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In this study, we investigate the relativistic Klein-Gordon equation analytically for the Deng-Fan potential and Hulthen plus Eckart
potential under the equal vector and scalar potential conditions. Accordingly, we obtain the energy eigenvalues of the molecular
systems in different states as well as the normalized wave function in terms of the generalized Laguerre polynomials function
through the NU method, which is an effective method for the exact solution of second-order linear differential equations.

1. Introduction

The exact solution is of paramount importance in quantum
mechanics as it carries essential information on the quantum
systems under investigation. It is possible only for quantum
systems such as H2 and harmonic oscillator. As for the
majority of quantum systems, the approximation method
needs to be used. In most quantum systems, for the analytical
solution, methods such as the Nikiforov-Uvarov method [1],
quantization rules [2], ansatz method [3], supersymmetry
(SUSY) method [4], and series expansion [5] have been used
for any arbitrary l state.

Recently, the bound state of the Schrödinger equation has
been solved by the Deng-Fan potential [6], modified Morse
potential [7], and Eckart potential [8] by approximation to
the centrifugal term, and the wave function and energy level
for bound states in any arbitrary l state have been identified.
The bound state solutions of the Klein-Gordon equation with
the Deng-Fan molecular potential are solved by Dong [9].
Wei et al. investigated the relativistic scattering states of the
Hulthen potential by taking the same approximation [10].
Wei and Dong examined the approximate solution of the
bound state of the Dirac equation with the second Pöschl-

Teller potential under spin symmetry conditions and with
scalar and vector modified potentials under pseudospin sym-
metry conditions [11, 12]. They also solved the Dirac equa-
tion with the scalar and vector Manning-Rosen potentials
under pseudospin symmetry conditions by using the func-
tion analysis method and algebraic formalism [13].

In our previous works, we solved the Schrödinger equa-
tion for different potentials for few-quark systems [14–17].
However, in the present work, we make use of the NU
method to solve the Klein-Gordon equation for a diatomic
molecule analytically. The NU method has recently been
exploited in a variety of physical fields, including the Schrö-
dinger equation with a spherically harmonic oscillatory
ring-shaped potential [18] or the second Pöschl-Teller-like
potential by the Nikiforov-Uvarov method [19].

In this paper, first we describe the Nikiforov-Uvarov
method. In Review of Nikiforov-Uvarov (NU) Method, we
consider the Deng-Fan potential and calculate the energy
eigenvalue for different diatomic molecules. Next, we solve
the Klein-Gordon equation analytically for the Eckart plus
Hulthen potential through the NU method and obtain the
energy eigenvalue. And finally, we present the results, discus-
sion, and conclusion.
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2. Review of Nikiforov-Uvarov (NU) Method

The Schrödinger equation can be converted into a second-
order differential equation as follows:

σ′′ sð Þ + d2ψ sð Þ
ds2

+ σ sð Þ~τ sð Þ dψ sð Þ
ds

+ ~σ sð Þψ sð Þ = 0, ð1Þ

where σðsÞ and ~σðsÞ denote polynomials at most of the
second degree and ~τðsÞ is a first-degree polynomial. We use
the following form to find the solution:

Ψ sð Þ = ψ sð Þφ sð Þ: ð2Þ

By introducing Equation (3) into Equation (2), we arrive at

σ sð Þ d
2φ sð Þ
ds2

+ τ sð Þ dφ sð Þ
ds

+ λφ sð Þ0, ð3Þ

where φðsÞ in terms of the Rodriguez formula appears as

φn sð Þ = Bn

ρ sð Þ
dn

dsn
σn sð Þρ sð Þ½ �: ð4Þ

The weight function ρðsÞholds in the following formula:

dψ sð Þ
ds

+ σ sð Þ
ρ sð Þ

dρ sð Þ
ds

= τ sð Þ: ð5Þ

The other solution factor is defined as

π sð Þ = 1
2 σ′ sð Þ − ~τ sð Þ
h i

± σ′ sð Þ − ~τ sð Þ
h i2

− ~σ sð Þ + kσ sð Þ
� �1/2

:

ð6Þ

In this method, the polynomial πðsÞ and parameter k are
defined as

k = λ − π′ sð Þ, ð7Þ

where ψðsÞ is defined as

1
ψ sð Þ

dψ sð Þ
ds

= π sð Þ
ψ sð Þ : ð8Þ

By substituting k into Equation (7):

τ sð Þ = ~τ sð Þ + 2π sð Þ, ð9Þ

and λ is defined as:

λ = λn = −nτ′ −
n n − 1ð Þσ′′
h i

2 , n = 0, 1, 2,⋯: ð10Þ

The general form of the Schrödinger equation including
any potential is

d2ψ sð Þ
ds2

+ α1 − α2s
s 1 − α3sð Þ
� �

dψ sð Þ
ds

+ −As2 + Bs − C

s2 1 − α3sð Þ2
 !

ψ sð Þ = 0:

ð11Þ

Comparing Equation (12) with Equation (2), we get the
parameters

~τ sð Þ = α1 − α2,
σ sð Þ = s 1 − α3sð Þ,
~σ sð Þ = −As2 + Bs − C:

ð12Þ

Based on the equations, the constant parameters are
defined as

α4 =
1
2 1 − α1ð Þ,

α5 =
1
2 α2 − 2α3ð Þ,

α6 = α25 + A,
α7 = 2α4α5 − B,
α8 = α24 + C,
α9 = α3α7 + α23α8 + α6,
α10 = α1 + 2α4 + 2 ffiffiffiffiffi

α8
p ,

α11 = α2 − 2α5 + 2 ffiffiffiffiffi
α9

p + α3
ffiffiffiffiffi
α8

pð Þ,
α12 = α4 +

ffiffiffiffiffi
α8

p ,
α13 = α5 −

ffiffiffiffiffi
α9

p + α3
ffiffiffiffiffi
α8

pð Þ:

ð13Þ

The energy equation is obtained from

α2n − 2n + 1ð Þα5 + 2n + 1ð Þ ffiffiffiffiffi
α9

p + α3
ffiffiffiffiffi
α8

pð Þ + n n − 1ð Þα3
+ α7 + 2α3α8 + 2 ffiffiffiffiffiffiffiffiffi

α8α9
p = 0:

ð14Þ

Now we consider the eigenfunctions of the problem with
any potential. We obtain the second part of the solution from
Equation (4).

ϕn sð Þ = P α10−1, α11/α3ð Þ−α10−1ð Þ
n 1 − 2α3sð Þ: ð15Þ

From the explicit form of the weight function obtained
from Equation (5), we arrive at

ρ sð Þ = sα10−1 1 − α3s
α11/α3ð Þ−α10−1

� �
: ð16Þ

Pðα,βÞ
n ð1 − 2α3sÞ is the Jacobi polynomial. From Equation

(6), we arrive at

ψ sð Þ = sα12 1 − α3sð Þ−α12− α13/α3ð Þ: ð17Þ
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Then the general solution ΨðsÞψðsÞϕðsÞ becomes

ψ sð Þ = sα12 1 − α3sð Þ−α12− α13/α3ð Þ × P α10−1, α11/α3ð Þ−α10−1ð Þ
n 1 − 2α3sð Þ:

ð18Þ

3. Solving the Klein-Gordon Equation for the
Ground State

The potential that is selected for molecular spectroscopy and
molecular dynamics is of paramount importance. The Deng-
Fan oscillator potential [20] is a simple potential model for
diatomic molecules. It has the correct physical boundary
conditions at r = 0 and ∞. It is defined by

V rð Þ =D 1 − b
eαr − 1

� �2
, b = eαre − 1, r ∈ 0,∞ð Þ, ð19Þ

where D stands for the dissociation energy, re for the equilib-
rium bond length, and α for the potential range. The shifted
Deng-Fan potential is of the following form (Figure 1)

V rð Þ =D 1 − b
eαr − 1

� �2
−D =D

−2b
eαr − 1 + b2

eαr − 1ð Þ2
 !

:

ð20Þ

The radial part of the Klein-Gordon equation for a parti-
cle with a mass m and potential V ðrÞ is

d2φ rð Þ
dr2

+ 1
ℏcð Þ2 E2 −m2	 


− 2 E +mð ÞV rð Þ� �
−
l l + 1ð Þ
r2

( )
φ rð Þ = 0:

ð21Þ

Because of the term 1/r2 in Equation (21), it cannot be
analytically solved except for l = 0. Therefore, a suitable
approximation to the centrifugal term is required, as used
in [9, 21, 22]:

1
r2

= α2 d0 +
1

eαr − 1 + 1
eαr − 1ð Þ2

 !
, ð22Þ

in which αr≪ 1 and d0 = 1/12. As illustrated in Figure 2, this
approximation is very close to the term 1/r2. By introducing
the potential and the approximation 1/r2 and ℏc = 1, Equa-
tion (21) becomes

d2φ rð Þ
dr2

+ E2 −m2 + 4bD E +mð Þ
eαr − 1 −

2b2D E +mð Þ
eαr − 1ð Þ2

(

− l l + 1ð Þα2d0 −
l l + 1ð Þα2
eαr − 1 −

l l + 1ð Þα2
eαr − 1ð Þ2

)
φ rð Þ = 0:

ð23Þ

By using the variable change s = e−αr which maps the half-
line ð0,∞Þ into the interval ð0, 1Þ, Equation (23) becomes

d2φ sð Þ
ds2

+ 1 − sð Þ
s 1 − sð Þ

dφ
ds

+ E2 −m2

α2s2
+ 4bD E +mð Þ

α2s 1 − sð Þ

(

−
2b2D E +mð Þ
α2 1 − sð Þ2 −

l l + 1ð Þd0
s2

−
l l + 1ð Þ
s 1 − sð Þ −

l l + 1ð Þ
1 − sð Þ2

)
φ sð Þ = 0:

ð24Þ

By comparing Equations (11) and (24), the following
coefficients are obtained:

γ2 = −
E2 −m2

α2

� �
,

A = γ2 + β2 + ν2 + l l + 1ð Þd0,

β2 = 4bD E +mð Þ
α2

, 

B = 2γ2 + β2 + 2d0 − 1ð Þl l + 1ð Þ

ν2 = 2b2D E +mð Þ
α2

, 

C = γ2 + l l + 1ð Þd0:

ð25Þ

By combining Equations (23) and (11), the following
quantities are obtained:

α1 = α2 = α3 = 1,
α4 = 0,

α5 = −
1
2 ,

α6 =
1
4 + A,

α7 = −B,
α8 = C,

α9 = A − B + C + 1
4 ,

α10 = 1 + 2
ffiffiffiffi
C

p
,

α11 = 2 + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A − B + C + 1

4

r
+

ffiffiffiffi
C

p !
,

 α12 =
ffiffiffiffi
C

p
,

α13 = −
1
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A − B + C + 1

4

r
+

ffiffiffiffi
C

p !
:

ð26Þ
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Finally, we find the energy eigenvalue as

E2 −m2 = −α2
−n2 + β2 − l l + 1ð Þ − 2n + 1ð Þδ′

2 n + δ′
� �

0
@

1
A

2

+ l l + 1ð Þd0α2,

ð27Þ

in which

δ′ = 1
2 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ν2 + 2l + 1ð Þ2

q� �
: ð28Þ

In Table 1, we present potential parameters adopted from
[23–25]. Furthermore, by the following data, we obtain the
energy eigenvalue for diatomic molecules mentioned in
Table 1.

ℏc = 1973:27evA0, 1amu = 931:494028Mev/C2

d0 =
1
12 , V rð Þ = V rð Þ

2 ,

E −m = Enl, E +m = 2μ
ℏ2

:

ð29Þ
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Figure 2: Comparision between 1/r2 of the Deng-Fan potential and the approximation scheme as function of r for H2 diatomic molecule.
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Figure 1: The Deng-Fan potential ðeVÞ in terms of rðA0Þ for H2 diatomic molecule.

Table 1: The potential model parameters for some diatomic
molecules [18–20].

Molecule μ amuð Þ α A0−1
� �

re A0	 

D cm−1	 


H2 0.50391 1.9426 0.7416 38,266

LiH 0.8801221 1.1280 1.5956 20,287

CO 6.8606719 2.2994 1.1283 90,540

HCl 0.9801045 1.8677 1.2746 37,255
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In Table 2, we calculate energy levels for different n and l
states and compare them with other findings in [23, 24, 26,
27]. The radial wave function is of the following form:

Rnl rð Þ =Nnle
−
ffiffiffi
C

p
αr 1 − e−αrð Þδl P 2

ffiffiffi
C

p
,2δl−1ð Þ

n 1 − 2e−αrð Þ

=Nnl

2
ffiffiffiffi
C

p
+ 1

� �
n

n!
e−

ffiffiffi
C

p
αr 1 − e−αrð Þδl 2F1 −n, n

�
+ 2

ffiffiffiffi
C

p
+ 2δl ; 1 + 2

ffiffiffiffi
C

p
; e−αr

�
,

ð30Þ

where

2F1 −n, n + ν + μ + 1 ; ν + 1 ; 1 − x
2

� �

= n!
ν + 1ð Þn

P ν,μð Þ
n xð Þ ν + 1ð Þn =

Γ n + ν + 1ð Þ
Γ ν + 1ð Þ :

ð31Þ

Nnl is the normalization constant. Pðν,μÞ
n denotes the

Jacobi polynomial and 2F1 stands for the hypergeometric
function. The Nnl constant is defined as

ð∞
0

Rnl rð Þj j2dr =
ð1
0
Rnl sð Þj j2 ds

αs
= 1,

Nnlj j2
ð1
0
s2
ffiffiffi
C

p
−1 1 − sð Þ2δl 2F1 −n, n + 2

ffiffiffiffi
C

p
+ 2δl ; 2

ffiffiffiffi
C

p
+ 1 ; s

� �h i2
ds

= α
n!Γ 2

ffiffiffiffi
C

p
+ 1

� �
Γ 2

ffiffiffiffi
C

p
+ n + 1

� �
0
@

1
A

2

:

ð32Þ

By using the following formula [28, 29]:

ð1
0
s2a−1 1 − sð Þ2 b+1ð Þ

2F1 −n, n + 2 a + b + 1ð Þ ; 2a + 1 ; sð Þ½ �2ds

= n + b + 1ð Þn!Γ n + 2b + 1ð ÞΓ 2að ÞΓ 2a + 1ð Þ
n + a + b + 1ð ÞΓ n + 2a + 1ð ÞΓ n + 2 a + b + 1ð Þð Þ

 a > −1/2, b > −3/2,
ð33Þ

the normalization constant is obtained as

Nnl =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffi
C

p
αn! n +

ffiffiffiffi
C

p
+ δl

� �
Γ n + 2

ffiffiffiffi
C

p
+ δl

� �� �
n + δlð ÞΓ n + 2

ffiffiffiffi
C

p
+ 1

� �
Γ n + 2δlð Þ

vuuut , ð34Þ

and for the ground state n = 0

N0l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

ffiffiffiffi
C

p
+ δl

� �
δlB 2

ffiffiffiffi
C

p
, 2δl

� �
vuuut ,

B 2
ffiffiffiffi
C

p
, 2δl

� �
=

Γ 2
ffiffiffiffi
C

p
+ 1

� �
Γ 2δlð Þ

2
ffiffiffiffi
C

p
Γ 2

ffiffiffiffi
C

p
+ 2δl

� � :
ð35Þ

We plot wavefunction of the Deng-Fan potential (eV) as
a function of rðA0Þ for the H2 diatomic molecule in n = l = 0
in Figure 3.

Table 2: The energy levels for a few diatomic molecules obtained
from the sDF and Morse oscillator potentials.

n l −Enl eVð ÞNU −Enl eVð ÞAP21, 22 −Enl eVð Þ 19, 20
H2

0 0 4.39444 4.39444 4.47601

5 4.17644 4.18054 4.25880

10 3.62165 3.63782 3.72194

5 0 1.75835 1.75835 2.22052

5 1.61731 1.62548 2.04355

10 1.26034 1.29257 1.60391

7 0 1.07756 1.07756 1.53744

5 0.96174 0.97232 1.37565

10 0.66976 0.71172 0.97581

LiH

0 0 2.41195 2.41195 2.42886

5 2.38348 2.38458 2.40133

10 2.30815 2.31229 2.32884

5 0 1.51628 1.51628 1.64771

5 1.49278 1.49429 1.62377

10 1.43062 1.43627 1.56074

7 0 1.22340 1.22340 1.37756

5 1.20173 1.20344 1.35505

10 1.14444 1.15083 1.29580

CO

0 0 11.08068 11.08068 11.0915

5 11.07247 11.07354 11.0844

10 11.05057 11.05449 11.0653

5 0 9.68809 9.68809 9.79518

5 9.68017 9.68130 9.78833

10 9.65905 9.66321 9.77009

7 0 9.15911 9.15911 9.29918

5 9.15131 9.15247 9.29246

10 9.13050 9.13476 9.27455

HCl

0 0 4.41705 4041705 4.43556

5 4.37403 4.37843 4.39682

10 4.25973 4.27591 4.29408

5 0 2.66574 2.66574 2.80506

5 2.62859 2.63411 2.77209

10 2.52989 2.55027 2.68471

7 0 2.09652 2.09652 2.25701

5 2.06161 2.06768 2.22634

10 1.96888 1.99127 2.14511
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4. Eckart plus Hulthen Potential

The Eckart plus Hulthen potential has been used for the
analytical solution of the Schrödinger equation. This poten-
tial as a diatomic molecular potential model has been uti-
lized in applied physics and chemical physics. The NU
method has been exploited to solve the Schrödinger equa-
tion for the Eckart plus Hulthen potential [30]. However,
in the present work, we make use of the NU method to solve
the Klein-Gordon equation for the Eckart plus Hulthen
potential. The Eckart plus Hulthen potential runs as shown
in Figure 4:

V rð Þ = cosec h2 arð Þ + coth arð Þ + V0
1 − e−2αrð Þ −

V1
1 − e−2αrð Þ2

,

ð36Þ

where V0 and V1 stand for the depths of potential well and
α for the inverse of the potential range. The hyperbolic func-
tions are defined as

sinh αrð Þ = eαr − e−αr

2 ,

cosh αrð Þ = eαr + e−αr

2 ,

tanh αrð Þ = eαr − e−αr

eαr + e−αr
:

ð37Þ

In this way, the potential is obtained as

V rð Þ = 4e−2αr

1 − e−2αrð Þ2
+ 1 + e−2αr

1 − e−2αr
+ V0
1 − e−2αr

−
V1

1 − e−2αrð Þ2
:

ð38Þ

The radial Klein-Gordon equation by using the Eckart
plus Hulthen potential in l = 0 is of the following form:

d2φ rð Þ
dr2

+ E2 −m2 −
4 E +mð Þe−2αr
1 − e−2αrð Þ2

− E +mð Þ 1 + e−2αr

1 − e−2αr

(

− E +mð Þ V0
1 − e−2αr

+ E +mð Þ V1
1 − e−2αrð Þ2

)
φ rð Þ = 0:

ð39Þ

With the variable change s = e−2αr , Equation (40) is
transformed to

d2φ sð Þ
ds2

+ 1 − sð Þ
s 1 − sð Þ

dφ
ds

+ 1
s2 1 − sð Þ2

E2 −m2 1 − s2
	 


4α2

(

−
E +mð Þs
α2

−
E +mð Þ
4α2 1 + sð Þ 1 − sð Þ − E +mð ÞV0 1 − sð Þ

4α2

+ E +mð ÞV1
4α2

)
φ sð Þ = 0:

ð40Þ

With a simple comparison, the following quantities are
obtained:

γ2 = −
E2 −m2

4α2
� �

,

A = γ2 + β2,

β2 = −
E +mð Þ
4α2 ,

B = 2γ2 − ν2,

0 1 2 3 4 5
0

1

2

r

R
t

00
 (r

)

H2

Figure 3: Wave function ðeVÞ in terms of rðA0Þ of Deng-Fan potential for H2 diatomic molecule (n = l = 0) in atomic units y = μ = 1:
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ν2 = E +mð Þ 4 −V0ð Þ
4α2 ,

C = γ2 − β2 − ξ2,

ξ2 = E +mð Þ V1 −V0ð Þ
4α2 :

ð41Þ

Accordingly, the αi parameters are obtained through
Equation (24). Moreover, by using Equation (14) and

δ′ = 1
2 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4ν2 − 4ξ2

q� �
, ð42Þ

the energy eigenvalue is identified as

E2 −m2 = −4α2 −n2 − ν2 + 2β2 + 2ξ2 − 2n + 1ð Þδ′
2 n + δ′
� �

0
@

1
A

2

+ β2 + ξ2

8<
:

9=
;:

ð43Þ

The radial wave function is of the following form:

Rnl rð Þ =Nnle
−2ηαr 1 − e−2αr

	 
δl P 2η,2δl−1ð Þ
n 1 − 2e−2αr

	 

=Nnl

2η + 1ð Þn
n!

e−2ηαr 1 − e−2αr
	 
δl

2F1 −n, n + 2η
�

+ 2δl ; 1 + 2η ; e−2αr
�
:

ð44Þ
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0
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Figure 4: The Eckart plus Hulthen potential ðeVÞ in terms of rðA0Þ for V0 = V1 = 1 and α = 0:05,0:1.
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Figure 5: Wave function ðeVÞ in terms of rðA0Þ of the Eckart plus Hulthen potential for n = l = 0, α = 0:05, and V0 =V1 = 1 in atomic units
y = μ = 1.
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With the variable change η =
ffiffiffiffi
C

p
and the parameterrs of

Equation (42), we obtain

η = 1
2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− E +mð Þ E −m + 2 V1 −V0 − 1ð Þð Þ

p
: ð45Þ

The normalization constant is obtained as

Nnl =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηαn! n + η + δlð ÞΓ n + 2 η + δlð Þð Þ
n + δlð ÞΓ n + 2η + 1ð ÞΓ n + 2δlð Þ

s
ð46Þ

We plot wave function of the Eckart plus Hulthen poten-
tial (eV) as a function of rðA0Þ for the H2 diatomic molecule
in n = l = 0 in Figure 5.

5. Results and Discussion

In this study, we examined the solution of the Klein-Gordon
equation for two different potentials. Accordingly, we calcu-
lated the energy eigenvalues and normalized wave function
for the diatomic molecules for different n and l states
through the NU method. In order to solve the Klein-
Gordon equation, we utilized the NU method, which can
also be used to identify the wave function and energy eigen-
value for any particular potential. However, with certain
potentials, the wave equation fails to furnish the boundary
conditions of the method.

The parameters related to the spectroscopic constants of
these molecules, taken from [19–21] appear in Table 1.
Table 2 shows the energy levels for diatomic molecules by
using the Morse oscillator potential and the shifted Deng-
Fan (sDF) potential. The findings comply well with refs.
[23, 24] and also with the energies calculated from AP
(amplitude phase) [26, 27].

Based on the results, as the quantum number n increases,
the energy value decreases. Furthermore, an increase in l
makes the particle less bound. It can further be inferred that
in higher dimensions, the energy value decreases. To show
the accuracy of our results, we have calculated the eigen-
values numerically for arbitrary n with l = 0, α = 0:05, and
α = 0:1. Tables 3 and 4 show the energy levels of the Eckart
plus Hulthen potential in atomic units ℏ = μ = 1 with l = 0,
α = 0:05, and α = 0:1, respectively. It is observed that as α
increases, the energy eigenvalue decreases.

6. Conclusion

Considering the importance of the molecular Deng-Fan
potential and the Eckart plus Hulthen potential in molecu-
lar physics, chemical physics, molecular spectroscopy, and
other related areas, we investigated the bound state solu-
tion of the relativistic wave equation. We provided exact
solutions of the Klein-Gordon equation for these potentials
by means of the Nikiforov-Uvarov (NU) method. We for-
mulated the eigenvalues equation and the corresponding
wave function in terms of hypergeometric functions via
the NU method within an approximation to the centrifugal
potential term.

As we know, there is no analytical solution for the radial
equation for l ≠ 0. Therefore, the Klein-Gordon equation is
transformed into a differential Schrödinger-like equation
through a suitable coordinate transformation. The obtained
energies are very close to the energies reported in other stud-
ies [19–22]. We preferred to calculate the energy eigenvalue
of H2, CO, LiH, and HCl as diatomic molecules. The main
advantage of these molecules is that their spectroscopic
values are already known [31]. This feature has made them
suitable candidates for working with in other studies, too,
e.g., [32]. They also serve different purposes in various
aspects of both physics and chemistry [22, 33, 34].

This method of approximation is simple and practical. It
can be applied to different quantum models to enhance the
accuracy of the energy eigenvalues for some potential models
of exponential-type, such as the hyperbolical potential and
the Manning-Rosen potential [35, 36]. Our findings in this

Table 3: The energy levels of the Eckart plus Hulthen potential for
several states with l = 0, α = 0:05, in atomic units ℏ = μ = 1.

V0 V1 n Enl eVð ÞNU

1 1 0 -1.10125

1 -1.14085

2 -1.18559

3 -1.23510

4 -1.23906

5 -1.34726

2 2 0 -1.00125

1 -1.01056

2 -1.02800

3 -1.05246

4 -1.08371

5 -1.12063

3 3 0 -1.20005

1 -1.12267

2 -1.06792

3 -1.03138

4 -1.00976

5 -1.00061

-1 1 0 -1.78125

1 -1.84500

2 -1.91125

3 -1.98000

4 -2.05125

5 -2.12500

-1 2 0 -2.14453

1 -2.18625

2 -2.23187

3 -2.28117

4 -2.23395

5 -2.39006
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section are significant not only in theoretical and chemical
physics but also in experimental physics since we obtained
general results which are useful for studying nuclear charge
radius, spin, and nuclear scattering. In the future, we plan
to improve the approximation to solve the Bethe-Salpeter
equation with different potentials.

Data Availability

We have not included a data availability statement in our
manuscript.
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