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1. Introduction

Honeycomb core, as the core component of a composite 
sandwich structure, is widely used in engineering applica-
tions including aviation, aerospace, automotive, ships, and 

high-speed trains [1–3] due to its high strength-to-weight 
ratio. Error in the processing of honeycomb cores causes the 
delamination of sandwich structures, which are sufficiently 
troublesome to cause concern. For closer control over the 
accuracy of machining quality, precision measurement of 
honeycomb cores plays a crucial role [4–6].

Among all kinds of honeycomb cores, Nomex honeycomb 
core is the most commonly used core material in industrial 
applications, which is composed of adhered strips of Nomex 
paper. A Nomex honeycomb core is a kind of cellular mat erial 
that is composed of interconnected hexagonal cells with the 
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Abstract
The quantitative evaluation of the shape accuracy of the machined honeycomb cores has always 
been difficult, due to its typical thin-wall and low-rigidity characteristics. Laser triangulation is 
adopted in this paper to measure the surface shape of honeycomb cores due to its advantages of 
high-accuracy and high-speed, but the original measurement is not accurate enough as a result 
of the inclusive massive burr data. This paper presents an approach to remove burr data of each 
extracted cell wall based on dimensionality reduction and regression analysis. First, according 
to their distribution characteristics, burr data are divided into two types: burr I data and burr II 
data. Second, vertical and horizontal dimensionality reduction, respectively used for removing 
burr I data and burr II data, are applied to the measured data to reduce the dimension from three 
to two. Finally, in the 2D space after dimensionality reduction, the distribution line of the cell 
wall is forecasted with regression analysis, and burrs are removed according to its distance to 
the distribution line. Experimental results show that the proposed method has an outstanding 
performance in removing burr data on various shapes of surfaces.
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size of each unit cell 2–5 mm and the wall thickness about 
0.05–0.2 mm [7]. The thin-wall and low-rigidity character-
istics make it difficult to measure with contact instruments. 
Although the contact probe can be adapted by increasing the 
contact area to locate on cell walls, the deformation of cell 
walls is hard to be avoided, which bring about the error of 
measurement results [8, 9]. Therefore, non-contact meas-
urement is more suitable for measuring this material. Stereo 
vision measurement techniques, based on digital fringe pro-
jection and phase-shifting methods, have been widely used in 
3D shape measurement [10, 11]. Based on this technology, 
Jiang et  al developed a triangular camera-projector layout 
to achieve the measurement of honeycomb cores, which is 
combined with the proposed phased-based stereo matching 
algorithm [12]. However, the adoptive edge data extraction 
algorithm in the method ignores the influence of burrs; thus, it 
cannot measure honeycomb cores with burrs precisely.

Therefore, we attempt to measure the honeycomb surface 
with a linear laser displacement sensor to collect enough data 
points on the hyper-thin cell wall [13]. For practical applica-
tion, it is convenient to achieve high-accuracy and high-speed 
measurement with the linear laser displacement sensor driven 
by a numerical control machine tool. Moreover, such high-
resolution measurement only generates a small amount of data 
from the cell wall edges, since the inside of honeycomb cells 
are hollow. However, when laser triangulation achieves pre-
cise measurement on the cell wall edges, burrs are also meas-
ured and contained in the measurement result. Burrs on cell 
walls cannot be thoroughly avoided on the machined surface 
due to the surface characteristic of Nomex honeycomb cores 
[14–16], but their height values deviate from cell wall data, 
which will influence the further analysis and evaluation of the 
measured surface. As a consequence, a method for removing 
burr data from the measurement result is highly in demand.

After finishing high-resolution measurement of honey-
comb cores, its subsequent data processing is still difficult. 
Directly processing multiple unit cells to remove burrs is very 
painstaking. Therefore, we have proposed a cell wall detection 
method for recognizing all the cell walls one by one, where 
data of each cell wall can be extracted in order to be processed 
individually [13]. Although the processing of the measured 
data has been converted to the processing of each cell wall 
data, it is still difficult to remove the burr data. The data of 
honeycomb cell wall is quite limited due to its poor thickness, 
while burr data are quite a few. In this case, both the shape 
of the cell wall and the distribution of its height are varied 
for the same honeycomb core, instead of being a fixed shape. 
Moreover, the distribution forms of burrs on cell walls include 
lumpy, threadlike forms, or dots right on the cell wall. The 
size and direction of burrs are both variant, which make their 
removal complicated. Because such distribution is different 
from noise caused by external disturbance, the removal of 
burrs cannot use traditional filter-denoising methods [17]. For 
some denoising method applied in laser scanning point cloud, 
the curvature is usually undertaken to analyze the noise [18, 
19], which is not suitable for such discontinuous honeycomb 
structure.

This paper proposes an approach for removing burr data 
from each cell wall data based on dimensionality reduction 
and regression analysis. Section 2 presents the overview of the 
method including the classification of burrs, and the introduc-
tion of dimensionality reduction and regression analysis. The 
concrete implementation of these two approaches is detailed 
in section  3. Section  4 presents the experimental results. 
Finally, conclusions are drawn in section 5.

2. Overview of the method

Based on the cell wall detection method in [13], the data of 
each cell wall are extracted successively, which are the pro-
cessing object of the method in this paper. Firstly, according 
to the distribution position, burrs are divided into two types: 
burr I and burr II (in section  2.1). Then reduce a vertical 
dimension of the measured data to obtain a 2D space (vertical 
dimensionality reduction), where burr I data are identified 
with regression analysis, thereby removed from the measured 
data. After burr I data are removed, a horizontal dimension 
of the remaining measured data is reduced to acquire another 
2D space (horizontal dimensionality reduction), where burr 
II data are identified, and thus removed from the remaining 
measured data. Among these processes, the adopted dimen-
sionality reduction and regression analysis methods are intro-
duced in sections 2.2 and 2.3, while the detailed procedures of 
the method are described in section 3.

2.1. Classification of burrs

This paper investigates Nomex honeycomb core mat erial, 
which is fabricated from Nomex paper using adhesive 
bonding. Nomex paper is made up of aromatic polyamide 
(aramid) fibers immersed in resin, whose length and direc-
tion are variant. The fibers are of high strength, and are dif-
ficult to be thoroughly cut off during the machining process, 
which will produce different forms of burrs on the machined 
surface [20]. There mainly exist three geometrical shapes, as 
illustrated in figure 1.

2.1.1. Lumpy burr. One form of burrs is lumpy. A lumpy burr 
appears when the marginal fibers of the cutting chip are not 
thoroughly cut off, which will attach the cutting chip with the 
cell wall. The width of some lumpy burrs may be several times 
of the cell wall.

2.1.2. Threadlike burr. Some burrs are threadlike, which 
are formed when some fibers are not cut off in time but are 
directly pulled out in the machined section during the machin-
ing process. Such burrs are thin with long or short length, and 
their entire areas are very small.

2.1.3. Dotted burr. The left burrs are dotted, which corre-
spond to the unstable measured data on cell walls due to the 
roughness of honeycomb cores.

In consequence, it is obvious that burrs have various sizes. 
The smallest one is only as small as a dot, while the biggest 
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one possesses several times the width of the cell wall. Besides, 
the distribution directions of burrs change disorderly in 3D 
space. These two characteristics make it difficult for the three 
types of burrs to be recognized specifically.

Therefore, aiming at simplifying the removal process of 
burrs, this paper classifies all burrs into two types according 
to their position. Burrs that can be seen in the plan view are 
defined as burr I, including the threadlike burrs and lumpy 
burrs except the parts right above the cell wall. The remainder 
are burrs whose projection on the plan view is located on the 
cell wall, which causes that they cannot be seen on the plan 
view, and are defined as burr II. Burr II includes dotted burrs 
and the parts of the threadlike burrs and lumpy burrs exactly 
right on the cell wall.

After being classified, the two types of burr data can be 
removed based on their different characteristics: burr I data 
exist in the inside of the honeycomb cells, while burr II data 
possess different heights with normal cell wall data. Based on 
these characteristics, burr I can be recognized according to 
the cell wall distribution in the plan view, and burr II can be 
detected by the height distribution. However, if burr II data are 
firstly removed, burr I data will interfere with the recognition 
of normal cell wall data by the height distribution, due to their 
deviant heights and large amount. For this reason, burr II data 
are processed after burr I data are removed.

2.2. Dimensionality reduction

Dimensionality reduction is a process of reducing the dimen-
sion number of data [21]. The measured data of honeycomb 
cores are 3D, where burrs are very difficult to be removed, 
because of the complication of their distribution directions. 
Therefore, this paper does not directly deal with the mea-
sured data, but reduces its dimension number from three to 
two in order to reduce the difficulty of recognizing burrs from 
the measured data. In this study, dimensionality reduction 
is achieved by projecting the measured data into a plane to 
acquire the wanted 2D data [22]. Then, burrs will be recog-
nized in the projection plane and then removed in the original 
measured data accordingly.

Firstly, vertical dimensionality reduction is employed on 
the measured data to remove burr I data, and then after burr 
I data are removed, horizontal dimensionality reduction will 
be employed to remove burr II data. In the process of vertical 
dimensionality reduction, the top view plane of the measured 
data is taken as the projection plane (plane I figure 2). As for 
horizontal dimensionality reduction, the projection plane is 
the one (plane II in figure 2) that is perpendicular to plane I 
and its projection line (l in figure 2) in plane I is the approxi-
mate line of the cell wall data. In the 2D space after each time 
of dimensionality reduction, the distribution line of the cell 
wall can be obtained, while burrs obviously deviate from the 
line. By this principle, burrs can be recognized in order to be 
removed from the original measured data.

2.3. Regression analysis

After dimensionality reduction, in the 2D space of the mea-
sured data, the distribution of the cell wall is considered to be 
close to a straight line or a curve with a certain width. Once 
the distribution line of the cell wall is determined, burr data 
can be recognized by analyzing the distance between itself 
to the distribution line, if the distance is larger than the set 
threshold, the data will be regarded as burr data.

Figure 1. Illustrations of different types of burrs: (a) plan view of honeycomb core; (b) the corresponding measurement result (different 
colors indicate the wall heights).

Figure 2. Schematic of projection planes.
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However, the shape and position of the distribution line 
are indefinite, so its concrete mathematic function is also 
unknown. After observation on burrs, it is found that although 
some burrs are large in size, their positions are far from cell 
walls; Some are near to cell walls, but occupy small area. 
Therefore, the distribution line can be forecasted with regres-
sion analysis to fit the data using linear or non-linear function 
[23, 24]. The precision of regression analysis is affected by 
burr data, and the more burr data there are, the larger deviation 
there would be. As a result, regression analysis is repeatedly 
used to gradually approximate the true distribution line with 
the decrease of burr data, while the threshold for recognizing 
burr data is reduced gradually.

3. Description of the method

In this paper, the removal of burr data was realized through pro-
gramming on Matlab R2018a programming software. During 
the implementation of above methods, the key techniques are 
the process of projecting the measured data into a plane, the 
determination of regression models, and the determination of 
thresholds. All these will be specified in this section.

3.1. Removal of burr I data

Burr I data are identified in the 2D space acquired through 
vertical dimensionality reduction, and then be removed from 
the measured data with regression analysis. Furthermore, the 
removal of burr I data is broken down into two procedures in 
order to achieve more accurate burr removal result, which are 
coarse and fine removal.

During vertical dimensionality reduction, the projection 
plane (plane I) is the xoy plane, and the result of every data 
point after dimensionality reduction is its x-coordinate and 
y-coordinate, as shown in figure 3. In the acquired 2D space, 
the actual distribution of the cell wall is a curve not a straight 
line. Non-linear regression model should be adopted to fit the 
curve, but it is greatly influenced by burr data. For this reason, 
in the coarse removal, linear regression model is taken for 
removing the majority of burr I data (l1 in figure 3). Then in 

the fine removal, specific non-linear regression model (l2 in 
figure 4), corresponding to the actual distribution of the cell 
wall, is adopted for removing the remainder burr I data. Once 
the distribution line is determined, burr data can be recognized 
by analyzing the distance between itself to the distribution 
line. If the distance is larger than the set threshold (such as 
d1 in figure 3 and d2 in figure 4), the data will be regarded as 
burr data.

 (1)  Coarse removal. Fit the dimension-reduced measured 
data with the linear regression model [25]:

f (t) = α1 + α2t. (1)

  The variable t is considered to be an explanatory variable, 
while f(t) is considered to be a dependent variable. α1 and 
α2 are the parameters to be estimated. It is reasonable to 
take the axis who has the longer range as the explana-
tory variable for cell walls of different directions. Then 
parameters α1 and α2 can be determined automatically 
with the help of regression analysis tools in Matlab. The 
determination of other parameters used in the regression 
below is in the same way, and will not be stated again.

  In order to improve the accuracy of burr removal, regres-
sion analysis is used repeatedly (at least three times are 
recommended) with the thresholds gradually decreasing, 
in which only part of burr data is removed each time. 
Besides, in the coarse removal stage, the threshold of last 
regression analysis is a little larger than half of the width 
of the cell wall.

 (2)  Fine removal. For further fine removal, the actual distribu-
tion of the cell wall is taken into consideration. Besides, 
cell walls of different directions should be processed 
separately, due to their different distributions. The actual 
distribution of double cell wall data for all honeycomb 
cores is a straight line, while most of single cell walls are 
curves. In order to describe these different distributions, 
the available regression models includes.

3.1.1. Linear regression model. For all double cell walls, 
their fine removals take the linear regression that is same with 

Figure 3. Coarse removal of burr I data using linear regression 
model.

Figure 4. Fine removal of burr I data using non-linear regression 
model.
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equation (1). Moreover, linear regression model is also suit-
able for single cell walls of some types of honeycomb cores.

3.1.2. Logistic regression model. For some types of honey-
comb cores, the actual distribution of single cell wall data is 
close to ‘S’ shape, which can be expressed with logistic func-
tion [26]. The regression model is the logistic function:

f (t) =
L

1 + e−k(t−t0)
. (2)

The variable t is considered to be an explanatory variable, 
while f(t) is considered to be a dependent variable. L, k and 
t0 are the parameters to be estimated. The data need to be 
rotated or flipped to be placed with ‘S’ shape prior to using 
this regression.

3.1.3. Polynomial regression model. Some single cell walls 
are neither straight line nor close to ‘S’ shape. The cell wall 
may not have a definite shape and is hard to be described uni-
formly. Such shape can be forecasted with a n-degree polyno-
mial function [27].

f (t) = β0 + β1t1 + β2t2 + · · ·+ βntn. (3)

The variable t is considered to be an explanatory variable, 
while f(t) is considered to be a dependent variable. β0, β1,…, 
βn are the parameters to be estimated. Once the number of 
degree is determined, the polynomial function can be solved 
with Matlab software. Because of the irregularity of the cell 
wall shape, it is hard to give the concrete value of n, and 5–10 
are recommended.

Similarly, in the fine removal, the remaining burr I data are 
removed for multiple times with gradually decreasing thresh-
olds, where the threshold of last regression analysis is half of 
the width of the cell wall.

3.2. Removal of burr II data

After burr I data are removed, to remove burr II data from the 
remaining measured data, horizontal dimensionality reduction 
is employed to obtain a 2D space, where burr II data are identi-
fied with regression analysis, and removed from the remaining 
measured data. Similar with the removal of burr I, the removal 

of burr II data also contains two procedures, which are coarse 
and fine removal.

During horizontal dimensionality reduction, to determine 
plane II, the approximate line of the cell wall in plane I is 
firstly determined by fitting the x-coordinate and y-coordinate 
of the measured data to a straight line, as shown in figure 5, 
where P1(x1, y1) and P2(x2, y2) are the intersection points of the 
line and the two axes, and α is its inclination angle. To achieve 
dimensionality reduction, a new coordinate system o′-x′y′z′ is 
established with x′-axis along the approximate line. The coor-
dinate components of any points in coordinate system o′-x′y′z′ 
can be transferred and expressed in coordinate system o-xyz 
through coordinate transformation in equation (4):




x′

y′

z′


 = T




x − x1

y − y1

z


 . (4)

Where T =




cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1


 is the transformation 

matrix.
In coordinate system o′-x′y′z′, the result of every data 

point after dimensionality reduction is its x′-coordinate and 
z′-coordinate, as shown in figure 6, where plane II has been 
moved for a certain distance along y′-axis to make the sche-
matic clearly. The distribution line (l3 in figure 6) of the cell 
wall after dimensionality reduction reflects the height fluctua-
tion of cell wall data. Then to identify and remove burr II data, 
the corresponding regression model is used for expressing 
the line. Taking x′ as the explanatory variable, and z′ as the 
dependent variable, the relationship between them can be 
expressed with a function (the concrete function is specified 
in its concrete removal stage):

z′ = f (x′) . 
(5)

From equations (4) and (5), the fitted value on the projec-
tion plane that every data point corresponds to is:

z′i = f (x′i) = f ((xi − x1) cos(α) + (yi − y1) sin(α)) . (6)

The deviation between actual measured value and the fitted 
value is:

∆h = |zi − z′i | . (7)

Then remove the measured data whose ∆h is greater than 
the set threshold h.

The removal of burr II data also contains two procedures of 
coarse and fine removal.

 (1)  Coarse removal. In this stage, the selected regression 
model is a linear regression model.

  Here, part of burr II data are removed for multiple times 
with gradually decreasing thresholds, where the threshold 
of last regression analysis is a little larger than half of the 
height fluctuation range of cell wall data.

 (2)  Fine removal. For honeycomb cores, the measured result 
represents its micro profile, which is irregular and hard 

Figure 5. The determination of projection plane II.

Meas. Sci. Technol. 29 (2018) 115010



Y Qin et al

6

to be expressed with an exact shape. In this situation, 
polynomial regression analysis is suitable for describing 
the distribution thanks to its superior flexibility.

Similarly, the remaining burr II data are removed for mul-
tiple times with gradually decreasing thresholds, where the 
threshold of last regression analysis is half of the height fluc-
tuation range of cell wall data.

In the different removal stage of burrs (coarse or fine 
removal) for removing different type of burrs (burr I or burr 
II), the suitable regression models are different. In summary, 
only linear regression is used in coarse removal, while the 
alternative regression models in the fine removal of burr I con-
tain linear regression model, logistic regression model, and 
polynomial regression model, and only polynomial regres-
sion model is suitable for the fine removal of burr II. Because 
the cell walls of the same direction in a honeycomb core use 
the same regression model, only if all of them accord with 
identical shape, the corresponding regression model will be 
adopted. Otherwise, polynomial regression model is appro-
priate owing to its stronger adaptation.

3.3. Determination of thresholds

As stated above, in every stage, burrs are removed repeat-
edly, corresponding to a set of thresholds, respectively. Each 
threshold can be expressed as a multiple of the final data band 
width w0, where w0 is the cell wall width when removing burr 
I, and is the height fluctuation range when removing burr II. 
Each set of thresholds can be determined by considering the 
following factors:

3.3.1. The number of repetitions. The more the repetitions 
are, the closer the regression analysis result gets to the true 
distribution of the cell wall and the more computation time 
it will consume at the same time. According to our tests, five 
times for coarse removal and three times for fine removal are 
suitable, because the further increase of repetitions brings no 

evident improvement of the result but an increase of computa-
tion time.

3.3.2. The order of thresholds. The thresholds in each set are 
descending. Every time regression analysis is used, burr data 
are reduced a little. With the decrease of burr data, the line 
of regression analysis gets closer to the true distribution line, 
which requires descending thresholds.

3.3.3. The last threshold. The final remaining data at each 
burr removal stage depend on the last threshold. For this rea-
son, the last threshold of fine removal, as the last time of burr 
removal, is determined as 0.5 w0. Since the final remaining 
data of coarse removal still contain some burrs, the last thresh-
old related with the data band width should be a little larger 
than 0.5 w0. Additionally, 0.75 w0 is found to have an excellent 
effect for its ability to remove burrs around the cell wall.

3.3.4. The first threshold. Before burrs are removed, the result 
of the initial regression analysis deviates far from the true distri-
bution of cell walls; thus, the corresponding threshold should be 
chosen large enough to only remove distant burrs. On the other 
hand, from coarse removal to fine removal, as linear regression 
analysis changes to non-linear, the same threshold might lead 
to a sudden increase of removing burrs, which results in lower 
burr removal accuracy. Therefore, in order to remove burrs at a 
steady speed, the first threshold of fine removal is chosen a little 
larger than the last threshold of coarse removal.

Figure 6. Removal of burr II data using non-linear regression 
model.

Table 1. Main specifications of linear laser displacement sensor.

Parameters Value

Measurement range of z-axis 
(height)

±8 mm (F.S.  =  16 mm)

Measurement range of x-axis 
(width)

15 mm

Repeatability 0.4 µm
Linearity ±0.1% F.S.
Light source 405 nm blue semiconductor laser
Spot shape Approx. 21 mm  ×  45 µm
Reference distance 60 mm
Sampling frequency Max. 16 µs

Figure 7. Laser measurement schematic.

Meas. Sci. Technol. 29 (2018) 115010
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3.3.5. The threshold interval. The threshold intervals in each 
set are in declining trend. In this way, the speed of removing 
burrs can be reduced, which can improve the burr removal 
accuracy.

4. Experiment verification

The proposed burr removal method is suitable for processing 
3D measurement data of honeycomb cores from any achiev-
able measurement mean. This paper only takes laser measure-
ment data as an example for the validation and analysis of the 
method. The proposed method is programmed with MATLAB 
R2018a software for display and rendering on three honey-
comb core specimens.

4.1. Experiment apparatus

A linear laser displacement sensor (LJ-V7060, Keyence, 
Japan) was used for the measurement. Its specifications are 
summarized in table 1. During measuring, the incident laser 
was set along the cell wall, as shown in figure 7. The laser 
probe was mounted on a three-axis numerical control machine 
tool for scanning the surface of the specimen that was fixed 
to the workbench. The resolution of the measured data is  
20 µm  ×  25 µm.

4.2. Parameters

The proposed method mainly depends on the regression 
models and the thresholds in different burr removal stages. 
These options are identical for the three specimens in this 
paper. According to different suitable regression models in 
the different removal stage for removing different type of 
burrs, the selected regression models are shown in table  2. 
After observation, the cell wall distribution fluctuate not very 
strongly, and quintic polynomial regression is close to the 
distribution. Such selection is also suitable for most measure-
ment results except those whose cell walls correspond to spe-
cific regression models.

Table 3 presents the thresholds that are successively used 
in regression analysis of every burr removal stage, where d0 
and h0 are the cell wall width and the height fluctuation range, 
respectively. The values of d0 and h0 are consistent for the 
same type of honeycomb cores. Considering the selection 

principle in section 3.3, both burr I data and burr II data are 
removed for five times of coarse removal and three times of 
fine removal, with thresholds of descending values and inter-
vals. In coarse removal, the first thresholds are determined as 
5d0 and 5h0, while the last ones are 0.75d0 and 0.75h0. In fine 
removal, the first thresholds are chosen as d0 and h0, while the 
last ones are 0.5d0 and 0.5h0. Then the thresholds in each burr 
removal stage can be determined as in table 3. Besides, the 
given sets of thresholds are effective on most of the measure-
ment results in practical application.

4.3. Results

To evaluate the effectiveness of the proposed burr removal 
method, experiments were carried out on a flat surface (figure 
8), an inclined surface (figure 9) and a curved surface (figure 
10), respectively. The honeycomb cores with flat surface and 
curved surface share the same cell size of 3.2 mm, while the 
cell size of the inclined honeycomb core is 4.8 mm. The three 
specimens are the ones without serious lattice deformation, 
severe burr level or cell wall laceration, and surface quality 
like these is usually visually inspected in production currently. 
The objective of this study is to evaluate the surface shape 
accuracy not the surface quality, so burr data are removed 
from the measurement result before calculating the surface 
shape accuracy.

Regarding the tests on real measured data, accurate quanti-
tative evaluations are not possible, since it is very difficult to 
judge whether a data point in the critical zone is a burr datum 
or a cell wall datum, owing to the roughness of cell walls. 
Alternatively, visual observations and descriptive statistics 
are employed for comparison before and after burr data are 
removed.

Cell wall detection is firstly employed on the measure-
ment result, and then each detected cell wall is processed by 
the burr removal method successively. Accordingly, burrs on 
the whole measured honeycomb surface can be removed. To 
watch the burr removal results clearly, only a part of the meas-
ured surface is shown in the experiment results. Figures 8(c)–
10(c) show the measurement results, then figures 8(d)–10(d) 
present the results of burr I data being removed, and burr II 
data are removed as shown in figures 8(e)–10(e).

For descriptive statistics, the root-mean-square deviation 
(RMSD) of a cell wall, referring to the dispersion level of the 
measure data, is specified as

Table 2. Regression models of different cell walls.

Coarse removal 
of burr I

Fine removal  
of burr I

Coarse removal  
of burr II

Fine removal  
of burr II

Double cell wall Linear regression Linear regression Linear regression Quintic polynomial regression
Single cell wall Linear regression Quintic polynomial regression Linear regression Quintic polynomial regression

Table 3. Thresholds in regression analysis.

Coarse removal of burr I Fine removal of burr I Coarse removal of burr II Fine removal of burr II

[5d0, 2.5d0, 1.5d0, d0, 0.75d0] [d0, 0.75d0, 0.5d0] [5h0, 2.5h0, 1.5h0, h0, 0.75h0] [h0, 0.75h0, 0.5h0]
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RMSD =

Ã
1
n

n∑
t=1

(pt − pft)
2

 (8)

where, pt (t  =  1, 2, …, n) is data to be analyzed. pft, the 
corresponding predicted value of pt, is forecasted with fitting 
based on the final remaining data. The smaller the RMSD is, 
the more stabilized the data are.

To demonstrate the performance of the proposed method, 
we calculate the data removal rate (DRR), and the root-mean-
square deviation decline rate (RMSDDR), which are defined 
as:

DRR =
NOM-NFR

NOM
× 100%

 (9)

RMSDDR =
RMSDOM-RMSDFR

RMSDOM
× 100%

 (10)

where NOM  =  number of original measured data, 
NFR  =  number of final remaining data, RMSDOM  =  mean 
RMSD of the original measured data, and RMSDFR  =  mean 
RMSD of the final remaining data. The statistical results of 
the three specimens are shown in table 4.

Figure 8 shows the burr removal results of the flat spec-
imen. In the original measured data (figure 8(c)), there exist 
lots of burr data, including threadlike burrs, lumpy burrs and 
dotted burrs, which correspond to the surface of honeycomb 
cores (figure 8(b)). After before and after contrast, burr data 
are effectively removed in the final remaining data, while 
there are no obvious accidentally deletions of cell wall data. 
Circle A gives an example of a typical burr I, while circle B is 
a burr II, and both are successfully removed. After burr data 
are removed (figure 8(e)), the range of data decreases from 
0.97 mm to 0.28 mm, and obvious visible burrs no longer 
exist. As shown in table 4, 24.83% of the original measured 
data are removed, while the RMSD is reduced by 42.84%.

Figure 8. Experimental setup and results of the flat honeycomb core: (a) experimental setup; (b) the plan view; (c) the measurement result; 
(d) the result of burr I removal; (e) the result of burr II removal.
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The results of the inclined specimen are shown in figure 9. 
In the aerospace application, inclined surfaces are widely used, 
thus, the applicability on inclined surfaces for the proposed 
method is of great practical significance. From figures 9(b) and 
(c), it can be seen some burrs are near from cell walls, which 
are considered to be difficult to be removed. As illustrated in 
circle C, such burr has been successfully removed with the 
proposed method. The removal of burr data decreases the data 
range from 8.09 mm to 2.75 mm, corresponding to the height 
difference of the inclined surface. The percentage of removed 
data reaches 21.20%, decreasing the RMSD by 65.82%.

We further demonstrated the effectiveness of our burr 
removal method on the curved surface (figure 10). Despite 
the more complicated shape, burrs contained in the curved 
specimen are effectively removed. The curved shape is able 

to be seen clearly in the final remaining data (figure 10(e)). 
The removed burr data, accounting for 28.06% of the original 
measured data, reduce the RMSD by 57.79%.

By comparison between figures 8(c)–10(c) and 8(e)–10(e), 
it can be found that obvious burr data have been successfully 
removed. The final remaining data (figures 8(e)–10(e)) are in 
the form of hexagonal grid, corresponding to the measured 
surfaces in figures  8(b)–10(b). Besides, the cell wall data 
are smooth, continuous, and complete, which proves that the 
majority of the cell wall data are not accidentally removed. 
Moreover, it can be seen from the results that RMSDFR is 
much larger than DRR, exhibiting the great improvement on 
the measured data with the proposed method. Therefore, our 
method is capable of removing burr data and keeping the cell 
wall data.

Figure 9. Experimental setup and results of the inclined honeycomb core: (a) experimental setup; (b) the plan view; (c) the measurement 
result; (d) the result of burr I removal; (e) the result of burr II removal.
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5. Conclusion

In this paper, we present a method for removing burrs from 
the measured data of honeycomb cores based on dimension-
ality reduction and regression analysis. By dimensionality 
reduction, the dimension of the measured data is reduced 
from three to two, and then burrs are recognized and removed 
by regression analysis. The experiments were carried out on 
flat, inclined and curved surfaces exhibiting the outstanding 
performance of the proposed method in removing burr data 
and improving data quality. Then, the surface shape and 
machining error can be easily computed from the remaining 

measured data after removing burr data, which is of great 
significance for guiding machining process and monitoring 
product quality.
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Figure 10. Experimental setup and results of the curved honeycomb core: (a) experimental setup; (b) the plan view; (c) the measurement 
result; (d) the result of burr I removal; (e) the result of burr II removal.

Table 4. Statistical results of the three specimens.

NOM NFR DRR/% RMSDOM/mm RMSDFR/mm RMSDDR/%

The flat specimen 49 763 37 405 24.83 0.0859 0.0491 42.84
The inclined specimen 73 126 57 620 21.20 0.1188 0.0406 65.82
The curved specimen 63 127 45 413 28.06 0.1059 0.0447 57.79
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