
Research Article
Phase Transition and Entropy Force between Two Horizons in
(n + 2)-Dimensional de Sitter Space

Yang Zhang,1,2 Wen-qi Wang,1 Yu-bo Ma,1,2 and Jun Wang 3

1Department of Physics, Shanxi Datong University, Datong 037009, China
2Institute of Theoretical Physics, Shanxi Datong University, Datong 037009, China
3School of Physics and Astronomy, Yunnan University, Kunming 650091, China

Correspondence should be addressed to Jun Wang; wangjun_3@126.com

Received 22 February 2020; Accepted 23 March 2020; Published 14 April 2020

Academic Editor: Torsten Asselmeyer-Maluga

Copyright © 2020 Yang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the effect of the space-time dimension on effective thermodynamic quantities in (n + 2)-dimensional Reissner-
Nordstrom-de Sitter space has been studied. Based on derived effective thermodynamic quantities, conditions for the phase
transition are obtained. The result shows that the accelerating cosmic expansion can be attained by the entropy force arisen
from the interaction between horizons of black holes and our universe, which provides a possible way to explain the physical
mechanism for the accelerating cosmic expansion.

1. Introduction

It is well known that the cosmic accelerated expansion indi-
cates that our universe is an asymptotical de Sitter one. More-
over, due to the success of AdS/CFT, it prompts us to search
for the similar dual relationships in de Sitter space. Therefore,
the research of de Sitter space is not only of interest to the
theory itself, but also the need of the reality.

In de Sitter space, the radiation temperature on the
horizon of black holes and the universe is generally not
the same. Therefore, the stability of the thermodynamic
equilibrium cannot be protected in it, which makes troubles
to corresponding researches. In recent years, the study on
thermodynamic properties of de Sitter space is getting more
and more attention [1–12]. In the inflationary period, our
universe seems to be a quasi de Sitter space, in which the
cosmological constant is introduced as the vacuum energy,
which is a candidate for dark energy. If the cosmological
constant corresponds to dark energy, our universe will go
into a new phase in de Sitter space. In order to construct
the entire evolutionary history of our universe and under-
stand the intrinsic reason for the cosmic accelerated expan-

sion, both the classic and quantum nature of de Sitter space
should be studied.

For a multihorizon de Sitter space, although different
horizons have different temperatures, thermodynamic
quantities on horizons of black holes and the universe are
functions depended on variables of mass, electric charge,
cosmological constant, and so on. Form this point of view,
thermodynamic quantities on horizons are not individual.
Based on this fact, effective thermodynamic quantities can
be introduced. Considering the correlation between hori-
zons of black holes and the universe, we have studied the
phase transition and the critical phenomenon in RN-dS
black holes with four-dimension and high-dimension by
using effective thermodynamic quantities, respectively.
Moreover, the entropy for the interaction between horizons
of black holes and the universe is also obtained [13–17].
When we consider the cosmological constant as a thermo-
dynamic state parameter with the thermodynamic pressure,
the result shows that de Sitter space not only has a critical
behavior similar to the van der Waals system [17, 18], but
also take second-order phase transition similar to AdS black
hole [19–29]. However, the first-order phase transition
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similar to the AdS black hole is not existing. In this work,
we investigate the issue of the phase transition in a high-
dimensional de Sitter space and analyze the effect of the
dimension on the phase transition and the entropy pro-
duced by two interactive horizons.

Nine years ago, Verlinde [30] proposed to link gravity
with an entropic force. The ensuing conjecture was proved
recently [31, 32], in a purely classical environment and
then extended to a quantal bosonic system in Ref. [31].
In 1998, the result of the observational data from the type
Ia supernovae (SNe Ia) [33, 34] indicates that our universe
presently experiences an accelerating expansion, which
contrasts to the one given in general relativity (GR) by
Albert Einstein. In order to explain this observational phe-
nomenon, a variety of proposals have been proposed. The
theory of “early dark energy” proposed by Riess et al. [35, 36]
is one of them, where dark energy [37, 38] as an exotic
component with large negative pressure seems to be the
cause of this observational phenomenon. According to
the observations, dark energy occupies about 73% in cos-
mic components. Therefore, one believes that the present
accelerating expansion of our universe should be caused
by dark energy. Then a lot of dark energy models have
been proposed. However, up to now, the nature of dark
energy is not clear.

Based on the entropy caused by the interaction
between the horizons of black holes and the universe,
the relationship between the entropy force and the posi-
tion ratio of the two horizons is obtained. When the posi-
tion ratio of the black hole horizon to the universe
horizon is greater (less) than a certain value, the entropy
force between the two horizons is repulsive (attractive),
which indicates that the expansion of the universe horizon
is accelerating (decelerating). While when it equal to a cer-
tain value, the entropy force is absent, and then the expan-
sion of the universe horizon is uniform. According to this,
we suppose that the entropy force between the two hori-
zons can be seen as a candidate to cause the cosmic accel-
erated expansion.

This paper is organized as follows. According to Refs.
[16–18], a brief review for the effective thermodynamic
quantities, the conditions for the phase transition, and
the effect of the dimension on the phase transition in
(n + 2)-dimensional Reissner-Nordstrom-de Sitter (DRNdS)
space is given in the next section. In Section 3, the entropy
force of the interaction between horizons of black holes and
the universe is derived, and then the effect of the dimension
on it is explored. Moreover, the relationship between the
entropy force and the position ratio of the two horizons is
obtained. Conclusions and discussions are given in the last
section. The units G = ℏ = kB = c = 1 are used throughout
this work.

2. Effective Thermodynamic Quantities

The metric of (n + 2)-dimensional DRNdS space is [39]

ds2 = −f rð Þdt2 + f −1 rð Þdr2 + r2dΩ2
n, ð1Þ

where the metric function is

f rð Þ = 1 − ωnM
rn−1

+ nω2
nQ

2

8 n − 1ð Þr2n−2 −
r2

l2
, ωn =

16πG
nVol Snð Þ :

ð2Þ

Here, G is the gravitational constant in (n + 2)-dimen-
sional space, l is the curvature radius of dS space, VolðSnÞ
denotes the volume of a unit n–sphere dΩ2

n,M is an integra-
tion constant, and Q is the electric/magnetic charge of the
Maxwell field.

In (n + 2)-dimensional DRNdS space, positions of the
black hole horizon r+ and the universe horizon rc can be
determined when f ðr+,cÞ = 0. Moreover, thermodynamic
quantities on these two horizons satisfy the first law of
thermodynamics, respectively [3, 5, 39]. However, thermody-
namic systems denoted by the two horizons are not indepen-
dent, since thermodynamic quantities on them are functions
depended on variables of massM, electric charge Q, and cos-
mological constant l2 satisfy the first law of thermodynamics.
When parameters of state of (n + 2)-dimensional DRNdS
space satisfy the first law of thermodynamics, the entropy
is [16–18]

S = Vol Snð Þ
4G rnc 1 + xn + f n xð Þð Þ = Sc,+ + SAB, ð3Þ

where x = r+/rc, Sc,+ = ðVolðSnÞ/4GÞrnc ð1 + xnÞ and SAB =
ðVolðSnÞ/4GÞrnc f nðxÞ are entropies with and without the
interaction between the two horizons, respectively, and

f n xð Þ = 3n + 2
2n + 1 1 − xn+1

� �n/ n+1ð Þ

−
n + 1ð Þ 1 + x2n+1

� �
+ 2n + 1ð Þ 1 − 2xn+1 − x2n+1

� �
2n + 1ð Þ 1 − xn+1ð Þ :

ð4Þ

The volume of (n + 2)-dimensional DRNdS space is
[3, 7, 13]

V =Vc −V+ =
Vol Snð Þ
n + 1ð Þ r

n+1
c 1 − xn+1
� �

: ð5Þ

When parameters of state of (n + 2)-dimensional DRNdS
space satisfy the first law of thermodynamics, the effective
temperature is [16–18]

Teff = 1 − xn+1
� � ∂M/∂xð Þrc 1 − xn+1

� �
+ rcx

n ∂M/∂rcð Þx
Vol Snð Þrnc xn−1 1 + xn+2ð Þ

= B xð Þ
Vol Snð Þrcx2n−1ωn 1 + xn+2ð Þ ,

ð6Þ
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where

where ϕc = ðn/4ðn − 1ÞÞðωnQ/rn−1c Þ is electric potential on
the universe horizon. The effective pressure Peff , isochoric
heat capacity Cveff , and isobaric heat capacity CPveff

in
(n + 2)-dimensional DRNdS space are

Peff =
D xð Þ

ωnVol Snð Þ 1 − xn+1ð Þr2c xn−1 1 + xn+2ð Þ , ð8Þ

where

where

B xð Þ = xn n − 1ð Þxn−2 − n + 1ð Þxn + 2x2n−1 + n − 1ð Þx2n−1 1 − x2
� �� �

−
nω2

nQ
2 n − 1ð Þxn+1 1 − x2n

� �
− 2nxn+1 + n − 1ð Þ + n + 1ð Þx2n� �

8 n − 1ð Þr2n−2c

= xn n − 1ð Þxn−2 − n + 1ð Þxn + 2x2n−1 + n − 1ð Þx2n−1 1 − x2
� �� �

−
2ϕ2c n − 1ð Þ n − 1ð Þxn+1 1 − x2n

� �
− 2nxn+1 + n − 1ð Þ + n + 1ð Þx2n� �
n

,

ð7Þ

D xð Þ = n − 1ð Þxn−2 − n + 1ð Þxn + 2x2n−1 − nω2
nQ

2 2nxn+1 − n − 1ð Þ − n + 1ð Þx2n� �
8 n − 1ð Þr2n−2c xn

#
× 1 + xn + f xð Þð Þ

"

− n − 1ð Þxn−1 1 − x2
� �

−
nω2

nQ
2 1 − x2n
� �

8r2n−2c xn−1

" #
xn−1 + f ′ xð Þ

n

 !
1 − xn+1
� �

,
ð9Þ

CV = Teff
∂S

∂Teff

� �
V

= Teff
∂S/∂rcð Þx ∂V/∂xð Þrc − ∂S/∂xð Þrc ∂V/∂rcð Þx

∂V/∂xð Þrc ∂Teff /∂rcð Þx − ∂V/∂rcð Þx ∂Teff /∂xð Þrc
= 1
4G 1 − xn+1ð Þ × −Vol Snð Þrnc B xð Þnxn 1 + xn+2

� �2
�B xð Þxn+1 1 + xn+2ð Þ − 1 − xn+1ð Þx 1 + xn+2ð ÞB′ xð Þ − B xð Þ 2n − 1 + 3n + 1ð Þx2n+2½ �

ð10Þ

�B xð Þ = xn n − 1ð Þxn−2 − n + 1ð Þxn + 2x2n−1 + n − 1ð Þx2n−1 1 − x2
� �� �

−
nω2

nQ
2 2n − 1ð Þ n − 1ð Þxn+1 1 − x2n

� �
− 2nxn+1 + n − 1ð Þ + n + 1ð Þx2n� �

8 n − 1ð Þr2n−2c
,

B′ xð Þ = dB xð Þ
dx

,D′ xð Þ = dD xð Þ
dx

,

CPeff
= Teff

∂S
∂Teff

� �
Peff

= Teff
∂S/∂rcð Þx ∂Peff /∂xð Þrc − ∂S/∂xð Þrc ∂Peff /∂rcð Þx

∂Peff /∂xð Þrc ∂Teff /∂rcð Þx − ∂Peff /∂rcð Þx ∂Teff /∂xð Þrc
= rnc

Vol Snð ÞB xð ÞE xð Þ
4GH xð Þ ,

ð11Þ
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where

E xð Þ = nxn−1 + f ′ xð Þ
h i

�D xð Þ − 2D xð Þ� �
1 − xn+1
� �

x 1 + xn+2
� �

− n 1 + xn + f xð Þ½ � D′ xð Þx 1 − xn+1
� �

1 + xn+2
� �n

−D xð Þ n − 1ð Þ − 2nxn+1 + 2n + 1ð Þxn+2�
− 3n + 2ð Þx2n+3�o,

H xð Þ = �B xð Þ D′ xð Þx 1 − xn+1
� �

1 + xn+2
� �n

−D xð Þ n − 1ð Þ − 2nxn+1 + 2n + 1ð Þxn+2�
− 3n + 2ð Þx2n+3�

o
+ 1 − xn+1
� �

�D xð Þ − 2D xð Þ� �
� x 1 + xn+2
� �

B′ xð Þ − B xð Þ 2n − 1 + 3n + 1ð Þx2n+2� �h i
:

�D xð Þ = nω2
nQ

2 2nxn+1 − n − 1ð Þ − n + 1ð Þx2n� �
4r2n−2c xn

� 1 + xn + f xð Þð Þ − n n − 1ð Þω2
nQ

2 1 − x2n
� �

4r2n−2c xn−1

� xn−1 + f ′ xð Þ
n

 !
1 − xn+1
� �

:

ð12Þ

The coefficient of isobaric volume expansion and isother-
mal compressibility in (n + 2)- dimensional DRNdS space is
given by

α = 1
V

∂V
∂Teff

� �
Peff

= 1
V

∂V/∂rcð Þx ∂Peff /∂xð Þrc − ∂V/∂xð Þrc ∂Peff /∂rcð Þx
∂Peff /∂xð Þrc ∂Teff /∂rcð Þx − ∂Peff /∂rcð Þx ∂Teff /∂xð Þrc

= −
ωn n + 1ð ÞVol Snð Þx2n−1 1 + xn+2

� �
H xð Þ

� rc xn+1 �D xð Þ − 2D xð Þ� �
1 + xn+2
� ��

+D′ xð Þx 1 − xn+1
� �

1 + xn+2
� �

−D xð Þ n − 1ð Þ − 2nxn+1 + 2n + 1ð Þxn+2 − 3n + 2ð Þx2n+3� �	
:

κTeff
= −

1
V

∂V
∂Peff

� �
Teff

= 1
V

∂V/∂rcð Þx ∂Teff /∂xð Þrc − ∂V/∂xð Þrc ∂Teff /∂rcð Þx
∂Peff /∂xð Þrc ∂Teff /∂rcð Þx − ∂Peff /∂rcð Þx ∂Teff /∂xð Þrc

= r2cωn n + 1ð ÞVol Snð Þ 1 − xn+1
� �

xn−1 1 + xn+2
� �

H xð Þ
× 1 − xn+1
� �

x 1 + xn+2
� �

B′ xð Þ − B xð Þ
hn

× 2n − 1 + 3n + 1ð Þx2n+2� �i
− xn+1 1 + xn+2

� �
�B xð Þ

o
:

ð13Þ

Numerical solutions for the isobaric heat capacity Cpeff
and coefficients of isobaric volume expansion α and isother-
mal compressibility κTeff

with the position ratio of the black

hole horizon to the universe horizon x have been given in
Figures 1–3, respectively. From the figures, it is clear that
the values of Cpeff

, α, and κTeff
have sudden change with the

charge of the space-time is a constant, which is similar to
the van der Waals system. Moreover, as the dimension of
the space increases, the value of x to denote the sudden
change also increases. This indicates that the point of the
phase transition is closely related to the dimensions of the
space-time.

From Table 1, it is clear that the phase transition point is
different with different dimensions. Moreover, as the dimen-
sion increases, the critical value of the phase transition point
and the effective pressure and temperature are all increased.

3. Entropy Force

The entropy force of a thermodynamic system can be
expressed as [30–32, 40–43]

F = −T
∂S
∂r

, ð14Þ

where T is the temperature and γ is the radius.

Cpeff

X
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Figure 1: (color online). CPeff
− x diagram for Q = 0:01, rc = 1, and

n = 2 ; 4 ; 6, respectively.
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Figure 2: (color online). α − x diagram for Q = 0:01, rc = 1, and
n = 2 ; 4 ; 6, respectively.
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From Eq. (3), the entropy caused by the interaction
between horizons of black holes and the universe is

SAB =
Vol Snð Þ
4G rnc f n xð Þ: ð15Þ

From Figure 4, it shows that as the dimension increases,
the intersectional point of the curve and the x–axis is moving
to the right. In other words, the value of x0 increases with the
dimension, which denotes the point where the entropy
caused by the interaction between horizons of black holes
and the universe changes between positive and negative
values. The entropy given in Eq. (4) does not contain explicit
electric charge Q dependent Q terms.

From Eq. (14), the entropy force of the two interactive
horizons can be given as

F = −Teff
∂SAB
∂r

� �
Teff

, ð16Þ

where Teff is the effective temperature of the considering case
and r = rc − r+ = rcð1 − xÞ.Then, it gives

Figure 5 shows that the entropy force increases with the
dimension. Moreover, when n = 2 and x = x0 = 0:9009, n = 4
and x = x0 = 0:9035, and n = 6 and x = x0 = 0:9224, Fðx0Þ = 0,
respectively. It indicates that the value of x0 increases with
the dimension, which denotes the point where the direction
of the entropy force changes.

Figure 6 shows that when Q = 0:001 and x = x0 = 0:9014,
Q = 0:01 and x = x0 = 0:9009, and Q = 0:1 and x = x0 =
0:8120, Fðx0Þ = 0, respectively. It implies that as the electric
charge increases, the value of x0 decreases, which denotes
the point where the entropy force changes between positive
and negative values.

From Figure 5, we can obtain that when x⟶ 1,
Fðx⟶ 1Þ⟶∞, and then according to Eq. (6), Teff ⟶ 0.
This result indicates that the interaction between horizons of
black holes and the universe tends to infinity, which contrasts
to the third law of thermodynamics. In order to protect the
laws of thermodynamics, the black hole horizon and the cos-
mological horizon cannot coincide with each other. Based on

this fact, we take 1 − Δx as the maximum value of x, where Δx
is a minor dimensionless quantity. The value of Δx can be
determined by the speed of the cosmic accelerated expansion
at the position x.

According to the expression of the entropy force, when
x0 < x < 1 − Δx, FðxÞ > 0, which indicates that the interaction
between horizons of black holes and the universe is repulsive.
Consequently, the expansion of the cosmological horizon can
be accelerated by the entropy force in the absence of other
forces. In Figure 5, it is known that the entropy force is differ-
ent at different positions. Thus, the expansion of the universe
is variable acceleration in the interval of x0 < x < 1 − Δx.
While when 0 < x < x0, FðxÞ < 0, which indicates that the
interaction between horizons of black holes and the universe
is attractive, and then the expansion of the universe is a
variable deceleration in this interval.

From Figure 5, we find that when the area enclosed by
the curve FðxÞ − x and the x − axis with the interval of
x0 < x < 1 − Δx is larger than the area enclosed by the same

KTeff
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Figure 3: (color online). κTeff
− x diagram for Q = 0:01, rc = 1, and

n = 2 ; 4 ; 6, respectively.

Table 1: Critical values of the effective thermodynamic system for
different n:

n = 2 n = 4 n = 6
xc 0.5894 0.7053 0.7674

Tc
eff 0.0301 0.1127 0.2095

Pc
eff 0.0238 0.0952 0.1825

F xð Þ = −Teff
∂Sf /∂rc
� �

x
∂Teff /∂xð Þrc − ∂Sf /∂x

� �
rc
∂Teff /∂rcð Þx

1 − xð Þ ∂Teff /∂xð Þrc + rc ∂Teff /∂rcð Þx
= −B xð Þrn−2c

4Gx2n−1ωn 1 + xn+2ð Þ

×
nf n xð Þ x 1 + xn+2

� �
B′ xð Þ − B xð Þ 2n − 1 + 3n + 1ð Þx2n+2� �h i

+ x 1 + xn+2
� �

�B xð Þf n′ xð Þ
1 − xð Þ x 1 + xn+2ð ÞB′ xð Þ − B xð Þ 2n − 1 + 3n + 1ð Þx2n+2½ �

h i
+ x2�B xð Þ 1 + xn+2ð Þ

:

ð17Þ
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curve and the x − axis with the interval of 0 < x < x0, the cos-
mic expansion is from acceleration to deceleration. It gives an
expanding universe. While when the former area is less than
or equal to the latter one, the cosmic expansion is from accel-
eration to deceleration. Moreover, when these two areas are
equal at the position ratio x, which belongs to the interval
of �x < x < x0, the universe is accelerated shrinkage from the
position ratio �x to the position ratio x0, where �x is determined
when the area between the curve and the x-axis with the
interval of ½�x, 1 − Δx� is zero. After the universe shrink to
the position ratio x = 1 − Δx, the evolution of the universe
begins the next cycle. It gives an oscillating universe.

4. Conclusions

When horizons of black holes and the universe are irrelevant,
thermodynamic systems of them are independent. Since the
radiational temperature on them is different, the requirement
of thermodynamic equilibrium stability cannot be met.
Therefore, the space is unstable. While when they are related,
the effective temperature Teff and pressure Peff for DRNdS
space can be obtained from Eqs. (6) and (8). According to
curves CPeff

− x, α − x, and κTeff
− x, when x = xc, the phase

transition of DRNdS space-time occurs. Since its entropy

and volume are continuous, the phase transition is the
second-order one according to Ehrenfest’s classification.
It is similar to the case that occurred in AdS black holes
[19–24, 44, 45]. From Eq. (10), we find that the isochoric
heat capacity Cv of DRNdS space is nontrivial, which is
similar to the system of van der Waals, but different from
AdS black holes. In the second 2, the effect of the dimen-
sion on the phase transition point is analyzed, which lays
the foundation for the further study of the thermodynamic
characteristics of the high-dimensional complex dS space.

From Figure 5, we find that when the area enclosed by
the curve FðxÞ − x and the x − axis with the interval of
x0 < x < 1 − Δx is larger than the area enclosed by the same
curve and the x − axis with the interval of 0 < x < x0, the cos-
mic expansion is from acceleration to deceleration. It gives an
expanding universe. While when the former area is less than
or equal to the latter one, the cosmic expansion is from accel-
eration to deceleration. Moreover, when these two areas are
equal at the position ratio x, which belongs to the interval
of �x < x < x0, the universe is accelerated shrinkage from the
position ratio �x to the position ratio x0, where �x is determined
when the area between the curve and the x − axis with the
interval of �x, 1 − Δx is zero. After the universe shrink to the
position ratio x = 1 − Δx, the evolution of the universe begins
the next cycle. It gives an oscillating universe.

Whether the universe is an expanding one or an oscillat-
ing one is determined by the value of the minor dimension-
less quantity. From Figures 5 and 6, we find that the
position, where the entropy force changes between positive
and negative values, is greatly affected by the dimension,
but commonly by the electric charge. Therefore, the effect
of the dimension on the cosmic expansion is greater than
the electric charge. Moreover, since the curve FðxÞ − x is con-
tinuous at the phase transition point xc, the entropy force can
not be affected by the phase transition in the space with a
given dimension and electric charge. The amplitude and the
value of the entropy force are only determined by the posi-
tion ratio x. According to our research result, the entropy
force between horizons of black holes and the universe can
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Figure 5: (color online). FðxÞ − x diagram for Q = 0:01, rc = 1, and
n = 2 ; 4 ; 6, respectively.
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Figure 6: (color online). FðxÞ − x diagram for n = 2, rc = 1, and
Q = 0:001 ; 0:01 ; 0:1, respectively.
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Figure 4: (color online). f nðxÞ − x diagram for ðVolðSnÞ/4GÞ = 1,
rnc = 1, and n = 2 ; 4 ; 6, respectively.
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be taken as one of the reasons for the cosmic expansion,
which provides a new approach for people to explore the
physical mechanism of the cosmic expansion.
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