [16]; discrete normal [8]; and 

discrete Pareto and discrete Burr [17]. 

 

Another technique of obtaining new discrete distribution involves utilizing the mixed Poisson [18] concept.  The 

process involves assuming a continuous distribution with positive supports for the Poisson parameter. In most 

cases, the newly obtained discrete distribution's shape mimics the continuous distribution assumed for the 

parameter. Other notable characteristics of this distribution are presented in [19–21]. The procedure has received 

patronage in modelling datasets from actuary science in particular and dispersed observations in general [22–

27]. Among many of the obtained discrete distributions in this paradigm include the mixed Poisson Lindley [28] 

and its generalizations [24,29]. Another very popular application is the mixed Poisson-gamma distribution [18] 

which turned out to be a form of the negative binomial distribution with 𝑝 = (
1

1+𝛽
). Different extensions of this 

distribution pervade literature [30,31] with applications in diverse fields of studies [32–34]. 

 

Suppose discrete random variable N has the Poisson distribution with parameter X. Also, if X is assumed to 

follow a continuous random distribution with positive supports (0, ∞) with PDF denoted with 𝑔𝑥, a new discrete 

distribution is obtained in the mixed Poisson architecture by solving for the unconditional distribution for N in: 

 

𝑃𝑛 = ∫
𝑥𝑛𝑒−𝑥

𝑛!
.

∞

0

𝑔𝑥 𝑑𝑥 

 

Different distributions have been proposed for the choice of 𝑔𝑥 [35]. The shape of 𝑔𝑥 has a resemblance with the 

shape of the obtained discrete distribution from the process [36,37].  

 

In this study, a new continuous distribution is obtained using the cubic rank transmutation map [38] to extend 

the Ailamujia distribution [39]. Both the survival function [9] and the mixed Poisson [18] approaches of 

discretization are compared using the obtained continuous distribution. 
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2 Ailamujia Distribution 

 
The Ailamujia distribution [39] has been used to model lifetime observations that are skewed and unimodal 

[40]. Several authors [41–44] have obtained an improved version of the distribution using different 

compounding techniques. The distribution function for the Ailamujia distribution is defined as: 

 

𝐹𝑥 = 1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥 , 𝛽 > 0   (1) 

 

Since introducing the quadratic transmutation map [45], many cubic transmutation maps that extend any 

baseline distribution pervade literature. The distribution function of the cubic rank transmutation (CRT) map of 

[38] is given as: 

 

𝐺𝑥 = 𝑐𝐹𝑥 + (𝑘 − 𝑐)𝐹𝑥
2 + (1 − 𝑘)𝐹𝑥

3 , 𝑐 ∈ [0,1],   𝑘 ∈ [−1,1],   (2) 

 

2.1 Cubic rank transmuted Ailamujia Distribution 

 
Some baseline distributions that have been extended using (2) include the inverse Rayleigh distribution [46], 

Gumbel distribution [47,48], modified Burr III Pareto distribution [49], inverse Weibull distribution [50], 

Gompertz and Frechet distributions [48]. 

 

Inserting (1) into (2) gives the cubic rank transmuted Ailamujia (CRTA) distribution with CDF, PDF, and 

survival function respectively obtained as: 

 

𝐺𝑥 = 𝑐(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥) + (𝑘 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
2

+ (1 − 𝑘)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
3

   (3) 

 

𝑔𝑥 = 𝛽2𝑥𝑒−𝛽𝑥 (3 − 𝑐 − 𝑘 + 2(𝑐 + 2𝑘 − 3)(1 + 𝛽𝑥)𝑒−𝛽𝑥 − 3(𝑘 − 1)(1 + 𝛽𝑥)2(𝑒−2𝛽𝑥))  (4) 

 

𝑆𝑥 = 1 − 𝑐(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥) − (𝑘 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
2

− (1 − 𝑘)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
3

   (5) 

 

Fig. 1 shows different shapes of the PDF for the CRTA distribution for different parameter combinations. The 

figure reveals that the distribution is unimodal with positive skewness. 

 

 
 

Fig. 1. Shapes of PDF for CRTA distribution 

 

2.2 Moments of the CRTA Distribution 

 
Proposition 1. If a random variable 𝑋 has a CRTA distribution, then the rth moment is obtained as: 
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𝐸(𝑥𝑟) = (3 − 𝑐 − 𝑘)(𝑟 + 1)𝑟! +
2(𝑐+2𝑘−3)(𝑟+1)𝑟!

4(2𝛽)𝑟 (1 +
𝛽(𝑟+2)

2𝛽
)  −

3(𝑘−1)(𝑟+1)𝑟!

9(3𝛽)𝑟 (1 +
2𝛽(𝑟+2)

3𝛽
+

(𝑟+3)(𝑟+2)

(3𝛽)2 )  
(6) 

 

Proof: 

 

𝐸(𝑥𝑟) = ∫ 𝑥𝑟𝑔𝑥
∞

0
 𝑑𝑥  

= ∫ 𝑥𝑟∞

0
(𝛽2𝑥𝑒−𝛽𝑥 (3 − 𝑐 − 𝑘 + 2(𝑐 + 2𝑘 − 3)(1 + 𝛽𝑥)𝑒−𝛽𝑥 − 3(𝑘 − 1)(1 + 𝛽𝑥)2(𝑒−2𝛽𝑥))) 𝑑𝑥  

= ∫ 𝛽2𝑥𝑟+1𝑒−𝛽𝑥 (3 − 𝑐 − 𝑘 + 2(𝑐 + 2𝑘 − 3)(1 + 𝛽𝑥)𝑒−𝛽𝑥 − 3(𝑘 − 1)(1 + 𝛽𝑥)2(𝑒−2𝛽𝑥))
∞

0
𝑑𝑥  

= 𝛽2 ∫ (3 − 𝑐 − 𝑘)𝑥𝑟+1𝑒−𝛽𝑥 + 2(𝑐 + 2𝑘 − 3)(𝑥𝑟+1𝑒−2𝛽𝑥 + 𝛽𝑥𝑟+2 𝑒−2𝛽𝑥)  − 3(𝑘 −
∞

0

1)(𝑥𝑟+1𝑒−3𝛽𝑥 + 2𝛽𝑥𝑟+2𝑒−3𝛽𝑥 + 𝑥𝑟+3𝑒−3𝛽𝑥) 𝑑𝑥  

= 𝛽2[∫ (3 − 𝑐 − 𝑘)𝑥𝑟+1𝑒−𝛽𝑥∞

0
𝑑𝑥 + ∫ 2(𝑐 + 2𝑘 − 3)(𝑥𝑟+1𝑒−2𝛽𝑥 + 𝛽𝑥𝑟+2 𝑒−2𝛽𝑥)

∞

0
𝑑𝑥 −

∫ 3(𝑘 − 1)(𝑥𝑟+1𝑒−3𝛽𝑥 + 2𝛽𝑥𝑟+2𝑒−3𝛽𝑥 + 𝑥𝑟+3𝑒−3𝛽𝑥)
∞

0
𝑑𝑥]  

= 𝛽2 [(3 − 𝑐 − 𝑘)
(𝑟+1)𝑟!

𝛽2 +
2(𝑐+2𝑘−3)(𝑟+1)𝑟!

(2𝛽)𝑟+2 (1 +
𝛽(𝑟+2)

2𝛽
)  −

3(𝑘−1)(𝑟+1)𝑟!

(3𝛽)𝑟+2 (1 +
2𝛽(𝑟+2)

3𝛽
+

(𝑟+3)(𝑟+2)

(3𝛽)2 )]  

= (3 − 𝑐 − 𝑘)(𝑟 + 1)𝑟! +
2(𝑐+2𝑘−3)(𝑟+1)𝑟!

4(2𝛽)𝑟 (1 +
𝛽(𝑟+2)

2𝛽
)  −

3(𝑘−1)(𝑟+1)𝑟!

9(3𝛽)𝑟 (1 +
2𝛽(𝑟+2)

3𝛽
+

(𝑟+3)(𝑟+2)

(3𝛽)2 )  

 

Hence, the first four moments of the CRTA distribution are obtained as: 

 

𝑚1 =
32(1−𝑘)+9𝛽2(15𝑐+22𝑘−37)+216𝛽3(3−𝑐−𝑘)

108𝛽3   

 

(7) 

 

𝑚2 =
160(1−𝑘)+3𝛽2(243𝑐+398𝑘−641)+1944𝛽3(3−𝑐−𝑘)

324𝛽4   

 

(8) 

 

𝑚3 =
320(1−𝑘)+𝛽2(1701𝑐+2986𝑘−4687)+7776𝛽5(3−𝑐−𝑘)

324𝛽5   (9) 

  

𝑚4 =
560(1−𝑘)+15𝛽2(243𝑐+446𝑘−689)+29160𝛽6(3−𝑐−𝑘)

243𝛽6    (10) 

 

3 Discretized Transmuted Ailamujia Distribution 

 
Proposition 2: With the distribution function of the CRTA distribution obtained in (3) and the corresponding 

survival function obtained in (5), the discretized CRTA distribution (DCTA) is obtained as: 

 

𝑃𝑥 = 𝑆𝑥 − 𝑆𝑥+1, 𝑥 = 0,1,2, …  

  

Hence, 

 

𝑃𝑥 = 𝑐 ((1 + 𝛽𝑥)𝑒−𝛽𝑥 − 1) − (𝑘 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
2

− (1 − 𝑘)(1 − (1 +

𝛽𝑥)𝑒−𝛽𝑥)
3

+ 𝑐(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1)) + (𝑘 − 𝑐)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
2

+

(1 − 𝑘)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
3

, 𝑥 = 0,1,2, …   

(11) 

 

Special cases: 

 

1. When 𝑘 = 1, equation (11) becomes the DCTA I: 

𝑃𝑥 = 𝑐 ((1 + 𝛽𝑥)𝑒−𝛽𝑥 − 1) − (1 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
2

+ 𝑐(1 − (1 + 𝛽(𝑥 +

1))𝑒−𝛽(𝑥+1)) + (1 − 𝑐)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
2

, 𝑥 = 0,1,2, …  
(12) 

 

2. When 𝑘 = 𝑐, equation (11) becomes the DCTA II 
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𝑃𝑥 = 𝑐 ((1 + 𝛽𝑥)𝑒−𝛽𝑥 − 1) − (1 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
3

+ 𝑐(1 − (1 + 𝛽(𝑥 +

1))𝑒−𝛽(𝑥+1)) + (1 − 𝑐)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
3

, 𝑥 = 0,1,2, …  
(13) 

 

3. When 𝑐 = 0, equation (11) becomes the DCTA III: 

𝑃𝑥 = −𝑘(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
2

− (1 − 𝑘)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
3

+ 𝑘(1 − (1 + 𝛽(𝑥 +

1))𝑒−𝛽(𝑥+1))
2

+ (1 − 𝑘)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
3

, 𝑥 = 0,1,2, …  
(14) 

  

 
 

Fig. 2. Shapes of PMF for DCTA distribution 

 

The PMF of the DCTA distribution for different combinations of parameters show positive skewness, 

unimodality and resembles the shapes of the PDF of the CRTA distribution in Fig. 1. 

 

If 𝑆𝑥 is the survival function of the CRTA distribution, the distribution function (CDF) and the survival function 

for the DCTA distribution [10,16] are obtained from: 

 

𝐹(𝑥) = 1 − 𝑆𝑥 + 𝑃𝑥 

 

𝑆(𝑥) = 1 − 𝐹(𝑥) + 𝑃𝑥 

 

Hence, the CDF and survival functions are obtained as: 

 

𝐹(𝑥) = 𝑐(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1)) + (𝑘 − 𝑐)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
2

+

(1 − 𝑘)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
3

, 𝑥 = 0,1,2, …  

 

(15) 

𝑆(𝑥) = 1 − 𝑐(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥) − (𝑘 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
2

− (1 − 𝑘)(1 −

(1 + 𝛽𝑥)𝑒−𝛽𝑥)
3

, 𝑥 = 0,1,2, …  
(16) 

 

3.1 Moments of the DCTA distribution 

 
Proposition 3. If a random variable 𝑋 has a CRTA distribution, then the rth moment of the DCTA distribution is 

obtained as: 

 

𝐸(𝑥𝑟) = ∑ 𝑥𝑟∞
𝑥=0 [𝑐 ((1 + 𝛽𝑥)𝑒−𝛽𝑥 − 1) − (𝑘 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)

2
− (1 −

𝑘)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
3

+ 𝑐(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1)) + (𝑘 − 𝑐)(1 − (1 + 𝛽(𝑥 +

1))𝑒−𝛽(𝑥+1))
2

+ (1 − 𝑘)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
3

]  

 (15) 
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Proof: 

 

𝐸(𝑥𝑟) = 𝜇𝑟
′ = ∑ 𝑥𝑟𝑃𝑥

∞
𝑥=0   

= ∑ 𝑥𝑟∞
𝑥=0 [𝑐 ((1 + 𝛽𝑥)𝑒−𝛽𝑥 − 1) − (𝑘 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)

2
− (1 − 𝑘)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)

3
+

𝑐(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1)) + (𝑘 − 𝑐)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
2

+ (1 − 𝑘)(1 −

(1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
3

] , 𝑟 = 1,2, …  

 

In particular, the mean of the distribution is obtained from: 

 

𝜇1
′ = [𝑐 ∑ 𝑥∞

𝑥=0 ((1 + 𝛽𝑥)𝑒−𝛽𝑥 − 1) − (𝑘 − 𝑐) ∑ 𝑥∞
𝑥=0 (1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)

2
 − (1 − 𝑘) ∑ 𝑥∞

𝑥=0 (1 −

(1 + 𝛽𝑥)𝑒−𝛽𝑥)
3

+ 𝑐 ∑ 𝑥∞
𝑥=0 (1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1)) + (𝑘 − 𝑐) ∑ 𝑥∞

𝑥=0 (1 − (1 + 𝛽(𝑥 +

1))𝑒−𝛽(𝑥+1))
2

+ (1 − 𝑘) ∑ 𝑥∞
𝑥=0 (1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))

3
]  

  

In general, there is no close form for the moments of the DCTA distribution. 

 

3.2 MLE of the DCTA distribution 

 
Proposition 4: Given that 𝑥1, 𝑥2, … , 𝑥𝑛 are random samples of size n drawn from the DCTA distribution, the 

log-likelihood function for the distribution is obtained as 

 

ℒ = ∏ 𝑃𝑥𝑖

𝑛
𝑖=1 = ∏ (𝑐 ((1 + 𝛽𝑥)𝑒−𝛽𝑥 − 1) − (𝑘 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)

2
− (1 − 𝑘)(1 −𝑛

𝑖=1

(1 + 𝛽𝑥)𝑒−𝛽𝑥)
3

+ 𝑐(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1)) + (𝑘 − 𝑐)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
2

 +

(1 − 𝑘)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
3

)    

 

ℓ = 𝑙𝑜𝑔 ℒ = ∑ 𝑙𝑜𝑔 (𝑐 ((1 + 𝛽𝑥)𝑒−𝛽𝑥 − 1) − (𝑘 − 𝑐)(1 − (1 + 𝛽𝑥)𝑒−𝛽𝑥)
2

− (1 − 𝑘)(1 −𝑛
𝑖=1

(1 + 𝛽𝑥)𝑒−𝛽𝑥)
3

+ 𝑐(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1)) + (𝑘 − 𝑐)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
2

+

(1 − 𝑘)(1 − (1 + 𝛽(𝑥 + 1))𝑒−𝛽(𝑥+1))
3

)  

 

Estimating the parameters (𝑐, 𝑘, 𝛽) denoted with (𝑐̂, 𝑘̂, 𝛽̂) involves solving a system of non-linear equations. In 

this study, the optimr package [51] in the R-language [52] is used to obtain the estimates. A similar approach of 

parameter estimation was used in similar propositions [16]. 

 

4 Mixed Poisson Crta Distribution 

 
Proposition 5. If 𝑁~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋), where the PDF of 𝑋  is given in equation (4), then the probability mass 

function  (PMF) of the mixed Poisson CRTA distribution (MCTA) is obtained as: 

 

𝑃𝑛 = 𝛽2 [
(3−𝑐−𝑘)(𝑛+1)

(1+𝛽)𝑛+2 +
2(𝑐+2𝑘−3)(𝑛+1)(1+4𝛽+𝑛𝛽)

(1+2𝛽)𝑛+3 −
3(𝑘−1)(𝑛+1)

(1+3𝛽)𝑛+4 
((1 + 3𝛽)2 + 2𝛽(1 + 3𝛽)(𝑛 +

2) + 𝛽2(𝑛 + 3)(𝑛 + 2))]  
(16) 

 

Proof: 

 

𝑃𝑛 = ∫
𝑥𝑛𝑒−𝑥

𝑛!
.

∞

0
𝑔𝑥  𝑑𝑥  

= ∫
𝑥𝑛𝑒−𝑥

𝑛!
𝛽2𝑥𝑒−𝛽𝑥 (3 − 𝑐 − 𝑘 + 2(𝑐 + 2𝑘 − 3)(1 + 𝛽𝑥)𝑒−𝛽𝑥 − 3(𝑘 − 1)(1 + 𝛽𝑥)2(𝑒−2𝛽𝑥)) 𝑑𝑥

∞

0
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=
𝛽2

𝑛!
[(3 − 𝑐 − 𝑘) ∫ 𝑥𝑛+1𝑒−(1+𝛽)𝑥𝑑𝑥 +

∞

0
2(𝑐 + 2𝑘 − 3) ∫ 𝑥𝑛+1𝑒−(1+2𝛽)𝑥(1 + 𝛽𝑥)𝑑𝑥 −

∞

0
3(𝑘 −

1) ∫ 𝑥𝑛+1𝑒−(1+3𝛽)𝑥(1 + 2𝛽𝑥 + 𝛽2𝑥2) 𝑑𝑥
∞

0
]  

=
𝛽2

𝑛!
[

(3−𝑐−𝑘)(𝑛+1)𝑛!

(1+𝛽)𝑛+2 +
2(𝑐+2𝑘−3)(𝑛+1)𝑛!

(1+2𝛽)𝑛+2 (1 +
𝛽(𝑛+2)

1+2𝛽
)  −

3(𝑘−1)(𝑛+1)𝑛!

(1+3𝛽)𝑛+2 
(1 +

2𝛽(𝑛+2)

1+3𝛽
+

𝛽2(𝑛+3)(𝑛+2)

(1+3𝛽)2 )]  

= 𝛽2 [
(3−𝑐−𝑘)(𝑛+1)

(1+𝛽)𝑛+2 +
2(𝑐+2𝑘−3)(𝑛+1)(1+4𝛽+𝑛𝛽)

(1+2𝛽)𝑛+3  −
3(𝑘−1)(𝑛+1)

(1+3𝛽)𝑛+4 
((1 + 3𝛽)2 + 2𝛽(1 + 3𝛽)(𝑛 + 2) +

𝛽2(𝑛 + 3)(𝑛 + 2))]  

 

Special cases: 

 

1. When 𝑘 = 1, equation (16) becomes the MCTA I: 

𝑃𝑛 = 𝛽2 [
(2−𝑐)(𝑛+1)

(1+𝛽)𝑛+2 +
2(𝑐−1)(𝑛+1)(1+4𝛽+𝑛𝛽)

(1+2𝛽)𝑛+3 ] , 𝑥 = 0,1,2, …  (17) 

 

2. When 𝑘 = 𝑐, equation (16) becomes the MCTA II: 

𝑃𝑛 = 𝛽2 [
(3−2𝑐)(𝑛+1)

(1+𝛽)𝑛+2 +
6(𝑐−1)(𝑛+1)(1+4𝛽+𝑛𝛽)

(1+2𝛽)𝑛+3 −
3(𝑐−1)(𝑛+1)

(1+3𝛽)𝑛+4 
((1 + 3𝛽)2 + 2𝛽(1 + 3𝛽)(𝑛 +

2) + 𝛽2(𝑛 + 3)(𝑛 + 2))] , 𝑥 = 0,1,2, …  

 

(18) 

3. When 𝑐 = 0, equation (11) becomes the MCTA III: 

𝑃𝑛 = 𝛽2 [
(3−𝑐−𝑘)(𝑛+1)

(1+𝛽)𝑛+2 +
2(𝑐+2𝑘−3)(𝑛+1)(1+4𝛽+𝑛𝛽)

(1+2𝛽)𝑛+3 −
3(𝑘−1)(𝑛+1)

(1+3𝛽)𝑛+4 
((1 + 3𝛽)2 + 2𝛽(1 +

3𝛽)(𝑛 + 2) + 𝛽2(𝑛 + 3)(𝑛 + 2))] , 𝑥 = 0,1,2, …  
(19) 

 

 
 

Fig. 3. Shapes of PMF for the MCTA distribution 

 

Fig. 3 shows that the shapes of the MCTA distribution resemble the shapes of the PDF of the CRTA 

distribution. The shapes suggest that the distribution can model unimodal and positively skewed count 

observations. 

 

4.1 Moment-generating function of the MCTA distribution 

 
Proposition 6. Given that 𝑔𝑛 is the mixing distribution of a random variable N with the CRTA distribution, the 

probability generating function (PGF) of MCTA distribution is defined as: 

𝑃𝑛(𝑧) = ∫ 𝑒𝑛(𝑧−1)𝑔𝑛𝑑𝑛
∞

0
  

= ∫ 𝑒𝑛(𝑧−1) 𝛽2𝑛𝑒−𝛽𝑛 (3 − 𝑐 − 𝑘 + 2(𝑐 + 2𝑘 − 3)(1 + 𝛽𝑛)𝑒−𝛽𝑛 − 3(𝑘 − 1)(1 + 𝛽𝑛)2(𝑒−2𝛽𝑛)) 𝑑𝑛
∞

0
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= 𝛽2[(3 − 𝑐 − 𝑘) ∫ 𝑛𝑒−(1+𝛽−𝑧)𝑛𝑑𝑛
∞

0
+ 2(𝑐 + 2𝑘 − 3) ∫ 𝑛𝑒−(1+2𝛽−𝑧)𝑛(1 + 𝛽𝑛)𝑑𝑛

∞

0
− 3(𝑘 −

1) ∫ 𝑛𝑒−(+1+3𝛽−𝑧)𝑛(1 + 𝛽𝑛)2𝑑𝑛
∞

0
]  

= 𝛽2 [
(3−𝑐−𝑘)

(1+𝛽−𝑧)2 + 2(𝑐 + 2𝑘 − 3) ∫ (𝑛𝑒−(1+2𝛽−𝑧)𝑛 + 𝛽𝑛2𝑒−(1+2𝛽−𝑧)𝑛)𝑑𝑛
∞

0
− 3(𝑘 −

1) ∫ 𝑛𝑒−(+1+3𝛽−𝑧)𝑛(1 + 2𝛽𝑛 + 𝛽2𝑛2)𝑑𝑛
∞

0
]  

= 𝛽2 [
(3−𝑐−𝑘)

(1+𝛽−𝑧)2 + 2(𝑐 + 2𝑘 − 3) (
1

(1+2𝛽−𝑧)2 +
2

(1+2𝛽−𝑧)3) − 3(𝑘 − 1) (
1

(1+3𝛽−𝑧)2 +
4𝛽

(1+3𝛽−𝑧)3 +

6𝛽2

(1+3𝛽−𝑧)4)]  

 

Hence the PGF of the MCTA distribution is: 

 

𝑃𝑥(𝑧) = 𝛽2 [
(3−𝑐−𝑘)

(1+𝛽−𝑧)2 + 2(𝑐 + 2𝑘 − 3) (
1

(1+2𝛽−𝑧)2 +
2

(1+2𝛽−𝑧)3) − 3(𝑘 − 1) (
1

(1+3𝛽−𝑧)2 +

4𝛽

(1+3𝛽−𝑧)3 +
6𝛽2

(1+3𝛽−𝑧)4)]   
(20) 

 

Also, the moment generating function for the PMF in (16) is obtained by replacing 𝑧 with 𝑒𝑡 in (20). This is 

given as:  

 

𝑀𝑥(𝑡) = 𝛽2 [
(3−𝑐−𝑘)

(1+𝛽−𝑒𝑡)2 + 2(𝑐 + 2𝑘 − 3) (
1

(1+2𝛽−𝑒𝑡)2 +
2

(1+2𝛽−𝑒𝑡)3) − 3(𝑘 − 1) (
1

(1+3𝛽−𝑒𝑡)2 +

4𝛽

(1+3𝛽−𝑒𝑡)3 +
6𝛽2

(1+3𝛽−𝑒𝑡)4)]   
(21) 

 

From (21), the first four raw moments for the MCTA distribution are obtained as: 

 

𝑚1 =
2𝛽(295−81𝑐−106𝑘)+81(𝑐+2𝑘−3)

108𝛽2   

 
(22) 

𝑚2 =
3𝛽2(295−81𝑐−106𝑘)+𝛽(2399−729𝑐−698𝑘)+243(𝑐+2𝑘−3)

162𝛽3     

 
(23) 

𝑚3 =
6𝛽3(295−81𝑐−106𝑘)+12𝛽2(1321−405𝑐−430𝑘)+8𝛽(2279−729𝑐−578𝑘)+1215(𝑐+2𝑘−3)

324𝛽4   

 
(24) 

𝑚4 =
18𝛽4(295−81𝑐−106𝑘)+24𝛽3(4745−1458𝑐−1586𝑘)+18𝛽3(20905−6723𝑐−6406𝑘)+5𝛽(55603−18225𝑐−14050𝑘)+10935(𝑐+2𝑘−3)

972𝛽5    
(25) 

 

Hence, the variance for the distribution can be obtained from: 

 

𝑉𝑎𝑟 = 𝑚2 − (𝑚1)2 

 

The index of dispersion, skewness and kurtosis for the MCTA distribution can be obtained using the moment-

based relationships [53] respectively as: 

 

𝐷𝐼 =
𝑉𝑎𝑟

𝑚1

 

𝑆𝑘 =
𝑚3 − 3𝑚2𝑚1 + 2(𝑚1)3

(𝑉𝑎𝑟)
3
2

 

𝐾𝑢 =
𝑚4 − 4𝑚3𝑚1 + 6𝑚2(𝑚1)2 − 3(𝑚1)4

(𝑉𝑎𝑟)2
 

 

4.2 MLE of the MCTA distribution 

 
Proposition 7: Given that 𝑛1, 𝑛2, … , 𝑛𝑘 are random samples of size k drawn from the MCTA distribution, the 

log-likelihood function for the distribution is obtained as 



 
 

 

 
Ademuyiwa et al.; Asian J. Prob. Stat., vol. 25, no. 2, pp. 37-51, 2023; Article no.AJPAS.107665 

 

 

 
45 

 

 

ℒ = ∏ 𝑃𝑛𝑖

𝑘
𝑖=1 = ∏ (𝛽2 [

(3−𝑐−𝑘)(𝑛+1)

(1+𝛽)𝑛+2 +
2(𝑐+2𝑘−3)(𝑛+1)(1+4𝛽+𝑛𝛽)

(1+2𝛽)𝑛+3 −
3(𝑘−1)(𝑛+1)

(1+3𝛽)𝑛+4 
((1 + 3𝛽)2 +𝑘

𝑖=1

2𝛽(1 + 3𝛽)(𝑛 + 2) + 𝛽2(𝑛 + 3)(𝑛 + 2))])  

 

ℓ = 𝑙𝑜𝑔 ℒ = ∑ 𝑙𝑜𝑔 (𝛽2 [
(3−𝑐−𝑘)(𝑛+1)

(1+𝛽)𝑛+2 +
2(𝑐+2𝑘−3)(𝑛+1)(1+4𝛽+𝑛𝛽)

(1+2𝛽)𝑛+3 −
3(𝑘−1)(𝑛+1)

(1+3𝛽)𝑛+4 
((1 + 3𝛽)2 +𝑘

𝑖=1

2𝛽(1 + 3𝛽)(𝑛 + 2) + 𝛽2(𝑛 + 3)(𝑛 + 2))])  

 

The parameter estimates of (𝛽̂, 𝑐̂, 𝑘̂) is obtained using the optimr package [51] in the R-language [52]. 

 

5 Applications 

 
The proposed distributions in this study are compared with (EDW) the exponentiated discrete Weibull 

distribution [17], (DMOG) the discrete Marshall-Olkin generalized exponential distribution [54], and (DBX) the 

discrete Bur XII distribution [55]. 

 

Table 1. PMF of the competing distribution 

 

Distribution PMF 

EDW 𝑃𝑥 = (1 − 𝛽(𝑥+1)𝑘
)

𝑐

− (1 − 𝛽𝑥𝑘
)

𝑐

    

DMOG 
𝑃𝑥 =

𝑘(1−(1−𝛽𝑥)𝑐)

𝑘+(1−𝑘)(1−𝛽𝑥)𝑐 −
𝑘(1−(1−𝛽(𝑥+1))

𝑐
)

𝑘+(1−𝑘)(1−𝛽(𝑥+1))
𝑐  

DBX 𝑃𝑥 = 𝛽log(1+𝑥𝑐) − 𝛽log(1+(𝑥+1)𝑐) 

 

Five real-life datasets are utilized to compare the new propositions and other competing distributions. The first 

dataset represents yeast cell counts per square, while the second dataset is the counts of the European red mites 

on apple leaves. Both data have been previously used in new propositions involving count distributions 

[16,26,56]. The third dataset is the frequency of epileptic seizures previously used on other discrete distributions 

[25,57]. The fourth dataset on the number of mistakes in copying groups of random digits has been used to 

model various count distributions [25,6,28,58]. The last dataset represents the number of strikes in a UK coal 

mining industries from 1948-1959 [16,59].  

 

6 Results and Discussion  

 
The maximum likelihood estimation technique using various non-linear algorithms that come with the optimr 

package in the R-language is used to obtain the estimates. The results obtained are presented in Tables 2 – 6. 

The Akaike Information Criterion (AIC) and the chi-square goodness of fits are used for model comparisons. 

 

Table 2. Results of data on yeast cell counts per square 

 

X Freq. DCTA DCTA I DCTA II DCTA III MCTA MCTA I MCTA II MCTA III EDW DMOG DBX 

0 128 127.9 120.6 118.7 114.7 126.8 124.1 123.7 121.8 143.0 127.3 127.8 

1 37 37.3 51.8 54.2 62.3 40.3 45.7 46.1 48.9 26.5 41.0 42.5 

2 18 17.3 11.5 11.4 8.7 14.5 12.9 12.9 12.8 10.1 13.0 10.2 

3 3 3.7 2.5 2.2 1.1 4.2 3.3 3.2 2.8 4.2 3.9 3.4 

4 1 0.6 0.5 0.4 0.1 1.0 0.8 0.8 0.6 1.8 1.2 1.4 

𝛽  2.06 1.79 1.93 2.33 5.73 3.82 4.21 5.14 0.56 0.30 0.19 

c 2.80 1.44 1.15 2.05 4.14 1.32 1.05 1.84 0.47 0.74 1.72 

k -1.44       -5.54       1.44 1.58   

𝜒2  0.32 9.05 11.72 25.32 1.44 3.69 3.90 5.81 9.23 2.14 4.36 

AIC 343.04 349.48 351.68 365.78 344.39 344.74 344.85 346.34 344.62 345.82 349.61 

 

Table 3. Results of data on the European red mites on Apple leaves 
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X Freq. DCTA DCTA I DCTA II DCTA III MCTA MCTA I MCTA II MCTA III EDW DMOG DBX 

0 38 38.2 28.8 27.5 22.1 38.2 32.7 32.3 30.1 44.3 37.2 38.1 

1 17 16.6 28.0 28.5 36.9 16.3 23.4 23.5 25.5 13.2 19.1 22.0 

2 10 10.9 13.4 14.2 14.7 11.5 12.6 12.9 13.9 7.6 11.1 8.5 

3 9 7.7 5.7 6.0 4.5 7.4 6.2 6.3 6.3 4.8 6.1 4.0 

4 3 3.9 2.4 2.4 1.3 3.8 2.9 2.9 2.6 3.2 3.2 2.2 

5 2 1.7 1.0 0.9 0.4 1.7 1.3 1.3 1.0 2.1 1.6 1.3 

6 1 0.7 0.4 0.3 0.1 0.7 0.6 0.5 0.4 1.5 0.8 0.9 

𝛽  1.13 1.06 1.16 1.46 2.38 1.54 1.70 2.08 0.78 0.50 0.39 

c 2.36 1.35 1.07 1.87 4.34 1.31 1.04 1.81 0.49 0.61 1.79 

k -0.89       -6.01       1.48 2.16   

𝜒2  0.72 12.71 14.69 37.52 0.93 5.16 5.52 9.26 4.63 1.45 5.01 

AIC 240.89 249.73 251.51 273.43 241.09 243.34 243.55 246.78 241.96 242.77 250.21 

 

Table 4. Results of data on the number of epileptic seizures 

 

X Freq. DCTA DCTA I DCTA II DCTA III MCTA MCTA I MCTA II MCTA III EDW DMOG DBX 

0 126 124.9 94.5 89.9 61.1 125.6 113.3 111.8 99.7 151.4 121.0 128.9 

1 80 81.9 114.9 114.9 148.3 81.0 97.1 97.4 105.1 64.4 93.1 109.0 

2 59 56.6 69.7 72.9 86.0 58.8 62.7 63.7 70.8 40.8 58.3 45.3 

3 42 42.0 36.4 38.5 35.1 39.7 36.3 37.0 39.2 27.5 34.3 21.9 

4 24 24.3 18.2 18.8 13.2 23.3 19.9 20.1 19.6 19.1 19.6 12.3 

5 8 12.0 9.0 8.8 4.8 12.2 10.5 10.5 9.2 13.5 11.0 7.6 

6 5 5.4 4.4 4.0 1.7 5.8 5.5 5.4 4.2 9.6 6.1 5.1 

7 4 2.3 2.1 1.8 0.6 2.6 2.8 2.7 1.9 6.9 3.4 3.6 

8 3 1.0 1.0 0.8 0.2 1.1 1.4 1.3 0.8 4.9 1.9 2.7 

𝛽  1.01 0.87 0.95 1.20 1.78 1.20 1.30 1.54 0.80 0.55 0.52 

c 1.85 1.32 1.05 1.82 2.42 1.20 1.00 1.83 0.65 1.20 2.19 

k -0.48       -2.92       1.44 1.17   

𝜒2  0.16 27.16 30.21 110.00 0.15 6.64 6.98 16.71 19.81 4.57 29.11 

AIC 1192.43 1215.20 1219.95 1317.17 1191.94 1195.45 1195.73 1206.71 1192.83 1196.78 1248.64 

 

Table 5. Results of data on the number of mistakes in copying groups of random digits 

 

X Freq. DCTA DCTA I DCTA II DCTA III MCTA MCTA I MCTA II MCTA III EDW DMOG DBX 

0 35 35.0 29.1 28.1 25.4 34.9 31.2 31.0 29.8 38.9 34.5 34.9 

1 11 10.9 20.4 21.2 26.2 11.4 17.2 17.4 18.8 9.8 13.9 14.8 

2 8 8.4 7.1 7.5 6.6 7.9 7.2 7.3 7.7 4.9 6.3 5.0 

3 4 3.9 2.3 2.3 1.4 3.8 2.7 2.8 2.6 2.7 2.9 2.1 

4 2 1.3 0.7 0.7 0.3 1.4 1.0 1.0 0.8 1.5 1.3 1.1 

𝛽   1.47 1.36 1.47 1.83 3.87 2.26 2.50 3.06 0.69 0.45 0.29 

c 2.55 1.38 1.10 1.92 6.95 1.31 1.04 1.78 0.48 0.82 1.61 

k -1.16       -10.88       1.40 1.17   

𝜒2  0.29 10.68 12.54 27.11 0.23 4.91 5.17 7.48 2.30 1.69 3.68 

AIC 149.95 156.16 157.45 169.06 149.93 152.02 152.14 153.77 151.50 152.50 155.26 
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Table 6. Results of data on the number of strikes in UK coal mining industries 

 

X Freq. DCTA DCTA I DCTA II DCTA III MCTA MCTA I MCTA II MCTA III EDW DMOG DBX 

0 46 46.0 46.1 46.2 46.3 46.0 46.0 46.0 46.0 76.3 55.1 53.2 

1 76 74.8 75.0 74.2 74.6 75.2 75.2 75.0 74.7 45.1 62.8 72.8 

2 24 27.1 26.9 27.8 26.9 26.6 26.5 26.8 27.2 20.1 26.7 17.9 

3 9 6.4 6.4 6.3 6.5 6.5 6.5 6.5 6.5 8.5 8.2 5.9 

4 1 1.3 1.3 1.2 1.4 1.4 1.4 1.3 1.3 3.5 2.3 2.5 

𝛽  1.86 1.84 1.93 1.84 5.82 5.76 6.24 6.86 0.59 0.27 0.55 

c 0.03 -0.03 0.27 0.96 -3.82 -3.97 -2.46 -7.79 1.34 2.38 3.86 

k 0.84       0.64       1.66 1.66   

𝜒2   1.27 1.20 1.52 1.22 1.08 1.08 1.12 1.22 39.72 6.14 6.18 

AIC 380.96 378.93 379.14 378.94 377.70 378.73 378.77 378.80 381.58 386.09 390.01 

 

The parameter estimates, goodness of fit statistics, observed frequencies and expected frequencies when each 

proposition and competing distributions are assumed are presented in Tables 2 – 6. For dataset I and II, 

presented in Tables 2 and 3, the discretized cubic rank transmuted Ailamujia distribution (DCTA) has the least 

chi-square and AIC while the mixed Poisson cubic rank transmuted distribution (MCTA) provides the second 

best fit for both datasets. 

 

The MCTA gives the best fit for datasets III, IV, and V, as shown in Tables 4 – 6. The second best fit for the 

three datasets is obtained when the DCTA is assumed. The MCTA and the DCTA provide a better fit than the 

three considered competing distributions. In most cases, the two-parameter special cases of the MCTA provide a 

relatively better fit to the dataset when compared with the special cases of the DCTA. 

 

7 Conclusion 

 
This study introduces two discrete versions of the continuous cubic rank transmuted Ailamujia distribution. The 

first version is obtained using the survival function of the continuous distribution. For the second version, the 

parameter of the classical Poisson distribution is assumed to follow the cubic rank transmuted Ailamujia 

distribution in the mixed Poisson architecture. 

 

Both proposed distributions are unimodal and positively skewed. Five real-life count datasets are used to assess 

the flexibility of the new propositions. Comparisons are made between the two discretization techniques and 

three other discrete distributions. Parameters of the distributions are estimated using the method of maximum 

likelihood, and both AIC and chi-square are used for model comparison. 

 

In all cases, the two propositions provide a better fit than the three competing distributions considered. Also, 

from the five real-life applications, the discretization through the mixed Poisson process provides a better fit 

than the survival function technique. Also, moment-based mathematical properties of the discretization through 

the mixed Poisson process are easily obtainable and hence, can be easily characterized. 
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