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SiO2 was prepared from rice husk (RH) with the assistance of cetrimonium bromide (CTAB), and the CuO•Fe3O4/SiO2 composite
was prepared by a simple coprecipitation method to enhance the Fenton-like degradation of dyes in a wide pH range. SiO2 was a
mesoporous material with a relatively large surface area of 496.4m2/g and a highly relative pore volume of 1.154 cm3/g. The Fe3O4
and CuO particles with the size of 20–50 nm were well dispersed in the composite, making the composite tighter and causing the
disappearance of large pores in the range of 20–55 nm. The surface area and pore volume of the composite were reduced to
248.6m2/g and 0.420 cm3/g, respectively. Fe3O4/SiO2 and Fe3O4 samples only exhibited high catalytic activity in an acidic
medium, while the CuO•Fe3O4/SiO2 composite could effectively work in a wide pH range of 3–7. Besides, the effects of
reaction conditions such as catalyst dosage, H2O2 concentration, and initial dye concentration on the catalytic performance of
the composite were studied. The optimal conditions for the degradation of dye were tartrazine (TA) concentration of 50mg/L,
dosage catalyst of 0.5 g/L, H2O2 concentration of 120mM, and pH 5. The CuO•Fe3O4/SiO2 composite reached the highest
activity at pH 5, showing a degradation efficiency (DE) of 93.3% and a reaction rate of 0.061min−1. The reusability of the
catalyst was investigated by cyclic experiments. The DE of the 3rd reuse remained at 55.1%, equivalent to 93.5% of the first use.
The catalytic mechanism for the Fenton system has also been proposed.

1. Introduction

The rice husk is obtained from the milling of rice. It is a huge
source of silica raw material that is discharged into the envi-
ronment every year. Currently, the annual production of rice
in the world is estimated at 700 million tons. RH contains
about 20% of the weight of rice; its composition includes cel-
lulose (50%), lignin (25%–30%), silica (15%–20%), and
moisture (10%–15%) [1]. Vietnam is one of the leading
rice-exporting countries in the world [2]; the annual rice
production is 37 million tons, equivalent to 7.4 million tons
of RH discarded annually. It could be used as fuel, water fil-
ter, rice husk firewood, biogas product, construction mate-
rials, and activated carbon product [3, 4]. An alternative,
using RH to create highly functional silica, is an attractive
research to scientists. Many shapes of silica have been made

from RH such as spheres, rods, and plates for applications in
construction, environment, energy storage, and catalyst [3,
5–7], where the mesoporous silica and its composite have
been proven as an effective material in the adsorption and
degradation of organic substances in wastewater due to its
high surface area, good thermal stability, and favorable
hydrothermal stability [8].

The rapid development of industry, agriculture, and ser-
vices in developing countries leads to a large amount of
wastewater being discharged into the environment every
year [8]. Water sources are seriously polluted from wastewa-
ter causing serious impacts on ecosystems and human
health. One of the typical toxic organic substances is the
dye used in textiles, leather, cosmetics, printing, paper, and
paint in industries [9]. The dye is the most widely used for
dyeing acrylic fibers, which ionize in an aqueous solution
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and produce colored cations [10]. Dyes have a complex
structure that is often stable and resistant to biodegradation
[11]. There are more than 10000 different commercial dyes
used in the textile process; approximately 15% of the total
production is lost as wastewater during dyeing processes
[12]. Intermediate products from the degradation of dyes
are considered to be a major health hazard to the environ-
ment, humans, and other organisms, especially aquatic
organisms [13]. Therefore, toxic and persistent organic sub-
stances in wastewater need to be removed before being dis-
charged into the environment. There are many methods of
removing organic pollutants that have been reported
[14–18].

TA is an azo dye with a characteristic −N=N− bond [19].
Foods containing too high concentrations of TA will lead to
human health hazards such as allergies and asthma, affect
the nervous system, and more seriously increase the risk of
death. According to international standards, the amount of
TA allowed for human consumption is 7.5mg/kg body-
weight/day, in nonalcoholic beverages; TA should not
exceed 0.01 g/mL [20, 21]. Nowadays, conventional treat-
ment procedures are inadequate and disabled for handling
the highly persistent hazardous materials; experiments are
still being conducted to create a more effective method [22].

Typical researches on the electrolysis process for treat-
ment of dyes were the electroactive persulfate process from
aqueous solutions for removal of basic Violet 16 [6] and
the anodic oxidation process with graphite anode coated
with lead dioxide for degradation of methylene blue and real
textile wastewater [9]. Photocatalysis showed to be an effec-
tive catalyst to remove dyes under irradiation. ZnO could
remove phenol under UV-C light [22], nano zerovalent iron
(nZVI) can degrade acid red 14 under UV-C light in the
presence of H2O2 and persulfate (S2O8

2–) [23], copper oxide
nanoparticles showed high activity with metronidazole anti-
biotic under UV light [24], and persulfate activated by UV

and ferrous ions could decompose dimethyl phthalate [25].
Adsorption was an efficient process for materials with a large
surface area and easy recovery such as clinoptilolite zeolite
[11], activated carbon [26], carbon nanotubes modified by
nZVI [27], mesoporous magnetite/zeolite nanocomposite
[28], FeIIFe2

IIIO4@GO [29], Fe3O4/GO [30], iron oxide/car-
bon nanocomposite [31], and magnetic chitosan/graphene
oxide [32]. These materials are currently effective adsorbents
for removing basic violet, methylene blue, nitrate, dimethyl
phthalate, diphenyl phthalate, 2,4-dinitrophenol, lead, and
fluoride. Other methods to enhance the removal of organic
compounds in wastewater could be done by adding H2O2
to the decomposition process [33–35].

AOPs have been reported as promising technologies for
the elimination of organic pollutants due to their high per-
formance, simple operation, and inexpensive material [36]
since AOPs were based on the generation of highly oxidizing
radicals (hydroxyl radicals OH•, hydroperoxyl radicals
HO2

•, and superoxide radicals •O2−) to degrade organic
compounds into CO2, H2O, and inorganic ions [37]. Also,
photocatalysts and Fenton catalysts have proven to be highly
effective in the aqueous medium and are suitable for applica-
tions in industrial wastewater treatment [1, 38–40].

Fenton catalysts with iron valences of 0, II, and III on
silica-based materials were effective catalytic systems for oxi-
dizing toxic and persistent organic substances. The Fe2O3•-
SiO2 composite was synthesized by the impregnation
method for degrading tartrazine at 60mg/L, and the degra-
dation efficiency reached 98.5% in 80min [1]. Interactive
nanospheres in the Fe2O3/SiO2 composite synthesized by
the emulsion method could improve the catalytic perfor-
mance, and the degradation efficiency of methylene blue
approached 88% in 80min [41]. The thin slice of iron-
mesoporous silica prepared by ball milling followed by uni-
axial pressing and calcination could adsorb and degrade
methylene blue at efficient removal of 99.94% at the concen-
tration of 1000mg/L [42]. A mesoporous α-Fe2O3/SiO2
composite with a highly ordered mesostructure showed a
high adsorption capacity of 90mg/g and superior heteroge-
neous Fenton-like catalytic activity for removal of methylene
blue; the removal efficiency was 100% at the concentration
of 300mg [43]. SiO2-encapsulated zero-valent iron nanopar-
ticles were prepared for degradation of methylene blue; the
degradation efficiency was 94.2% at the ethylene concentra-
tion of 16mg/g [44]. However, these Fenton catalytic sys-
tems remained with some drawbacks including the
difficulty of catalyst recovery, cost-intensive sludge process-
ing, and disposal process, which limited working in the low
pH range (pH < 3) [45–47]. This will create difficulties to
adjusting the pH for the catalysis process and neutralizing
the treated wastewater before being discharged into the
environment.

Magnetic particles are commonly used for the Fenton
process because they are easily separated from the solution
by magnets after the reaction. In addition, Fe3O4 has the
super magnetic property and both of Fe (II) and Fe (III)
irons could activate H2O2 to produce strong oxidizing radi-
cals that could enhance its catalytic ability [48, 49]. More-
over, the catalyst activity of Fe3O4 could also be improved
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Figure 1: XRD patterns of porous SiO2 and CuO•Fe3O4/SiO2
composite.
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by combining it with noble metals [50–52] and transition
metal oxides [53–55]. Surface interactions between metal
oxide phases, crystal structure, phase structure, and syner-
gistic interactions between components could be the causes
for the enhanced catalytic ability in the wide pH range.

In this study, SiO2 was prepared from rice husk (RH)
with the assistance of CTAB and the CuO•Fe3O4/SiO2 com-
posite was prepared by simple coprecipitation method to
enhance the Fenton-like degradation of dyes in a wide range
of pH in solution. As-prepared samples were characterized
by XRD, N2 adsorption/desorption isotherm, FT-IR, FE-
SEM, EDS, and TEM. The catalytic performance of samples
was evaluated by the oxidation of tartrazine (TA) in the
presence of H2O2. The effects of reaction conditions such
as pH, H2O2 concentration, catalytic dosage, and initial TA
concentration on the degradation of TA were carried out.
The degradation kinetics were obtained from fitting the
experimental profile with time by using the first-order
kinetic model. Additionally, the reusability of catalyst was
evaluated by cyclic experiment.

2. Materials and Method

2.1. Materials. Rice husk was obtained from a farm in Thai
Binh province of Vietnam, the silica content was determined
by mass analysis, and the result showed that rice husk con-
tained 21.3wt.% of silica. Cetrimonium bromide (CTAB)
(99.0%), copper nitrate trihydrate (Cu(NO3)2.3H2O)
(99.0%), iron(II) sulfate heptahydrate (FeSO4.7H2O)
(99.0%), iron(III) chloride hexahydrate (FeCl3.6H2O
99.0%), NaOH (99.0%), HCl (99.0%), and hydro peroxide
(H2O2 99.0%) were obtained from Merck. Tartrazine (99%)
was purchased from Sigma-Aldrich.

2.2. Synthesis of Porous SiO2. The synthesis of silica was
modified from the previous report with the assistance of
CTAB [56]. Typically, RH is removed from the soil with dis-
tilled water and then soaked in 0.5M HCl for 30 minutes to
remove metal impurities. After washing with distilled water
to reach pH~7, RH was dried at 100°C for 24 h. Dry RH

was then burned at 600°C under airflow for 2 h to obtain rice
husk ash (RHA). Subsequently, 5 g of RHA was added to an
Erlenmeyer flask with 100mL of 2M NaOH; the mixture
was heated and stirred continuously for 2 h to dissolve the
silica from the ash. After cooling, the solution was filtered
to remove the residues and obtain sodium silicate.

Porous SiO2 was prepared from sodium silicate by the
hydrothermal method. In a typical experiment, 40mL of
abovementioned sodium silicate was added into the mixture
of 2.187 g of CTAB and 34mL of 0.6M HCl under stirring
for 1 h; pH was controlled as 7.5–8.5 by using 6M HCl.
The mixture was aged at 50°C for 24 h. Subsequently, the
white gel was transferred into an autoclave and heated up
to 100°C for 48 h. The precipitate was washed with distilled
water to remove surfactants and acids until neutral. The
white solid was dried at 100°C for 12h before heating at
600°C for 6 h to obtain SiO2 powder.

2.3. Synthesis of the Porous CuO•Fe3O4/SiO2 Composite. The
porous CuO•Fe3O4/SiO2 composite was prepared by the
simple coprecipitation method. Typically, 2.156 g of FeS-
O4.7H2O, 4.197 g of FeCl3.6H2O, and 0.6655 g of
Cu(NO3).3H2O were added into a beaker containing
200mL of distilled water under stirring for 20min; 0.2 g of
SiO2 was then added into the mixture. The pH of the mix-
ture was adjusted to 10.0 by using 3 N NaOH solution and
stirred at 60°C for 3 h to form the dark gel. The solid gel
was carefully washed several times by distilled water and
ethanol and then dried at 60°C at 12 h in an oven to obtain
dark powder CuO•Fe3O4/SiO2 composite.

2.4. Characterization. The crystalline phase of samples was
investigated by X-ray powder diffraction. XRD patterns were
obtained by using a Bruker D8 Advance diffractometer (Ger-
many) with Cu Kα irradiation (40 kV, 40mA). The 2θ rang-
ing from 20 to 80° was selected to analyze the crystal
structure. The morphology and size of the samples were
observed by transmission electron microscopy (TEM, JEM-
2010) and the emission scanning electron microscopy (FE-
SEM, JEOL-7600F). The textural properties were measured
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Figure 2: FT-IR spectra of (a) SiO2 and (b) CuO•Fe3O4/SiO2 composite.
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via N2 adsorption/desorption isotherms using micromeritics
(Gemini VII). The specific surface area was obtained by
using the Brunauer-Emmett-Teller (BET) method; the pore
volume and pore diameter were determined by the Barrett,
Joyner, and Halenda (BJH) method.

2.5. Fenton-Like Catalyst Test. The batch test was used to
evaluate the TA degradation efficiency of the prepared cata-
lyst. 50mg of the catalyst was added to 100mL of the dye
solution and a certain amount of H2O2. The pH of the solu-
tion was adjusted by adding 0.1M HCl or 0.1M NaOH. At
different time intervals, approximately 2mL of the mixture
was withdrawn and filtered using a syringe filter (0.45μm
PTFE membrane). The dye concentration was analyzed
using a UV-vis spectrophotometer (Agilent 8453) at
426nm. The degradation efficiency (DE) and rate constant
(kap) of TA in the catalyst were calculated by equations (1)
and (2) as follows:

DE %ð Þ = C0−Ct

C0
× 100%, ð1Þ

ln
C0
Ct

= kap × t ð2Þ

where kap (s
−1) is the rate constant, C0 is the initial concen-

tration of TA, Ct is the concentration of TA in time, and t is

reaction time presented by min and s for equations (1) and
(2), respectively.

3. Results and Discussion

3.1. Characterization. The X-ray diffraction patterns of SiO2
and the CuO•Fe3O4/SiO2 composite are shown in Figure 1.
The peak at 2θ of 22.8° was attributed to the amorphous sil-
ica [57]. The XRD analysis of the composite was relatively
different from SiO2. The diffraction peak of SiO2 almost dis-
appeared in the composite. The low-intensity peaks at 2θ of
35.6 and 62.2° could be assigned to Fe3O4 (PDF#88-0886)
[58]. There were no signals of CuO observed for the com-
posite. However, the composition of the metals in the com-
posite is shown in the EDS result below. This result implied
that Fe3O4 and CuO oxides were formed only at low crystal-
linity after the synthesis process by salts and with a short
aging time.

FT-IR transmittance spectra of SiO2 and the CuO•-
Fe3O4/SiO2 composite are presented in Figure 2. For obser-
vation of SiO2, the broad peak from 3000–3700 cm−1 was
assigned to the presence of O-H stretching vibration of Si-
O-H and adsorbed water (H-O-H) [1]; the peak at
1633 cm−1 could be attributed to the vibration bending of
O-H. The intense bands at 1103, 804, and 595 cm−1 were
associated with the asymmetric and symmetric of Si-O-Si,
Si-O, and Si-OH bonds, respectively, as seen in Figure 2(a).
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Figure 3: (a) FE-SEM images of SiO2, (d–f) FE-SEM images and (g) EDS image of CuO•Fe3O4/SiO2 composite, (h) O elemental map, (i) Cu
elemental map, (j) Fe elemental map, and (k) Si elemental map of CuO•Fe3O4/SiO2 composite.
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The band in 3000–3700 cm−1 of the composite was split into
two peaks, which shifted to a smaller wave number. The
intense bands at 983 and 717 cm−1 came from Si-O-Si vibra-
tion. In addition, the bands at 484 and 424 cm−1 could be
assigned to vibrations of Si-Cu-O and Si-Fe-O, respectively,
as seen in Figure 2(b), which confirmed that SiO2 is indeed
bound with CuO and Fe3O4.

Figure 3 FE-SEM images of SiO2 and the CuO•Fe3O4/
SiO2 composite. The structure of SiO2 was observed as
resembling clouds; the uniformly sized SiO2 particles of
about 100–200nm were gathered together to form a porous
structure, in Figures 3(a)–3(c). Meanwhile, the arrangement
of metal oxide particles was tight in the composite and them
being placed in the channels of SiO2, in Figures 3(d)–3(f).
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Figure 4: (a, b) TEM images of SiO2 and (c, d) TEM images of CuO•Fe3O4/SiO2 composite.
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Figure 5: (a) N2 adsorption/desorption isotherms and (b) pore size distributions of SiO2 and CuO•Fe3O4/SiO2 samples.
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EDS image and elemental maps indicated that Cu and Fe
were evenly dispersed in the composite (Figures 3(g)–3(k),
although there was no signal of CuO observed in the XRD
(Figure 1).

SiO2 with a porous structure was observed in the TEM
images, in Figures 4(a) and 4(b). There were two types of
pores; small pores were formed inside the silica particles
after burning the CTAB, and large pores were generated by
the arrangement of the silica particles. These could facilitate
the dispersion of metal oxide particles on the surface of the
silica. As seen in Figures 4(c) and 4(d), the spherical particles
of CuO and Fe3O4 with a size of about 20–50 nm were uni-
formly dispersed in the composite. As the result, the porosity
and the adsorption capacity of the CuO•Fe3O4/SiO2 com-
posite were decreased. However, its catalytic activity was
expected to increase due to the presence of metal oxides.

The N2 adsorption/desorption isotherms of as-prepared
samples are shown in Figure 5. It can be observed in
Figure 5(a) that the N2 adsorption/desorption isotherms of
SiO2 and CuO•Fe3O4/SiO2 exhibited as the IV isotherm with
an H3 hysteresis loop from the IUPAC classification, indicat-
ing the presence of the mesoporous structure in the sample.
However, the hysteresis loop of the CuO•Fe3O4/SiO2 com-
posite was lowered than that of SiO2, showing a remarkable
reduction in the surface area of the composite; the surface
areas were 496.4m2/g and 248.6m2/g for silica and the com-
posite, respectively. The pore size distribution of SiO2 was in

the range of 2–60 nm, showing the bimodal peak in the
range of 2–6nm and the broad peak in the range of 20–
55 nm. This is in complete agreement with the results from
the abovementioned TEM. While the large pores ranging
from 20–55nm of the CuO•Fe3O4/SiO2 composite disap-
peared, small pores of the composite remained and its pore
size distribution concentrated in the range of 2–15nm, in
Figure 5(b). The average pore sizes of silica and composite
were 9.3 and 6.2 nm, and the pore volumes of silica and
composite were 1.154 and 0.420 cm3/g, respectively, in
Table 1.

3.2. Degradation of Dyes

3.2.1. The Effect of the Catalytic System. The catalytic activity
of the as-prepared samples was examined by the oxidation of
TA under reaction conditions: dosage catalyst of 0.5 g/L, TA
concentration of 50mg/L, H2O2 concentration of 12mM,
and pH = 5. As indicated in Figure 6, the DE value was only
1% in H2O2 within 80min, which proved that TA was a
highly persistent compound and it was difficult to degrade
in H2O2 even though it was a strong oxidizing agent. The
degradation of TA for the Fe3O4-H2O2 system was also neg-
ligible. The DE value increased to 20.1% for the Fe3O4/SiO2-
H2O2 system and increased to 60.2% for the CuO•Fe3O4/
SiO2-H2O2 system. The porous structure and large specific
surface of SiO2 (Table 1) could facilitate the dispersion of
Fe3O4, leading to an increase in the catalytic capacity of
Fe3O4/SiO2, whereas the simultaneous presence of CuO
and Fe3O4 oxides on the surface of SiO2 could enhance the
catalytic ability of the CuO•Fe3O4/SiO2 composite.

3.2.2. Effect of the Initial pH. The pH in the solution is a vital
factor affecting the catalytic removal of dyes in an aqueous
solution. It not only affects the surface charge and functional
group structure but also affects the rate formation of the
OH• radical. In this study, the effect of pH in the solution
on the degradation of TA in the catalytic systems was inves-
tigated at the pH in the solution from 3 to 7 under the fixed
other conditions; the results are shown in Figure 7. The cat-
alytic performance of the Fe3O4-H2O2 and F3O4/SiO2-H2O2
systems was strongly dependent on the pH in the solution.
The DE values of the Fe3O4-H2O2 and F3O4/SiO2-H2O2 sys-
tems at pH 3 in 80min were 98.2 and 85.2%, respectively.
The catalytic performance was sharply reduced with the
increase of the initial pH. The DE values for the Fe3O4-
H2O2 system were 2.9 and 1.0%; these were 27.2 and
18.7% at pH 5 and 7 for the Fe3O4/SiO2-H2O2 system,
respectively, in Figures 7(a) and 7(b). These results were
consistent with previous studies; the Fenton catalyst of iron
oxides showed to be effective at an acidic environment (pH
3–4) [59, 60]. Meanwhile, the degradation of TA in the
CuO•Fe3O4/SiO2-H2O2 system was less affected by pH than
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Table 1: Textural properties of as-synthesized SiO2 and as-synthesized CuO•Fe3O4/SiO2 composite.

Sample SBET (m2/g) Pore volume (cm3/g) Average pore size (nm)

SiO2 496.4 1.154 9.3

CuO•Fe3O4/SiO2 248.6 0.420 6.2
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in the Fe3O4-H2O2 and F3O4/SiO2-H2O2 systems. It could
work in a wide pH range from 3 to 7, and the catalytic activ-
ity was strongest with a reaction rate of 0.025min−1 at pH 5,
in Figure 7(c). The enhancement of catalytic efficiency in the
neutral-pH region could be explained by the following rea-
sons: the supporter SiO2 could expand the pH-active zone
of the Fenton catalyst since SiO2 has multiple hydroxyl
groups on the surface. The surrounded −OH groups might
chelate with the Fe2+ and Fe3+ ions to form the weak chela-
tion, benefiting the Fenton reaction at neutral pH [40, 61].
Alternatively, the formation of [Cu(H2O)6]

2+ was concur-

rent with the generation of [Fe(H2O)6]
3+, which was soluble

in the Fenton reaction cycle, which enhanced generating
hydroxyl radicals even at high pH [59].

3.2.3. Effect of H2O2 Concentration. The effect of the H2O2
concentration on the catalytic performance of the CuO•-
Fe3O4/SiO2-H2O2 system was investigated by increasing
the H2O2 concentration up to 180mM at the fixed other
conditions (TA concentration of 50mg/L, dosage catalyst
of 0.5 g/L, and pH 5). The degradation efficiency and fitting
plots are presented in Figure 8. The absence of H2O2 in the
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Figure 8: (a) Oxidative degradation of tartrazine at the different H2O2 concentrations and (b) fitting plots. The reaction conditions: dosage
catalyst of 0.5 g/L, tartrazine concentration of 50mg/L, and pH=5.
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solution led to low the degradation reaction, and the DE and
the reaction rate were 3.2% and 0.002min−1, respectively.
These values significantly increased to 48.6% and
0.022min−1, respectively, in the presence of H2O2 at 6mM.
When the concentration of H2O2 increased, the DE and
reaction rate gradually increased, which achieved 93.3%
and 0.061min−1, respectively, at 120mM. The increase of
the concentration of H2O2 could increase rate generation
of the hydroxyl radical. However, further increasing the con-
centration of H2O2 to180mM, the catalytic performance was

reduced and the DE and reaction rate were 92% and
0.045min−1, respectively. When the concentration of H2O2
exceeded the critical level, the reaction rate and degradation
efficiency decrease since the residual H2O2 molecules could
act as hydroxyl radical recovery agents; OH• can recombine
to form HO2 and O2 as expressed in equation (3) [62].

H2O2 + OH• ⟶HO2
• +H2O,

HO2
• + OH• ⟶H2O + O2:

ð3Þ

3.2.4. Effect of the Catalyst Dosage. The effect of the catalyst
dosage on photocatalytic performance was studied to deter-
mine the optimum amount of photocatalyst added to the
catalytic process. In this study, the catalyst dosage varied
from 0.3 up to 0.7 g/L under the fixed conditions (TA con-
centration of 50mg/L, H2O2 concentration of 12mM, and
pH 5); the results are presented in Figure 9. The reaction
increased when raising the catalyst dosage from 0.3 to
0.5 g/L, showing the increase of DE within 80min from
34.9 to 60.1%. However, the reaction was declined at the
higher catalyst dosage than 0.5 g/L; the DE values were
44.9 and 51.1% for the catalyst dosages of 0.6 and 0.7 g/L,
respectively. The obtained results are related to the number
of active sites on the catalyst surface, which increase with
the addition of the catalyst, leading to enhanced photocata-
lytic performance. Meanwhile, the high catalyst concentra-
tion (>0.5 g/L) can lead to agglomeration of the reaction
sites thereby slowing the TA removal efficiency [63, 64]. In
addition, quenching of OH• radials by excess iron ions in
the reaction process, equation (4)) [1], may also be
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Figure 10: (a) Oxidative degradation of tartrazine at the different concentrations of tartrazine and (b) fitting plots. The reaction conditions:
dosage catalyst of 0.5 g/L, H2O2 concentration of 12mM, and pH = 5.
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responsible for the result [1].

Fe2+ + 2OH• ⟶ Fe3+ + 2OH−: ð4Þ

3.2.5. Effect of the Initial Dye Concentration. The influence of
the initial dye concentration on the catalytic efficiency of the
CuO•Fe3O4/SiO2 composite was demonstrated in the TA
concentration range of 30–70mg/L under fixed conditions
(dosage catalyst of 0.5 g/L, H2O2 concentration of 12mM,
and pH 5), and the obtained results are presented in
Figure 10. It indicated that the optimum TA concentration
was 50mg/L; the DE and reaction rate reached 60.1% and
0.025min−1, respectively. At lower concentrations, the fre-
quency of collisions between the TA molecules and the cat-
alyst surface was low, leading to a slow reaction [65]. At
concentration above 50 mg/L. The degradation efficiency
was decreased with an increase in TA concentration. Which
could be could be assigned to either the low ratio of [OH•]/
[TA] at a similar catalyst dosage and H2O2 concentration or
the block of the interaction of dyes molecules with active
sites of the catalyst due to the competition of intermediates
generated in the dye degradation process [66].

3.3. Reusability of the Catalyst and Reaction Mechanism
Discussion. For a catalyst, reproducibility is one of the
important parameters to advance to commercial application.
At the end of each experiment, the catalyst was filtered and
washed alternately with distilled water and ethanol 2–3
times and then dried in the oven at 80°C for 12 h for the next
cycle. The DE slightly decreased after each cyclic experi-
ment. The efficiency of the 3rd reuse was 55.1%, equivalent
to 93.5% of the first use, in Figure 11.

The mechanism of oxidative degradation of TA by H2O2
in the CuO•Fe3O4/SiO2 catalyst is proposed in Figure 12.
Porous SiO2 acts as a supporter; the good adsorption can
increase the interaction between H2O2 and the catalyst sur-
face. Therefore, the formation of free radicals occurs rapidly.
SiO2-Fe

2+/Fe3+ may activate H2O2, leading to the formation
of hydroxyl (OH•) and perhydroxyl (HO2

•) radicals accord-
ing to reaction (5). In addition, the OH• and HO2

• radicals
can be created by SiO2-Cu

2+ via reaction (6). And, the
OH• and HO2

• radicals oxidize TA to form CO2, H2O, and
other byproducts based on reaction (7). However, OH• plays
a significant role in the oxidation of organic pollutants
because it has higher oxidation potential than HO2

• [67].
The fragmentation mechanism of TA can be proposed in
Figure 12(b) including the cleavage of the symmetrical and
asymmetrical azo bonds by the OH• radical [1].

SiO2 − Fe3+ + H2O2 ⟶ SiO2 − Fe2+ + HO2
• + H+,

SiO2 − Fe2+ + H2O2 ⟶ SiO2 − Fe3+ + OH• + OH−,
ð5Þ

SiO2 − Cu2+ + H2O2 ⟶ SiO2 − Cu+ + HO2
• + H+,

SiO2 − Cu+ + H2O2 ⟶ SiO2 − Cu2+ + OH• + OH−,

ð6Þ
OH•

HO2
•
−
+ TA⟶ intermediate products,

OH•

HO2
•
−
+ intermediate products⟶CO2 + H2O + byproducts:

ð7Þ

H2O2

H2O2

H2O2

OH

Cu 2

Cu +

Fe3O4

CuOSiO2

CO2; CO; SO2; N2; Na2CO3; H2SO4; H2O etc

Fe3+

Fe3+

In
te

rm
ed

ia
te

 p
ro

du
ct

s

Asymmetric
al

Asymmetrical

Sy
mmetr

ica
l

Destruction

Destruction

O

O

O
O

O
O

O
N

NH2

N
SS S

O
N
N H O

O
OH

OH
O

O

O

O
O OH

S

N
N N

N

O–Na+

+Na –O
O–Na+

O–Na+

+Na–O

+Na –O

+Na –O

O–Na+

O–Na+

S
S

O

O

O
O

O OHS
N

N
N

N O–Na+

O–Na+

+Na–O S

Intermediate products

HO2

OH

HO2

(a)
(b)
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Table 2: Comparison of the removal efficiency of the dyes by different catalysts.

Catalyst/adsorbent Reaction conditions Observation Reference

As-synthesized CuO•Fe3O4/
SiO2/H2O2, Fenton-like
catalyst

cat:½ � = 0:5 g/L, H2O2½ � = 12mM, pH = 5,
TA½ � = 50mg/L, T = 30°C

93.3% of dye was removed within 80min and
55.1% in the third cycle

This
work

Fe2O3•SiO2/H2O2, Fenton-
like catalyst

cat:½ � = 0:5 g/L, H2O2½ � = 12mM, pH = 3,
TA½ � = 50mg/L, T = 30°C

98.5% of dye was removed within 80min and
86.7% in the third cycle

[1]

Sodium alginate/Fe3O4,
Fenton-like catalyst

cat:½ � = 5 g/L, H2O2½ � = 100 ppm, pH = 5,
BPA½ � = 20 ppm, T = 30°C 95% of BPA was removed within 120min [69]

Al, Fe-pillared clays,
Fenton-like catalyst

cat:½ � = 5 g/L, TA½ � = 50mg/L, H2O2½ � = 0:12
M, T = 75°C 97.5% of dye was removed within 240min [70]

Powder-activated carbon/
Fe3O4, Fenton-like catalyst

cat:½ � = 0:3 g/L, pH = 3, H2O2½ � = 3mL/L,
metronidazole½ � = 50mg/L

96.12% of metronidazole was removed within
90min

[71]

Fe electrode; electro-Fenton
H2O2½ � = 0:32mM/L, NaCl½ � = 0:3mg/L, pH
= 3, diazinon½ � = 20 ppm, δ = 5:14mA/cm2 100% of diazinon was removed within 34.49min [72]

SS316/β-PbO2 anode,
electro-Fenton, and sono-
electro-Fenton

FeSO4½ � = 0:24 g/L, NaCl½ � = 0:1 g/L, pH = 5:3
, H2O2½ � = 30mg/L, diazinon½ � = 45:6mg/L,

voltage = 13:8V

92% of diazinon was removed; 73.2% of COD and
67.4% of TOC were reduced after 75min

[73]

SS316/β-PbO2, Fenton, and
electro-Fenton

FeSO4½ � = 0:3 g/L, H2O2½ � = 0:12mg/L,
oxytetracycline½ � = 20mg/L, pH = 3:53, δ =

3:85mA/cm2

Oxytetracycline was removed at 84.7%, 73.4%,
and 98.2% in electrochemical, Fenton, and
electro-Fenton processes, respectively, after

42min

[74]

3D/SEF/PAC/Fe3O4, sono-
electro-Fenton

cat:½ � = 5 g/L, H2O2½ � = 0:2mL/L, FeSO4½ � =
0:08mg/L, 2, 4 −D½ � = 50mβL, pH = 3, δ = 5

mA/cm2, Na2SO4½ � = 0:3 g/250mL

96.2% of 2,4-dichlorophenoxyacetic acid was
removed, and 92.31% of COD and 86.5% of TOC

were reduced after 60min
[75]

Fe electrode-sodium
persulfate, electro-Fenton

cat:½ � = 0:09 g/L, Na2S2O8½ � = 0:9 g/L, NaCl½ �
= 0:2 g/L, BV16½ � = 45mg/L, pH = 5, U =

11:43V

95% of dye was removed, and 57.14% of COD was
reduced after 48.5min

[10]

Graphite/β-PbO2 anode,
electrochemical degradation

pH = 5:75, δ = 10mA/cm2, Na2SO4½ � = 78:8
mg/L

96.2% of methylene blue was removed after
50min

[13]

UVC/Na2S2O8/Fe
2+ SPS½ � = 0:601mM, Fe2+

� �
= 0:075mM,

dimethyl phthalate½ � = 5mg/L, pH = 11
97% of dimethyl phthalate was removed, and
64.2% of TOC was reduced within 90min

[25]

UV/ZnO, photocatalyst
cat:½ � = 0:15 g/L, pH = 5, phenol½ � = 10mg/L,

UV lamp = 125W 94.2% of phenol was removed after 30min [22]

Au/ZnO/H2O2
photocatalyst

cat:½ � = 0:5 g/L, H2O2½ � = 50mM, pH = 6,
dye½ � = 10mg/L, Hg lamp = 250W 99.2% of dye was removed after 30min [76]

Magnetic zeolite
nanocomposite (MZNC)
(zeolite : Fe3O4 = 2 : 1),
adsorption

ads:½ � = 1 g/L, pH = 3, T = 50°C
96.12% of dimethyl phthalate was removed within
20min, and the removal efficiency was 70.63% in

the tenth cycle
[28]

Magnetic iron oxide/
graphene oxide (MGO),
adsorption

ads:½ � = 0:334 g/L, pH = 5:38,
diethyl phthalate½ � = 4:241mg/L

100% of diethyl phthalate was removed within
3.723min

[29]

GO-Fe3O4, adsorption
ads:½ � = 0:178 g/L, pH = 4:45,

2, 4 − dinitrophenol½ � = 50:10mg/L,
ultrasound frequency = 40:02 kHz

89.94% of 2,4-dinitrophenol was adsorbed, and
the adsorption of the reuse adsorbent in both

systems after 10th consecutive cycles was reduced
by about 22%

[30]

Clinoptilolite zeolite/Fe3O4
nanoparticles, adsorption

ads:½ � = 0:5 g/L, BV16½ � = 25mg/L, pH = 7,
mixing speed = 250 rpm 99% of dye was removed after 45min [11]

Lignin-containing cellulose
(LCNF), adsorption

ads:½ � = 0:3 g/L, Pb½ � = 10mg/L, pH = 6, T =
25°C 99% of Pb was removed after 60min [77]
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In addition, with the appearance of free radicals, Fe3+

and Fe2+ ions will be regenerated according to equation (8)
[1, 36]. However, this process is quite slowly.

OH• + SiO2 − Fe2+ ⟶OH− + SiO2 − Fe3+,

HO2
• + SiO2 − Fe2+ ⟶HO2

− + SiO2 − Fe3+,

HO2
• + SiO2 − Fe3+ ⟶H+ + O2 + SiO2 − Fe2+:

ð8Þ

On other hand, the standard redox potential value of
Fe3+/Fe2+ (E° = 0:77V) is larger than that of Cu2+/Cu+

(E° = 0:17V). Therefore, the presence of Cu2+/Cu+ will pro-
mote the regeneration of Fe3+ and Fe2+ according to equa-
tion (9) [36, 68] as follows:4

SiO2 − Fe3+ + SiO2 − Cu+ ⟶ SiO2 − Fe2+ + SiO2 − Cu2+:
ð9Þ

3.4. Comparison with Other Catalysts. The catalytic perfor-
mance of the as-prepared CuO•Fe3O4/SiO2 composite was
compared with other catalysts recently studied on the
removal of persistent organic compounds in water such as
Fenton [1, 69–71], electro-Fenton [10, 13, 25, 72–75], photo-
catalyst [22, 76], and adsorption [11, 28–30, 77]. The reac-
tion conditions and decomposition efficiency of these
catalysts are listed in Table 2. The removal efficiency is
dependent not only on the type of catalyst and the nature
of the organic compound but also on the temperature, the
stirring rate, the pH of the solution, the reaction time, and
the concentration of the reactants. Therefore, direct compar-
ison among catalysts is a challenge but the relative perfor-
mance of the CuO•Fe3O4/SiO2 catalyst can be evaluated
indirectly.

In Table 2, in comparison with the catalytic mechanism
as a Fenton-like system, the DE of as-prepared CuO•Fe3O4/
SiO2 was lower but the pH range for reaction occurred was
wider than that of Fe2O3/SiO2, sodium alginate/Fe3O4, Al,
Fe-pillared clays, and powder-activated carbon/Fe3O4. The
electron-Fenton system using the Fe electrode, SS316/β-
PbO2, 3D/SEF/PAC/Fe3O4, Fe electrode-sodium persulfate,
and graphite/β-PbO2 anode had a high degradation rate,
but these processes required additional conditions associated
with the reaction such as the addition of electrolyte, applica-
tion of the current, and designing the appropriate electrode.
Photocatalysts based on ZnO or Au/ZnO have a faster deg-
radation rate of tartrazine than CuO•Fe3O4/SiO2, but the
oxidation reaction took place at a low dye concentration,
10mg/L. Adsorbents of GO-Fe3O4, magnetic zeolite nano-
composite, clinoptilolite zeolite/Fe3O4 nanoparticles, and
lignin-containing cellulose had relatively high removal of
organic compounds, but their poor reuse was a limitation
for these materials. Therefore, the CuO•Fe3O4/SiO2 com-
posite prepared by the simple coprecipitation method is
expected to reduce the cost of the catalyst for large-scale
application.

4. Conclusion

Mesoporous SiO2 was successfully prepared from RH with
the assistance of CTAB. Silica had an amorphous structure
with a relatively large surface area of 496.4m2/g and a rela-
tively high pore volume of 1.154 cm3/g. The CuO•Fe3O4/
SiO2 composite was successfully prepared from obtained sil-
ica by a simple coprecipitation method for oxidizing dye.
Metal oxide particles, Fe3O4 and CuO, of poor crystallinity
and spherical shape with a particle size of approximately
20–50nm, were well dispersed on the porous structure of
SiO2. These could reduce the textural values of the CuO•-
Fe3O4/SiO2 composite; the surface area, pore volume, and
average pore size of the composite were 248.6m2/g,
0.420 cm3/g, and 6.2 nm, respectively.

The effects of reaction conditions such as catalyst dosage
and initial dye concentration on the catalytic performance of
the composite were studied. The reusability of the catalyst
was investigated by cyclic experiments. The adsorption abil-
ity of the composite was decreased; however, the catalytic
efficiency of the composite for oxidizing dye could be
enhanced. The degradation of TA for the Fe3O4-H2O2 sys-
tem was also negligible. The DE was increased to 60.2% for
the CuO•Fe3O4/SiO2-H2O2 system. Porous SiO2 acted as a
supporter; the good adsorption could increase the interac-
tion between H2O2 and the catalyst surface. Therefore, the
formation of free radicals occurred rapidly. The SiO2-Fe

2+/
Fe3+ from Fe3O4 might activate H2O2 leading to the forma-
tion of hydroxyl (OH•) and perhydroxyl (HO2

•) radicals. In
addition, the presence of Cu2+/Cu+ could promote the
regeneration of Fe3+ and Fe2+. As the result, the catalytic effi-
ciency of CuO•Fe3O4/SiO2 could be enhanced in the wide
pH range of 3–7.
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