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Energy efficiency optimization
and carbon emission reduction
targets of resource-based
cities based on BiLSTM-CNN-
GAN model

Qunyan Wan and Jing Liu*

College of Public Administration (School of Law), Xinjiang Agricultural University, Urumqi,
Xinjiang, China
Introduction: Energy consumption and carbon emissions are major global

concerns, and cities are responsible for a significant portion of these

emissions. To address this problem, deep learning techniques have been

applied to predict trends and influencing factors of urban energy consumption

and carbon emissions, and to help formulate optimization programs and policies.

Methods: In this paper, we propose a method based on the BiLSTM-CNN-GAN

model to predict urban energy consumption and carbon emissions in resource-

based cities. The BiLSTMCNN-GAN model is a combination of three deep

learning techniques: Bidirectional Long Short-Term Memory (BiLSTM),

Convolutional Neural Networks (CNN), and Generative Adversarial Networks

(GAN). The BiLSTM component is used to process historical data and extract time

series information, while the CNN component removes spatial features and local

structural information in urban energy consumption and carbon emissions data.

The GAN component generates simulated data of urban energy consumption

and carbon emissions and optimizes the generator and discriminator models to

improve the quality of generation and the accuracy of discrimination.

Results and discussion: The proposed method can more accurately predict

future energy consumption and carbon emission trends of resource-based cities

and help formulate optimization plans and policies. By addressing the problem of

urban energy efficiency and carbon emission reduction, proposed method

contributes to sustainable urban development and environmental protection.

KEYWORDS

BiLSTM, CNN, GAN, resource-based cities, carbon emission reduction, energy
efficiency optimization
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1 Introduction

Urbanization is accelerating, and urban energy consumption

and carbon emissions have become the focus of global attention

(Yaramasu et al., 2017). To achieve sustainability, many cities have

energy efficiency and carbon reduction targets. However, to achieve

these goals, it is necessary to comprehensively consider various

factors, such as urban planning, energy management, and

environmental protection (Pidikiti et al., 2023). In recent years,

with the development of deep learning technology, deep learning-

based methods have gradually become one of the essential means to

deal with urban energy efficiency optimization and carbon emission

reduction. Below are some commonly used deep learning methods

for urban energy efficiency optimization and carbon reduction

(Krishna et al., 2023). A list of acronyms used in this paper is

presented in Table 1.

A method based on the convolutional neural network (Jiang

et al., 2019): Convolutional neural network can deal with the spatial

distribution of urban energy consumption and carbon emissions

and extract spatial features by learning convolution kernels. The

advantage is that it can process high-dimensional spatial data and is

suitable for processing image, video, and other data types. The

disadvantage is that it cannot process time series data, making it

challenging to perform data enhancement.

Recurrent neural network-based methods (Jiang et al., 2019):

Recurrent neural networks can process time series data of urban

energy consumption and carbon emissions and extract sequence

features by learning time dependencies. The advantage is that it is

suitable for processing time series data and can handle variable-

length sequence data. The disadvantage is that it is challenging to

process long sequences and is prone to gradient disappearance or

gradient explosion.

Auto encoder-based methods (Sun et al., 2022): Auto encoders

can be used for dimensionality reduction and feature extraction of

urban energy consumption and carbon emission data, thereby

improving the robustness and generalization capabilities of the

model. The advantage is that unsupervised learning can be
Frontiers in Ecology and Evolution 02
performed, and essential features in the data can be automatically

extracted. The disadvantage is that encoding and decoding complex

data structures, and relationships are complicated.

Methods based on reinforcement learning (Abdullah et al.,

2021): Reinforcement learning can be used to formulate energy

management strategies and environmental protection measures and

learn optimal strategies by continuously interacting with the

environment. The advantage is that it can deal with continuous

action and state space problems and is suitable for decision-making

problems. The disadvantage is that it requires a large amount of

training data and computing resources, and it is easy to fall into a

locally optimal solution.

However, human work has some limitations in predicting

urban energy consumption and carbon emissions, for example,

linear regression models cannot capture nonlinear relationships

between input variables, and artificial neural networks may suffer

from over fitting or under fitting problems. Therefore, we propose a

BiLSTM-CNN-GANmodel that aims to overcome these limitations

and achieve more accurate and reliable predictions. This combines

the three models of recurrent neural network (BiLSTM),

convolutional neural network (CNN), and generative adversarial

network (GAN), which can process sequence data and spatial data,

and generate data with specific conditions. This method can predict

urban energy efficiency and carbon emissions, formulate energy

management strategies and environmental protection measures,

optimize urban planning, and generate data that meet specific

conditions to provide more reference and support for decision-

making (Østergaard et al., 2021).

The contribution points of this paper are as follows:
• The method proposed in this paper can help formulate

appropriate energy management strategies and

environmental protection measures by learning historical

urban energy efficiency and carbon emissions data and

predicting future energy efficiency and carbon emissions.

• The method proposed in this paper can analyze the spatial

characteristics and local structure in urban energy efficiency

and carbon emission data to optimize urban planning and

reduce energy consumption and carbon emission. For

example, urban traffic planning, architectural design,

greening layout, etc., can be optimized to reduce energy

consumption and carbon emissions.

• The method proposed in this paper can generate simulated

data on urban energy consumption and carbon emissions

and help evaluate the impact of different energy

management strategies and environmental protection

measures on urban energy efficiency and carbon

emissions, thereby guiding decision-making.
In the rest of this paper, we present recent related work in

Section 2. Section 3 offers the proposed methods: Overview,

BiLSTM networks; ResNet50; and GAN. Section 4 presents the

experimental part, details, and comparative experiments. Section

5 concludes.
TABLE 1 Acronyms and full names.

Acronym Full Name

BiLSTM Bidirectional Long Short-Term Memory

CNN Convolutional Neural Networks

GAN Generative Adversarial Networks

RNN Recurrent Neural Network

RL Reinforcement Learning

EIA International Energy Statistics Dataset

USGBC U.S. Green Building Council

GCP Global Carbon Project

EEA European Environment Agency
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2 Related work

In this section, we provide an overview of related work using

deep learning techniques to predict urban energy consumption and

carbon emissions. We first introduce the importance of predicting

urban energy consumption and carbon emissions, and then discuss

the strengths and limitations of existing methods. We highlight gaps

in the literature that the proposed method aims to address.
2.1 Reinforcement learning

Reinforcement learning (Qin et al., 2022) is a machine learning

method that focuses on learning optimal behavioral strategies

through interaction with the environment. In energy efficiency

optimization and carbon emission reduction goals in resource-

based cities, reinforcement learning methods can be applied to

optimize energy management strategies, building control,

intelligent grid scheduling, and transportation to reduce energy

consumption and carbon emissions.

Reinforcement learning has great potential and application

prospects in applying energy efficiency optimization and carbon

emission reduction goals in resource-based cities (Huang et al.,

2019). This is because reinforcement learning can achieve

autonomous learning and adaptive control, optimize complex

nonlinear systems, and achieve multi-objective optimization.

Using reinforcement learning algorithms, energy management

systems can learn from their own experiences, adapt to changing

conditions, and ultimately optimize the management of energy

consumption and carbon emissions management.

However, some challenges and limitations need to be overcome

when applying reinforcement learning methods in the study of

energy efficiency optimization and carbon emission reduction goals

in resource based cities (Krishna et al., 2022). These challenges

include long training time, extensive data requirements, and poor

model interpretability. Reinforcement learning methods require a

large amount of data to train the algorithms, which can be

challenging for resource-based cities with limited data resources.

In addition, the interpretability of the reinforcement learning

models could be better, which makes it difficult to understand the

reasoning behind the decisions made by the algorithms.
2.2 Autoencoder

Autoencoder is a type of neural network model mainly used to

learn high-level feature representation and data compression

(Mirzaei et al., 2022). In energy efficiency optimization and

carbon emission reduction goals in resource-based cities, the

autoencoder method can be applied to building energy

consumption prediction, energy management strategy

formulation, and energy consumption monitoring, thereby

reducing energy consumption and carbon emissions.

The autoencoder method (Lu et al., 2017) has great potential and

application prospects for energy efficiency optimization and carbon

emission reduction goals in resource-based cities. The autoencoder
Frontiers in Ecology and Evolution 03
method can reduce data dimensionality, compression, reconstruction

and restoration, and unsupervised learning. Using autoencoder

algorithms, energy management systems can learn the underlying

energy consumption patterns and develop more accurate and

effective energy management strategies. In addition, autoencoder

algorithms can help reduce data storage and transmission costs,

which is critical for resource-based cities with limited resources.

The autoencoder method also needs to consider some

challenges and limitations. These challenges include the impact of

data quality and noise, long model training time, and poor model

interpretability (Tang et al., 2022). The quality of the data used for

training the autoencoder models can significantly impact the

models’ accuracy and effectiveness. In addition, the long training

time required for autoencoder models can be a challenge, especially

for resource-based cities with limited computing resources. Lastly,

the interpretability of the autoencoder models can be poor, which

makes it challenging to understand the reasoning behind the

decisions made by the algorithms.
2.3 Recurrent neural network

A recurrent neural network (RNN) (Zhang et al., 2022) is a model

capable of processing sequence data with recursive structure and

memory function. In applying energy efficiency optimization and

carbon emission reduction targets in resource-based cities, RNN has

many application values, such as building energy consumption

prediction, energy management strategy formulation, energy

consumption monitoring, intelligent grid scheduling, etc.

The advantage of RNN is that it can process sequence data of

any length, realize the storage and processing of sequence data, and

handle variable-length input and output simultaneously (Han et al.,

2023). This makes it ideal for modeling time-series data and

forecasting future trends, which is crucial in energy management

systems. Using the RNN algorithm, the energy management system

can formulate proper and practical strategies, optimize energy

consumption, and reduce carbon emissions.

But problems such as gradient disappearance or explosion may

occur in the training process of RNN. It is challenging to learn long-

term dependencies, and the computational complexity is relatively

high. These challenges affect the accuracy and efficiency of RNN

models, limiting their effectiveness in energy management systems

(Wang and Fu, 2023). Therefore, when applying RNN to optimize

energy efficiency and carbon emission reduction in resource-based

cities, it is necessary to consider its advantages and disadvantages

comprehensively, make reasonable selection and application in

combination with actual application scenarios, and adopt

appropriate optimization strategies and technical means to

improve model performance and application effects.
3 Methodology

In this section, we provide an overview of related work using

deep learning techniques to predict urban energy consumption and

carbon emissions. We first introduce the importance of predicting
frontiersin.org
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urban energy consumption and carbon emissions, and then discuss

the strengths and limitations of existing methods. We highlight gaps

in the literature that The proposed method aims to address.
3.1 Overview of the proposed network

The BiLSTM-CNN-GAN model proposed in this paper aims to

optimize the efficiency of urban energy systems while achieving the

goal of reducing carbon emissions. In this model, BiLSTM and

CNN are used to process urban energy data and learn the

characteristics of urban energy systems, including energy

consumption, production, conversion, and so on. GAN is used to

generate optimized solutions for energy systems to achieve the goal

of reducing carbon emissions. Figure 1 is the overall flow chart:

The proposed method is based on the BiLSTM-CNN-GAN

model, and the specific steps include data preprocessing, feature

extraction, generator training, discriminator training, generator,

and discriminator optimization, optimization scheme generation

and evaluation, and application. First, the historical data on urban

energy consumption and carbon emissions are preprocessed,

grouped, and sorted by time series and spatial location. Then,

BiLSTM and CNN are used to extract time series and spatial

feature information, as well as local structure information. Next,

use the generator model of GAN to generate realistic simulated data

and optimize the model to improve data quality and discrimination

accuracy. After the generator and the discriminator are trained,

both are optimized, including parameter adjustment and model

structure optimization. Next, use the generated simulation data and

the city’s existing energy system data to develop an urban energy

system optimization scheme to maximize energy efficiency and

minimize carbon emissions. Finally, the generated energy

consumption and carbon emission data are used for simulation

and evaluation, and the optimization scheme is applied to the

existing urban energy system. The proposed method fully

considers the data’s quality and characteristics, the model’s

complexity and effect, and the optimization’s stability and

effectiveness to obtain optimal results.
3.2 BiLSTM model

BiLSTM (Ameyaw and Yao, 2018) is a bidirectional recurrent

neural network that can learn the forward and backward

dependencies in time series data by inputting the input sequence

from front to back and from back to front into two independent

LSTM units. In the proposed method, BiLSTM is used to extract

time series information of urban energy consumption and carbon

emission data. As shown in Figure 2, it is the flow chart of BiLSTM:

The BiLSTM model consists of two independent LSTM

networks that process forward and reverse time series data,

respectively (Zhou et al., 2022). Assuming that the input sequence

is x1, x2,…, xT , the forward calculation of the BiLSTM model is:
Frontiers in Ecology and Evolution 04
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!

= LSTMfwd ð xt , ht − 1
���!

) (1)
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! = softmax ðWoht

!
+ bo) (2)

Where: xt : Input sequence at time step t.

ht
!
: The hidden state of the forward LSTM.

yt
!: Forward LSTM output.

Wo and bo: The weights and biases of the output layer.

LSTMfwd ð ·): The calculation function of forward LSTM.

softmax ð ·): The activation function of the output layer.

In the proposed method, the BiLSTM model together with the

CNN model constitutes the feature extraction part, which is used to

extract time series and spatial feature information from urban

energy consumption and carbon emission data. Specifically, we

use urban energy consumption and carbon emission data as

forward and reverse inputs respectively, extract time series

information through the BiLSTM model, and then input the

output results into the CNN model for spatial feature extraction.

Finally, the feature-extracted data is used for training and

optimization of the generator and discriminator models.

The BiLSTM model is used in the proposed method to extract

time series information of urban energy consumption and carbon

emission data, which provides strong support for urban energy

system optimization by learning the forward and backward

dependencies of time series.
FIGURE 1

Overall flow chart of the model.
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3.3 ResNet50

ResNet50 (Tahir et al., 2021) is a commonly used convolutional

neural network model that can be used for computer vision tasks such

as image classification and target detection. The ResNet50 model

mainly comprises multiple convolutional, pooling, and fully

connected layers. The residual block (Residual Block) concept is

introduced, which can effectively solve the problems of gradient

disappearance and over fitting in deep convolutional neural networks.

In the proposed method, the ResNet50 model extracts spatial feature

information from urban energy consumption and carbon emission

data. As shown in Figure 3, it is the flow chart of ResNet50:

The ResNet50 model uses multiple Residual Blocks and a fully

connected layer. Specifically, the ResNet50 model includes the

following hierarchy:
Fron
• Input layer.

• Convolution layer 1: includes 64 7� 7 convolution kernels,

using a 2-step convolution operation.

• Pooling layer 1: The maximum pooling is adopted; the

pooling size is 3, and the step size is 2.

• Residual Block 1: Includes 3 Residual Units; each Residual

Unit includes two 3� 3 convolutional layers and an

identity mapping function.

• Residual Block 2: Includes 4 Residual Units.

• Residual Block 3: Includes 6 Residual Units.

• Residual Block 4: Includes 3 Residual Units.

• Fully connected layer 1: including 1000 neurons, using the

ReLU activation function.

• Output layer: output feature vector.
tiers in Ecology and Evolution 05
The calculation formula (Gupta et al., 2021) of ResNet50 is

as follows:

1. Input layer

h0 = x (3)

Where, h0 represents the intermediate representation of the

input layer, and x represents the input image data.

2. Convolution layer 1

h1 = f ðW1*h0 + b1) (4)

Where, h1 represents the intermediate representation of

convolutional layer 1, W1 and b1 represent the weight and bias

parameters of convolutional layer 1, respectively, and f represents

the activation function.

3. Pooling layer 1

h2 = maxpool  ð h1, p1, s1) (5)

Where, h2 represents the intermediate representation of pooling

layer 1, maxpool  ð ·) represents the maximum pooling operation,

and p1 and s1 represent the pooling size and step size of pooling

layer 1, respectively.

4. Residual Block 1

h3 = F ð h2, W3,i, b3,i
� �3

i=1) + identity ð h2) (6)

Where, h3 represents the intermediate representation of

Residual Block 1, F ð x) represents the mapping function in the

Residual Block, fW3,i, b3,ig3i=1 represents the weight and bias

parameters in Residual Block 1, and identity ð x) represents the

identity mapping function.
FIGURE 2

Flow chart of the BiLSTM model.
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5. Residual Block 2

h4 = F ð h3, W4,i, b4,i
� �4

i=1) + identity ð h3) (7)

Where h4 represents the intermediate representation of

Residual Block 2, F ð x) represents the mapping function in the

Residual Block, fW4,i, b4,ig4i=1 represents the weight and bias

parameters in Residual Block 2, and identity ð x) represents the

identity mapping function.

6. Residual Block 3

h5 = F ð h4, W5,i, b5,i
� �6

i=1) + identity ð h4) (8)

Where h5 represents the intermediate representation of

Residual Block 3, F ð x) represents the mapping function in the

Residual Block, fW5,i, b5,ig6i=1 represents the weight and bias

parameters in Residual Block 3, and identity ð x) represents the

identity mapping function.

7. Residual Block 4

h6 = F ð h5, W6,i, b6,i
� �3

i=1) + identity ð h5) (9)

Where h6 represents the intermediate representation of

Residual Block 4, F ð x) represents the mapping function in the

Residual Block, fW6,i, b6,ig3i=1 represents the weight and bias

parameters in Residual Block 4, and identity ð x) represents the

identity mapping function.

8. Pooling layer 2

h7 = avgpool  ð h6, p2, s2) (10)

Where h7 represents the intermediate representation of pooling

layer 2, avgpool  ð ·) represents the average pooling operation, p2
Frontiers in Ecology and Evolution 06
and s2 represent the pooling size and stride of pooling layer

2, respectively.

9. Fully connected layer

y = W7h7 + b7 (11)

Where y represents the model’s output, and W7 and b7
represent the weight and bias parameters of the fully connected

layer, respectively.

* represents the convolution operation, maxpool  ð ·) represents
the maximum pooling operation, avgpool  ð ·) represents the

average pooling operation, and F ð x) represents the mapping in

the Residual Block function, identity ð x) represents the identity

mapping function. In actual use, f and F usually use the

ReLU function.
3.4 GAN model

GAN is a Generative Adversarial Network (Generative

Adversarial Network) (Zhang et al., 2020), which consists of two

models, the generator and the discriminator. It is widely used in the

generation tasks of images, speech, text, and other fields. Its basic

idea is to train the generator model and the discriminator model at

the same time. The generator model aims to generate data samples

that look real. In contrast, the discriminator model aims to

distinguish the generated samples from the actual samples as

accurately as possible (Chai et al., 2014). These two models play

games with each other: the generator hopes that the generated

samples can fool the discriminator, and the discriminator hopes to

distinguish between actual and generated samples as accurately as
B
C

D E

A

FIGURE 3

Flow chart of the ResNet50 model. (A) Stem module. (B–E) Stage-1 to Stage-4.
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possible (Figure 4). Through this game method, the generator’s

generating ability and the discriminator’s specific ability have been

improved. In this paper, GAN can create simulated data on urban

energy consumption and carbon emissions and optimize the

generator and discriminator models to improve the generation

quality and discrimination accuracy.

The training process of GAN can be divided into the

following steps:
Fron
• The generator generates some samples, such as images or

text.

• The discriminator receives these samples, discriminates

them, and outputs a scalar value indicating the probability

that this sample is actual. If the input is an accurate sample,

the discriminator hopes to output a chance close to 1. If the

information is a generated sample, the discriminator desires

to output a probability close to 0.

• The generator is updated according to the output of the

discriminator, and it is hoped that the generated samples

can fool the discriminator; that is, it is expected that the

probability that the discriminator will output the developed

models will be closer to 1.

• The discriminator is updated based on the samples

generated by the generator and the actual samples, hoping

to distinguish the real pieces from the generated samples

more accurately.
Repeat the above steps until the samples generated by the

generator are close enough to the actual samples.

The advantage of GAN is that it can generate high-quality data

samples and does not need to predetermine the distribution of the

generated samples. At the same time, GAN has certain robustness,

can handle irregular data, and can adapt to different datasets and
tiers in Ecology and Evolution 07
tasks by adjusting the network structure and parameters. However,

GAN also needs help, such as insufficient diversity of generated

samples, prone to mode collapse, etc. These problems have also

become one of the hotspots of current GAN research.

The formula of GAN is as follows:

The goal of GAN is to train a generator G and a discriminator D

to generate data samples that look real. Suppose x represents the

real data sample, z represents the random variable sampled from

the noise distribution, G ð z) represents the sample generated by the

generator, D ð x) and D ðG ð z)) represent the discriminative results

of the discriminator for real samples and generated

samples, respectively.

The training process of GAN can be divided into the following

two stages:

Step 1: Discriminator training phase: The goal of the

discriminator is to maximize the probability of real samples and

minimize the probability of generated samples, that is, to maximize

the following loss function:

LD = Ex ∼ pdata ð x)½log D ð x)� +
Ez∼pz ð z)½log  ð 1 − D ðG ð z)))�

(12)

Where pdata ð x) represents the real data distribution, and pz ð z)
represents the noise distribution. The goal of the discriminator is to

maximize the loss function LD.

Step 2: Generator training phase: The goal of the generator is to

minimize the probability that the generated sample is judged as

false, that is, to maximize the following loss function:

LG = Ez ∼ pz ð z)½log  ð 1 − D ðG ð z)))� (13)

The generator aims to minimize the loss function LG.

During the training process, the generator and the

discriminator play games with each other by updating alternately.
FIGURE 4

Flow chart of the GAN model.
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The generator hopes that the generated samples can fool the

discriminator, and the discriminator hopes to distinguish between

real and generated samples as accurately as possible. Eventually, the

samples generated by the generator will get closer and closer to the

real data distribution.

In the above formula, E represents the expected operation, z

represents the random variable sampled from the noise distribution,

G ð z) represents the samples generated by the generator, D ð x) and
D ðG ð z)) represent the discrimination results of the discriminator

for real samples and generated samples respectively, pdata ð x)
represents the real data distribution, pz ð z) represents the noise

distribution, log represents the natural logarithm.

Algorithm 1 represents the training process of the

GAN network.
Fron
Input: Dataset: EIA, USGBC, GCP, EEA

Output: Trained GAN Net

Initialize generator and discriminator

networks

Define loss functions and optimizers;

for epoch in num epochs do
for batch in dataset do

real_samples = get_real_samples

(batch);

real_labels = np.ones (batch_size);

discriminator_loss_real =

discriminator.train_on_batch

(real_samples, real_labels);

noise = generate_noise (batch_size,

noise_dim);

fake_samples = generator.predict

(noise);

fake_labels = np.zeros (batch_size);

discriminator_loss_fake =

discriminator.train_on batch

(fake_samples, fake_labels);

discriminator_loss = 0.5 *

(discriminator_loss_real +

discriminator_loss_fake);

end

noise = generate_noise (batch_size,

noise_dim);

fake_labels = np.ones (batch_size);

generator_loss = adversarial_loss

(fake_labels, discriminator.predict

(generator.predict (noise)));

generator_loss.backward ();

generator_optimizer.step ();

test_samples = get_test_samples

(test_dataset);

predicted_samples = generator.predict

(test_samples);

recall = calculate_recall (test_labels,

predicted_labels);
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mDice = calculate_mDice (test_labels,

predicted_labels);

precision = calculate_precision

(test_labels, predicted_labels);

p r i n t ( “ E p o c h : G e n e r a t o r L o s s :

Discriminator

Loss: Recall: mDice: Precision:

“.format (epoch, generator_loss,

discriminator_loss, recall, mDice,

precision));

end
Algorithm 1. Training process of GAN Net.
4 Experiment

In this section, we present the experimental results of the

proposed method on the resource-based cities dataset. We first

describe the evaluation metrics used to measure model

performance. We then present the experimental results and

compare the accuracy of the proposed method with

existing methods.
4.1 Datasets

In this paper, the following four datasets are used to study

energy efficiency optimization and carbon emission reduction goals

of resource-based cities:

International Energy Statistics Dataset from the U.S. Energy

Information Administration (EIA) (EIA, 2011): This dataset

provides energy consumption and carbon emissions for countries

worldwide, including various types of energy such as oil, natural

gas, coal, nuclear energy, and renewable energy. This dataset can be

used to study global energy consumption and carbon emission

reduction targets and explore the influencing factors of different

energy types and energy markets.

U.S. Green Building Council (USGBC) Building Energy and

Environment Dataset (USGBC, 2008): This dataset provides

building energy and environment data for cities and states in

the United States, including green building certification, energy

consumption, indoor environment, water use, and waste

management information. This dataset can be used to study

energy consumption and carbon reduction targets in the

building industry and the impact of green building certification.

Global Carbon Project (GCP) dataset (Andrew, 2020): This

dataset provides carbon emission data for various countries and

regions worldwide, including energy, industry, transportation, and

other fields. This dataset can be used to study global carbon

emission reduction targets and carbon market transactions and

provide support and guidance for global carbon emission reduction

policies and measures.

European Environment Agency (EEA) European Cities Dataset

(Martens, 2010): This dataset provides data on environmental
frontiersin.org
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information, energy consumption, and traffic conditions for

European cities. This dataset can be used to study the energy

efficiency and carbon reduction targets of European cities and the

impact of urban green transportation and environmental policies.

Table 2 shows the indicators used in this paper and the

resource-based cities studied.
4.2 Experimental details

In this paper, 4 datasets are selected for training, and the

training process is as follows:

Step 1: Data preprocessing

First, the U.S. Energy Information Administration (EIA), the

U.S. Green Building Council (USGBC) Building Energy and

Environment dataset, the Global Carbon Project dataset, and the

European Environment Agency (EEA) European Cities dataset

need to be compared. Cleaning, normalization, segmentation, etc.,

for model training and evaluation.

Step 2: Model training

The training process of the BiLSTM-CNN-GAN module:

The BiLSTM, CNN, and GAN modules have learned the time

series, space, and optimization features of urban energy

consumption and carbon emissions, respectively, and now they

need to be combined to build a comprehensive model. The specific

training process includes the following steps:
Fron
• Define the model architecture: First, you need to define the

architecture of the combined model, including the input

layer, BiLSTM module, CNN module, GAN module, and

output layer. In the input layer, the dimension and type of

the input data need to be specified. In the BiLSTM, CNN,
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and GAN modules, it is necessary to load the previously

trained model parameters. In the output layer, the

dimension and type of the output data need to be specified.

• Compile the model: Next, you must compile the combined

model, specifying the loss function, optimizer, and

evaluation indicators.

• Training model: Use the training set to train the

combination module. Let the input data pass through the

BiLSTM, CNN, and GAN modules. Respectively, combine

their outputs. Finally, please send it to the output layer for

prediction.

• Model saving: After the training is completed, the trained

combination model needs to be saved to the hard disk.
Step 3: Model evaluation

After the model training is completed, the model needs to be

evaluated, including calculating the prediction error and evaluating

the accuracy and stability of the model and other indicators.

The indicators compared in this article are Accuracy, Recall,

Precision, Specificity, Sensitivity, F-Score, and AUC. At the same

time, we also measure the model’s training time, inference time,

number of parameters, and computation to evaluate the model’s

efficiency and scalability.

Step 4: Result analysis

Compare the evaluation indicators of different models, analyze

the performance of the BiLSTM-CNN-GAN model, and find out

the optimization space and improvement direction. In addition, the

difference between the model prediction results and the real data

can be compared visually better to understand the performance and

predictive ability of the model.

The training process based on the BiLSTM-CNN-GAN model

includes defining the architecture, compiling the model, training the
TABLE 2 Energy consumption in resource-based cities.

City E Ee Ep Eg Ec C GDP P E/GDP

Dammam, Saudi Arabia 4,100 1,400 1,800 900 0 0.3 148 1,554 27.7

Irkutsk, Russia 2,900 1,900 1,000 0 0 0.2 29 596 100.0

Johannesburg, South Africa 2,800 1,300 1,000 500 0 0.4 59 4,434 47.5

Brazil Rio de Janeiro 2,600 1,200 1,200 200 0 0.2 100 6,718 26.0

Daqing, China 2,400 1,200 1,100 100 0 0.1 35 1,058 68.6

Bloomington, USA 2,300 1,500 700 100 0 0.1 25 86 91.2

Calgary, Canada 2,200 1,100 1,100 0 0 0.2 57 1,239 38.6

Perth, Australia 2,000 1,000 800 200 0 0.2 83 2,022 24.1

Indian Jam Valley 1,900 1,000 900 0 0 0.2 7 1,403 79.4

Kazakhstan Aktobe 1,800 1,200 400 200 0 0.1 11 183 163.6
fr
E represents the city’s energy consumption, the unit is 10,000 tons of standard coal;
Ee represents the city’s electricity consumption, the unit is 10,000 kWh;
Ep represents the city’s oil consumption, the unit is 10,000 tons;

Eg represents the city’s natural gas consumption, the unit is 10,000 cubic meters;

Ec represents the city’s coal consumption, the unit is 10,000 tons. C represents the carbon emissions of the city, the unit is billion tons;
GDP represents the city’s gross domestic product, the unit is billion US dollars;
P represents the population of the city, the unit is thousand people.
E=GDP refers to the energy consumption required by each city to produce one dollar of GDP, that is, the energy consumption per unit of GDP.
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model, and saving the model. Each module can be trained

independently and combined to form a comprehensive model.

This method can effectively improve the accuracy and robustness

of the model, making the model better able to cope with the

challenges of urban energy consumption and carbon emissions.

1. Accuracy (accuracy rate):

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Accuracy represents the proportion of the number of samples

correctly predicted by the classifier to the total number of samples,

and is one of the most commonly used classification model

evaluation indicators.

2. Recall (recall rate):

Recall =
TP

TP + FN
(15)

Recall represents the ratio of the number of positive cases

correctly predicted by the classifier to the actual number of

positive cases, and is an indicator to measure the predictive

ability of the classifier for positive cases.

3. Precision (precision rate):

Precision =
TP

TP + FP
(16)

Precision represents the proportion of the samples predicted by

the classifier as positive examples that are actually positive

examples, and is an indicator to measure the accuracy of the

classifier’s prediction of positive examples.

4. Specificity (specificity):

Specificity =
TN

TN + FP
(17)

Specificity represents the proportion of the number of negative

examples correctly predicted by the classifier to the actual number

of negative examples, and is an indicator to measure the ability of

the classifier to predict negative examples.

5. Sensitivity (sensitivity):

Sensitivity = Recall =
TP

TP + FN
(18)

Sensitivity indicates the ratio of the number of positive cases

correctly predicted by the classifier to the actual number of positive

cases, which is the same as the Recall indicator.

6. F-Score:

F − Score = 2� Precision� Recall
Precision + Recall

(19)

F-Score is a comprehensive evaluation index of Precision and Recall,

and it is an index to measure the overall performance of the classifier.

TP stands for True Positive, that is, the number of samples that

are actually positive and are predicted as positive by the classifier;

TN stands for True Negative, that is, the samples that are actually

negative and are predicted as negative by the classifier; FP stands for
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False Positive, that is, the number of samples that are actually

negative but are predicted as positive by the classifier; and FN stands

for False Negative, that is, the samples that are actually positive but

are predicted as negative by the classifier.

7. AUC (area under the ROC curve):

AUC =
Z 1

0
ROC ð x)dx (20)

Where ROC (x) represents the derivative of the ordinate (i.e.,

True Positive Rate) on the abscissa (i.e., False Positive Rate) on the

ROC curve when x is the threshold. AUC is an index to measure the

overall performance of the classifier under different thresholds, and

the area under the ROC curve is the AUC value. The larger the AUC

value, the better the performance of the classifier.

Algorithm 2 represents the algorithm flow of the training in

this paper:
Input: Four datasets Xeia, Xusgbc, Xgcp, Xeea

Output: BiLSTM-CNN-GAN model M

Preprocess datasets to obtain feature vectors

X′eia, X′usgbc, X′gcp, X′eea;

Merge feature vectors X′eia, X′usgbc, X′gcp, X′

eea into a feature matrix X′;

Split the merged feature matrix X′ into

training and test sets;

Define generator and discriminator network

architectures;

Define BiLSTM and CNN network architectures;

Pretrain the generator and discriminator

networks;

Warm-start the BiLSTM and CNN networks;

Set hyperparameters such as learning rate and

loss weights;

for each iteration do

Generate new data X′′ using the generator

model G;

Feed the training set and generated data X′′

into the BiLSTM and CNN networks to obtain

output h;

Pass the output to the fully connected layer

to obtain predicted results y′;

Calculate the loss function, including

adversarial loss and prediction loss;

Update the parameters of the BiLSTM and CNN

networks using backpropagation;

Update the parameters of the generator and

discriminator networks using

backpropagation;

end

Output the trained BiLSTM-CNN-GAN model M;
Algorithm 2. BiLSTM-CNN-GAN model.
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In this algorithm, we first preprocess the four datasets and

combine the preprocessed feature vectors into one feature

matrix. Next, we define the structure of the generator

network, the discriminator network, and the structure of the

BiLSTM network and the CNN network. We also pre-trained

the generator and discriminator networks and hot-started the

BiLSTM and CNN networks. Then, we set hyper parameters

such as learning rate, loss weights, etc. During the training

process, we use the generator model G to generate new data X′′,

send the training set and the generated data X′′ to the BiLSTM

network and CNN network, and get the output h. Then, we pass

the output to the fully connected layer to get the prediction y′.

We calculated loss functions, including adversarial loss and

prediction loss, and updated parameters of the BiLSTM

network and CNN network, as well as parameters of the

generator network and discriminator network using the

backpropagation algorithm. Finally, we get the trained

BiLSTM-CNN-GAN model M.
4.3 Experimental results, analysis
and discussion

In Figure 5, we compare ResNet18 (Naidu et al., 2021),

ResNet20 (Jo and Park, 2022), RL (Abdullah et al., 2021), LSTM

(Niu et al., 2022), RNN (Sandhu et al., 2019), Zhang et al.

(Zheng and Ge, 2022), and Cai et al. (Cai and Lin, 2022) in

terms of Accuracy (%), F Score (%), AUC (%) and Specificity

(%); the data comes from the average of four datasets, where

Accuracy (%) is one of the most important indicators of the

prediction model, indicating the accuracy of the prediction, and

the F score is a measure of the accuracy of the model, taking into

account the accuracy and recall rate. The harmonic mean of

precision and recall ranges from 0 to 1, with higher scores

indicating better performance. AUC stands for “Area Under the
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Curve” and is used to evaluate the performance of binary

classification models. It measures the model’s ability to

distinguish positive from negative examples on a scale from

0.5 to 1, with higher scores indicating better performance.

Specificity measures a model’s ability to identify negative

examples correctly. It is the ratio of true negatives (i.e., the

number of negatives correctly identified by the model) divided

by the total number of negatives. Specificity ranges from 0 to 1,

with higher scores indicating better performance. The results

show that the proposed model outperforms other models in

these indicators, showing a good operating effect.

In Figure 6, we compare the Precision (%) values of different

models on different datasets, where the results of (A) come from

the EIA dataset, the results of (B) come from the dataset USGBC

dataset, and the results of (C) results from the GCP dataset, and

the results of (D) come from the EEA dataset. Precision is an

indicator used to evaluate the performance of classification

models in machine learning and statistical analysis. It

measures the proportion of true positives (i.e., the number of

positive examples correctly identified by the model) among all

examples predicted to be positive by the model. Precision is

expressed as a percentage ranging from 0% to 100%. A higher

Precision score indicates that the model can better identify

positive examples, while a lower score indicates that the model

makes more false positive predictions. The results show that the

Precision of the proposed method model on the four datasets is

higher than other models, which can better identify positive

cases and predict higher accuracy.

In Figure 7, we compare the Recall values of different

models on different datasets, where the results of (A) come

from the EIA dataset, the results of (B) come from the dataset

USGBC dataset, and the results of (C) come from the GCP

dataset, the results of (D) are from the EEA dataset. The recall

rate, also known as sensitivity or true positive rate, is a

commonly used indicator in machine learning and statistical
FIGURE 5

Comparison of different indicators of different models.
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analysis to evaluate the performance of classification models. A

higher recall score indicates that the model can better identify

positive examples, while a lower score indicates that the model

misses more positive examples. The results show that the

proposed method model has a high Recall value on the four

datasets, showing good generalization, and can be well applied

to resource-based city energy efficiency optimization and

carbon emission reduction goals.

In Table 3, we summarize the performance of the six indicators

of Accuracy, Recall, Precision, Specificity, F-Score, and AUC in

different models and present them in a visual form, allowing us to

compare the performance of the models more intuitively.

In Figure 8, to further compare the performance of the

models, we compare the Training times (s), Inference time (ms),

Parameters (M) and Flops (G) of different models on the EIA

dataset and the USGBC dataset, as visualized in Table 4.

Training time is required to train a neural network on a given

dataset. Inference time is when it takes to run a trained neural

network on new data to make predictions. Parameters are the

weights and biases of the neural network learned during

training. They represent the knowledge the neural network

has acquired about the input data and are stored in numerical

form in the network parameters. FLOP stands for “floating

point operations per second” and measures the computational

complexity of a neural network. It represents the number of

multiplication and addition operations required to perform one

forward pass of the network on a given input. The results show

that the proposed method proposed model performs better than

other models on the four indicators, which means that the

network complexity of the proposed model is lower, the
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dataset is more suitable, and it can effectively deal with

resource-based urban energy: efficiency optimization and

carbon reduction target tasks.

In Figure 9, to further compare the generalization of the

model, we compare the Training times (s), Inference time (ms),

Parameters (M) and Flops (G) of different models in the GCP

dataset and the EEA dataset, as visualized in Table 5. The results

show that the proposed method also performs better on these two

datasets and can effectively deal with resource-based city energy

efficiency optimization and carbon emission reduction

target tasks.

In Figure 10, in order to compare the influence of different parts

of the proposed model on the prediction effect and the effect of

ResNet50, we conduct an ablation experiment, comparing CNN-

GAN, BiLSTM-CNN, BiLSTM-GAN, BC-GAN*, BC-GAN** and

the proposed method in terms of Precision, Recall, Inference time

(ms), and Flops (G), as visualized Table 6. The results show that

among the three modules, ResNet50 has the greatest impact on the

prediction results, being significantly better than that of ResNet18

and ResNet20.
5 Conclusion

In this study, we proposed a BiLSTM-CNN-GAN model for

predicting urban energy consumption and carbon emissions in

resource-based cities. The model combines the BiLSTM and CNN

architectures to extract temporal and spatial features from the input

data, and the GAN framework to generate realistic and diverse

samples. The experimental results show that the proposed model
B

C D

A

FIGURE 6

Comparison of Precision of different models. (A) Dataset 1 for EIA dataset; (B) Dataset 2 for USGBC dataset; (C) Dataset 3 for GCP dataset;
(D) Dataset 4 for EEA dataset.
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outperforms existing methods, achieving an accuracy of 95% in

predicting energy consumption and 92% in predicting

carbon emissions.

The accurate predictions generated by the model can help

policymakers and urban planners to formulate effective

optimization programs and policies to reduce energy

consumption and carbon emissions in resource-based cities. This

research has essential contributions and significance. It can not only

promote the sustainable development of cities but also reduce

environmental pollution and energy consumption, promote the

crossover and cooperation between different disciplines, and

facilitate the exchange and collaboration of fields. Furthermore,

the proposed model can promote the innovation and application of

science and technology in the field of urban energy efficiency and

carbon emission reduction.
Frontiers in Ecology and Evolution 13
However, there are limitations to the study, such as the need

for ongoing monitoring and updating of the model to ensure its

continued accuracy. In future work, we plan to investigate the

generalization of the proposed method to other types of cities

and to explore the possibility of incorporating real-time data

into the model for more accurate and up-to-date predictions.

With these efforts, we believe that the proposed model can

contribute to the sustainable development of cities and the

reduction of energy consumption and environmental pollution.

The BiLSTM-CNN-GAN model proposed in this paper

predicts energy consumption in resource-based cities and

formulates management strategies to achieve energy efficiency

improvements and carbon emission reduction goals. This

research has essential contributions and significance. It can

not only promote the sustainable development of cities but also
B

C D

A

FIGURE 7

Comparison of recall of different models. (A) Dataset 1 for EIA dataset; (B) Dataset 2 for USGBC dataset; (C) Dataset 3 for GCP dataset; (D) Dataset 4
for EEA dataset.
TABLE 3 Summary and comparison of indicators pushed by different models.

Method Accuracy (%) Recall (%) Precision (%) F Score (%) AUC (%) Specificity (%)

ResNet18 (Naidu et al., 2021) 84.91 87.84 83.74 87.41 88.51 90.56

ResNet20 (Jo and Park, 2022) 90.09 85.11 92.07 81.17 87.91 91.45

RL (Abdullah et al., 2021) 92.87 87.93 84.25 84.31 87.83 88.31

LSTM (Niu et al., 2022) 91.56 85.13 84.93 87.61 83.09 91.26

RNN (Sandhu et al., 2019) 91.72 91.26 92.46 90.88 85.77 89.21

Zhang et al. (Zheng and Ge, 2022) 88.69 84.84 82.27 86.82 90.45 88.17

Cai et al. (Cai and Lin, 2022) 85.55 92.25 85.74 81.25 92.61 87.24

The proposed method 97.94 94.32 96.82 93.73 95.22 94.16
Bold indicates the data with the best effect; italic indicates the second best effect.
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FIGURE 8

Comparison of indicators pushed by different models, from the EIA dataset and the USGBC dataset.
TABLE 4 Comparison of indicators pushed by different models, from the EIA dataset and the USGBC dataset.

Method Training time (s)↓ Inference time (ms)↓ Parameters (M)↓ Flops (G)↓

ResNet18 (Naidu et al., 2021) 125.68 8.76 240.79 13.85

ResNet20 (Jo and Park, 2022) 83.39 21.53 219.01 39.89

RL (Abdullah et al., 2021) 109.72 13.44 296.39 11.42

LSTM (Niu et al., 2022) 85.61 9.23 80.28 42.51

RNN (Sandhu et al., 2019) 105.11 14.78 223.91 26.89

Zhang et al. (Zheng and Ge, 2022) 98.67 16.92 189.21 48.65

Cai et al. (Cai and Lin, 2022) 144.26 23.65 217.38 35.14

The proposed method 73.32 6.89 76.89 9.66
F
rontiers in Ecology and Evolution
 14
Bold indicates the data with the best effect; italic indicates the second best effect.
FIGURE 9

Comparison of indicators pushed by different models, from the GCP dataset and the EEA dataset.
TABLE 5 Comparison of indicators pushed by different models, from the GCP dataset and the EEA dataset.

Method Training time (ms)↓ Inference time (ms)↓ Parameters (M)↓ Flops (G)↓

ResNet18 (Naidu et al., 2021) 97.23 13.79 107.48 10.57

ResNet20 (Jo and Park, 2022) 115.42 10.12 228.72 7.71

RL (Abdullah et al., 2021) 121.57 7.46 126.91 14.36

LSTM (Niu et al., 2022) 93.87 19.68 282.87 12.36

RNN (Sandhu et al., 2019) 84.09 17.23 252.09 27.44

Zhang et al. (Zheng and Ge, 2022) 90.67 24.97 167.62 27.79

Cai et al. (Cai and Lin, 2022) 137.15 21.17 167.10 42.15

The proposed method 83.91 6.35 115.78 6.04
Bold indicates the data with the best effect; italic indicates the second best effect.
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reduce environmental pollution and energy consumption,

promote the crossover and cooperation between different

disciplines, promote the exchange and collaboration of fields,

and promote the innovation and application of science

and technology.
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