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1. Introduction

The rotating shaft is the most important part of rotating 
machinery: its faults will affect accuracy and can be sometimes 
be catastrophic for the whole machinery. In order to acquire 
more fault information from vibration signals and improve the 
accuracy of diagnostic work, many feature extraction methods 
have been proposed, such as fast Fourier transform (FFT)  
[1, 2], wavelets [3, 4], ensemble empirical mode decompo-
sition (EEMD) [5, 6] and variational mode decomposition 

(VMD) [7, 8]. However, these methods present a problem 
in that the extracted features sometimes are not obvious and 
cannot be extracted at low signal-to-noise ratio (SNR). With 
the development of science, blind source separation (BSS) is 
more and more applied in the field of rotating machinery fault 
feature extraction [9, 10].

The goal of BSS is to detect latent signals from mixed sig-
nals without any knowledge of the mixing process. This chal-
lenging problem has attracted much research interest due to its 
very wide area of applicability, such as in speech signal sepa-
ration, image processing, computer vision, bioinformatics, 
etc [11–14]. In the usual blind separation model, it is often 
required that the number of sensors (which determine the 
dimension of the signal) should be no less than the number of 
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Abstract
In order to improve the fault feature extraction of a rotating shaft, an efficient method 
of underdetermined blind source signal with weak faults based on Hankel matrix-based 
singular value decomposition (SVD) and blind source separation (BSS) is proposed. First, 
a Hankel matrix is constructed for single-channel vibration signal, and then SVD is used 
to estimate the number of fault signals. Finally, the fault features can be extracted by BSS. 
Compared with wavelets, variational mode decomposition and ensemble empirical mode 
decomposition  +  BSS, the better performance of the proposed method is demonstrated by 
an analysis of the simulated signal with the misalignment fault and imbalance fault mixed. 
Furthermore, an experiment verifies the effectiveness of this method. The result demonstrates 
that the proposed method is efficient for feature extraction of a single-channel vibration signal 
of a rotating shaft with multiple weak faults.
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sources (which represent fault signals in this paper). However, 
due to cost issues and limitations in the monitoring environ-
ment, it may be impossible to install multiple sensors on 
rotating machinery, so single-channel monitoring is some-
times the only option, which is the so-called underdetermined 
blind source problem. Therefore, the problem of underdeter-
mined blind source separation has gradually become a hot 
area in the research of blind signals in recent years [15–17].

Before BSS, estimating the number of sources accurately 
and effectively is an important prerequisite to achieve effec-
tive separation of the blind source. The single-channel signal 
can be transformed into many kinds of matrices, such as a 
Toeplitz matrix [18] and Hankel matrix, [19] etc. Singular 
value decomposition (SVD) [20, 21] is a non-parametric tech-
nique which has been used extensively in noise reduction, fea-
ture extraction, source number estimation and fault diagnosis. 
For a single-channel signal with multiple faults, using SVD 
directly cannot extract the eigenvalues of each fault signal. 
Therefore, a Hankel matrix-based SVD method is proposed in 
this paper. The ratios of neighboring singular values (NSVR) 
in descending order obtained by the Hankel matrix-based 
SVD are applied to estimate the number of fault signals of 
single-channel vibration signal.

In this paper, a fault feature extraction method which com-
bines with Hankel matrix-based SVD and blind source sepa-
ration is proposed. Its advantage is that the number of signals 
with weak faults can be estimated, and the features can be 
clearly extracted. For feature extraction of a single-channel 
vibration signal, results of comparative experiments show that 
this method has a significantly better performance than wave-
lets, VMD and EEMD+BSS.

The structure of this paper is as follows. The theory of 
Hankel matrixes, SVD and BSS are introduced in section 2. 
Section 3 gives a detailed procedure of the proposed model 
for fault feature extraction. The performance of the pro-
posed method is evaluated by an analysis of a simulated 
signal of a rotating shaft in section 4. In section 5, an arti-
ficial fault experiment proves the effectiveness of the pro-
posed method. The conclusion of this paper is presented in 
section 6.

2. The theory of Hankel matrixes, SVD and BSS

2.1. Hankel matrix theory

The single-channel signal X = (x(1), x(2), . . . , x(N)) can be 
constructed as a Hankel matrix as follows:

A =

à
x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n + 1)
...

...
. . .

...

x(N − n + 1) x(N − n + 2) · · · x(N)

í

 (1)
where 1 < n < N . Let m = N − n + 1, then A ∈ Rm×n . The 
matrix A can be written into a form of multiplication of the 
vector ui, vector vi and singular value σi as follows:

A = UΣVT =

q∑
i=1

σiuivT
i = σ1u1vT

1 + σ2u2vT
2 + · · ·+ σquqvT

q

 (2)

where ui ∈ Rm×1, vi ∈ Rn×1, i = 1, 2, · · · , q, q = min(m, n).
It is assumed that Ai = σiuivT

i , Ai ∈ Rm×n. Let the first line 
of Ai be the row vector Pi,1 and Hi,n be the last column vector 
of Ai without the elements of the first line. According to the 
Hankel matrix construction process, Pi,1 and HT

i,n can be con-
nected end-to-end to form a component signal Pi as follows:

Pi =
(
Pi,1, HT

i,n
)

, Pi,1 ∈ R1×n,Hi,n ∈ R(m−1)×1. (3)

The matrix Ai can be represented by the row vector 
Pi,1, Pi,2, · · · , Pi,m, Pi,m ∈ R1×n. The original Hankel matrix 
A can be represented by the row vector X1, X2, · · · , Xm , 
Xm ∈ R1×n. Therefore, X1 can be expressed as

X1 = P1,1 + P2,1 + · · ·+ Pq,1. (4)

The matrix A without the elements of first line can be repre-
sented by the column vector In, In ∈ R(m−1)×1. Therefore, IT

n  
can be expressed as follows:

IT
n = HT

1,n + HT
2,n + · · ·+ HT

q,n. (5)

According to the Hankel matrix construction process, 
the original signal X can be expressed as X = (X1, IT

n ). The 
component signal Pi can be expressed as Pi = (Pi,1, HT

i,n). 
Therefore,

P1 + P2 + · · ·+ Pq = (P1,1 + P2,1 + · · ·
+Pq,1, HT

1,n + HT
2,n + · · ·+ HT

q,n
)

.
 

(6)

Substituting equations (4) and (5) into equation (6),

P1 + P2 + · · ·+ Pq = (X1, IT
n ) = X. (7)

The essence of Hankel matrix theory is the decomposition 
of the original signal into a simple linear superposition of the 
component signal Pi. Its advantage is that the separated comp-
onent signals are simply subtracted from the original signal, 
which will make the separated component signals maintain 
the original phase, that is, zero-phase shift characteristic.

2.2. Singular value decomposition theory

The signal S(t) = [s1(t), . . . , sn(t)]
T  is contained in n source 

signals; the observed signal X(t) = [x1(t), . . . , xm(t)]
T  is 

obtained in m different sensors. The observed signal is 
assumed to be a linear superposition of the source signals and 
noise signal N(t) = [n1(t), . . . , nm(t)]

T via a hybrid matrix 
A = (aij)m×n

. The observed signal X(t) can be described as 
follows:

xi(t) =
n∑

j=1
aijsj(t) + ni(t)

i = 1, 2, · · · , m j = 1, 2, · · · , n
 (8)

X(t) = AS(t) + N(t). (9)
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The matrix RX is the covariance matrix of the observed signal. 
The eigenvalue decomposition of RX is performed as follows:

RX = QΛQH (10)

where Λ is a diagonal matrix composed of the eigenvalues 
{λ1,λ2, ...,λm} of RX. Every column vector of the eigenvector 
Q is a unit eigenvector corresponding to the eigenvalue, and 
the unit vectors are orthogonal to each other. It can be deduced 
that the eigenvalues of RXRH

X  derived by the characteristic 
decomposition are {λ2

1,λ2
2, ...λ2

m}. That is,

RXRH
X = QΛQH(QΛQH)

H
= QΛ2QH . (11)

Therefore, the singular value of RX defined by the singular 
value is {|λ1|, |λ2|, ..., |λm|} because the singular value of the 
covariance matrix is the same as the absolute value of the 
eigenvalue. Therefore, the number of non-zero singular values 
is equal to the number of non-zero eigenvalues. It is assumed 
that R̃X  is a covariance matrix of the mixed signal with noise. 
By the mixed system model X = AS + N , the following can 
be calculated:

R̃X = XXH

L = (AS+N)(AS+N)H

L

= ASSHAH+ASNH+NSHAH+NNH

L

=RX + RN + A(SNH)+(NSH)AH

L

 

(12)

where L is the sampling points, RN ≈ σ2I, SNH

L ≈ 0, NSH

L ≈ 0, 
and then

R̃X = RX + σ2I (13)

where σ2 is the power of noise.
If λ1 � λ2 � · · · � λk+1 = λk+2 = · · · = λm = 0 is m  

eigenvalues of RX  and µ1 � µ2 � · · · � µk � µk+1 � · · ·
� λm � 0 is m eigenvalues of R̃X , µ1 ≈ λ1 + σ2, 
µ2 ≈ λ2 + σ2,…,µk ≈ λk + σ2,…,µm ≈ λm + σ2. Therefore, 
in the case of a high SNR, the main eigenvalue of the covari-
ance matrix is equal to the number of signal sources.

Let the eigenvalues of R̃X  be arranged in descending 
order, that is, µ1 � µ2 � . . . � µm � 0 . Let γk = µk/µk+1,  
k = 1, 2, . . . , m − 1, if γk is the maximum ratio of neigh-
boring singular values, the number of sources will be k. SVD 
is simple and can be realized easily.

2.3. Blind source separation theory

The fast independent component analysis (FastICA) algo-
rithm [22, 23] based on negentropy is one of the most famous 
algorithms of BSS. It combines the batch processing method 
with the adaptive method and has a faster processing speed. 
The negentropy is defined as follows:

Ng(Y) = H(Yg)− H(Y) (14)

where Yg and Y have the same variance of Gaussian random 
variables. The differential entropy H(·) of a random variable 
is defined as follows:

H(Y) = −
ˆ

pY(ε)lgpY(ε)dε. (15)

According to information theory, among random variables 
with the same variance, the random variables of Gaussian 
components have maximum differential entropy. When Y 
obeys a Gaussian distribution, Ng(Y) is equal to zero. The 
stronger the non-Gaussianity of Y, the smaller the differential 
entropy, and the larger the Ng(Y). However, the calculation of 
differential entropy needs to know the probability distribution 
function of Y. For the actual acquisition of the signal, it is 
clear that the probability distribution function cannot be accu-
rately known. Therefore, an approximate calculation formula 
is defined as follows:

Ng(Y) ≈ C[E{G(Y)} − E{G(Yg)}]2 (16)

where E{·} is the mean operation function, G(·) is a non-
quadratic function, and C is a constant. It is selected that 
G(Y) = tanh(a1Y), where 1 � a1 � 2.

The FastICA algorithm learning rule is to find the sepa-
ration matrix W such that WTX(Y = WTX) has the largest 
non-Gaussianity. The non-Gaussianity is measured by the 
approximation of Ng(WTX).

The procedure of the FastICA algorithm is as follows. The 
maximum approximation of Ng(WTX) can be obtained by 
optimizing E{G(WTX)}. According to the Kuhn–Tucker con-

dition, under the constraint of E{(WTX)
2} = ‖W‖2

= 1, the 
optimal value of E{G(WTX)} can be obtained at the point of 
satisfying equation (17):

E{Xg(WTX)} − βW = 0 (17)

where β is a constant and g(·) is the derivative of G(·). 
β ≈ E{WTXg(WTX)}. The Newton iterative method can be 
used to solve the equation, and, after simplification, the itera-
tive formula of the FastICA algorithm can be expressed as

W+ = E{Xg(WTX} − E{g′(WTX)}W
W∗ = W+/

∥∥W+
∥∥ 

(18)

where g′(·) is the derivative of g(·). When n independent 
components are estimated, the separation matrix W can be 
obtained.

3. Detailed procedure of the proposed method

In this paper, a fault feature extraction method for a rotating 
shaft devised using Hankel matrix-based SVD and the 
FastICA algorithm is proposed. Its advantage is that the 
number of signals can be estimated, and the features can be 
clearly extracted. The procedure of the proposed method is 
summarized in figure 1. The detailed procedure has the fol-
lowing steps.

Step 1: A Hankel matrix is constructed for the collected 
single-channel signal X(t), and the component signals 
P1, P2, . . . , PN  can be obtained.

Step 2: Singular value decomposition (SVD) for the Hankel 
matrix and the singular values can be obtained. Then, 
they are listed in descending order; the sequence number 
of the maximum ratio of neighboring singular values will 
be the number of fault signals M. Furthermore, the new 
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ordered component signals P′
1, P′

2, . . . , P′
M , . . . , P′

N  can 
be obtained.

Step 3: The component signals P′
1, P′

2, . . . , P′
M  are used to 

form a new observation signal. Finally, the fault signals 
S(1), S(2), . . . , S(M) can be extracted from the new 
observation signal with FastICA.

4. Simulation analysis

In order to prove that this method can extract the features of 
the misalignment fault and imbalance fault of the rotating 
shaft, simulated signals of a rotating shaft are analyzed in 
this section. The selected motor speed is 2000 rpm, that is, 
the rotation frequency fr = 33.3 Hz. The feature of the imbal-
ance fault is that the frequency fr  is the main frequency in the 
frequency domain. The feature of the misalignment fault is 
that the frequency 2fr = 66.6Hz is the main frequency. The 
sampling frequency is 1000 Hz and the number of sampling 
points is 1000.

The one-dimensional linear-mixed signal is

x = a1s1 + a2s2 + n (19)

where s1 is the simulated signal of misalignment fault, s2 is 
the simulated signal of imbalance fault, a1, a2 are superposi-
tion coefficients, and n is white Gaussian noise. To simulate 
weak faults, the selected superposition coefficients are (0.12, 
0.15) and the SNR is 0.3 dB. The formula for the calculation 
of SNR is as follows:

SNR = 10 lg(PS/PN) (20)

where PS is the effective power of the signal and PN is the 
effective power of the noise.

Therefore, a mixed signal with weak faults is simulated. 
The time-domain waveform of x is shown in figure 2 and the 
amplitude spectra of x obtained by FFT is shown in figure 3.

None of the periodic amplitude can be seen in the time-
domain from figure  2. In figure  3, signal energy is almost 
evenly distributed from low frequency to high frequency in 
the frequency domain, which shows that the fault features are 
completely obscured in noise.

The performance of wavelets, EMD, EEMD+BSS and the 
proposed method are compared as follows.

4.1. Wavelets

In this method, first the mixed signal x is decomposed by 
four-layer wavelet decomposition, and then the amplitude 
spectra of the decomposed signals can be obtained by a FFT. 
The result is shown in figure  4. In figure  4(c), a frequency 
of 64.45 Hz is extracted, but the error between it and 2fr  is 
very large. However, the feature of the imbalance fault is not 
extracted. Therefore, wavelets cannot fully extract the features 
of the weak fault of a rotating shaft.

4.2. VMD

In this method, first the mixed signal x is decomposed by 
VMD, and then the amplitude spectra of each component 
signal can be obtained by a FFT. The result is shown in 

Figure 1. The summarized procedure of the proposed method.

Figure 2. The time-domain waveform of x.

Figure 3. The amplitude spectra of x.

Meas. Sci. Technol. 29 (2018) 125901
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figure 5. A frequency of 66.41 Hz and a frequency of 33.2 Hz 
can be seen in figure 5(a), but the two fault signals are still in a 
mixed state. Furthermore, the noise energy is very high.

4.3. EEMD+BSS

In this method, first the mixed signal x is decomposed by 
EEMD and each intrinsic mode function (IMF) can be 
obtained. Then, the number of fault signals can be estimated 
by SVD. Finally, the fault signals can be separated by the 
FastICA BSS.

According to the ratios of neighboring singular value in 
descending order, the number of fault signals is 2. IMFs with 
high correlation coefficient were selected to reconstruct the 
new observed signal. The amplitude spectra of the separated 
fault signals by FastICA is shown in figure 6.

A frequency of 66.41 Hz can be seen in figures 6(a) and 
(b); it is very close to 2fr . A frequency of 33.2 Hz can be seen 
in figure 6(b), which is very close to fr . However, the ampl-
itude of other frequencies is also high, and some frequencies 
can even affect the result of feature extraction. Therefore, the 
features of the misalignment fault and imbalance fault remain 
unclear.

4.4. The proposed method

In this method, the first step is to construct a Hankel matrix 
of the one-dimensional mixed signal x, and the component 
signals P1, P2, . . . , PN  can be obtained. Through SVD, it is 
estimated that the number of fault signals is 2. Finally, the 
reconstructed signal (P′

1, P′
2) can be separated by the FastICA 

BSS. The amplitude spectra of the separated fault signals is 
shown in figure 7.

In figure 7(a), a frequency of 67.38 Hz, which is very close 
to 2fr  is clearly extracted. In figure 7(b), a frequency of 33.2 
Hz is obvious. In figure 7, the misalignment fault and imbal-
ance fault can be clearly identified.

Compared with the other three methods, the proposed 
method has a significantly better performance for fault feature 
extraction of a rotating shaft. The feature of fault frequency 
is more obvious and noise energy is clearly reduced, which 
is significant for fault diagnosis. The simulation analysis 
proves that the proposed method can estimate the number 
of fault signals and is efficient at extracting the features of a 

Figure 4. The amplitude spectra of the decomposed signals after 
wavelets. (a) The fourth layer of the low-frequency component. (b) 
The fourth layer of the high-frequency component. (c) The third 
layer of the high-frequency component. (d) The second layer of the 
high-frequency component.

Figure 5. The amplitude spectra of each component signal after 
VMD. (a) Component signal 1. (b) Component signal 2. (c) 
Component signal 3. (d) Component signal 4.

Figure 6. The amplitude spectra of the separated fault signals based 
on EEMD+BSS. (a) The first separated signal. (b) The second 
separated signal.

Figure 7. The amplitude spectra of the separated fault signals based 
on the proposed method. (a) The first separated signal. (b) The 
second separated signal.

Figure 8. Schematic diagram of the whole test system.

Meas. Sci. Technol. 29 (2018) 125901
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single-channel signal of a rotating shaft with mixed misalign-
ment fault and imbalance fault.

5. Experimental verification

In order to verify the practical application of the proposed 
method, it is applied in an experiment to extract the features 
of a rotating shaft with three mixed faults. A schematic dia-
gram of the whole test system is presented in figure 8, and the 
test-bed and signal acquisition system is shown in figure 9. 
The test system includes a test-bed, speed controller, dynamic 
signal acquisition instrument, computer and analysis soft-
ware. The eddy current displacement sensor sends the radial 
vibration signal of the rotating shaft into the dynamic signal 
acquisition instrument, and then converts the analog signal to 
a dgital signal. Finally, the digital signal will be uploaded to 
analysis software installed on the computer to realize various 
functions required by the user.

In the experiment, an artificial misalignment fault, imbal-
ance fault and rub-impact fault are created. Only one eddy 
current displacement sensor is used to collect the mixed 
vibration signal of the rotating shaft. The sensor position is 
shown in figure 10. The sampling frequency is 1000 Hz and 
the number of sampling points is 5000. The motor speed is 
2000 rpm, that is, the rotation frequency fr=33.3Hz. The fea-
ture of rub-impact fault emerges as 1/n of fr , where n is equal 
to 2, 3 or 4.

The time-domain waveform and amplitude spectra of the 
healthy signal and the fault signal are shown in figure 11.

In figure 11, the amplitude of fr  and 2fr  of the fault signal 
are much higher than that of the healthy signal. Therefore, it 
can be confirmed that there is a fault in the rotating shaft. In 
order to simulate weak faults, white Gaussian noise is added 
to the collected signal; the SNR is 0.3 dB. The time-domain 
waveform and amplitude spectra of the fault signal after 
adding noise are shown in figure 12.

In figure  12(b), the fault frequencies cannot be clearly 
identified. In the proposed method, a Hankel matrix is first 
constructed for the collected signal. Then, the number of fault 
signals can be estimated by SVD. The ratios of neighboring 
singular values are shown in table 1.

As can be seen from the data in table  1, the maximum 
NSVR occurs when the number of fault signals is 3.

Finally, the component signals P′
1, P′

2, P′
3 are selected 

to reconstruct a new observation signal, and then the fault 

Figure 9. The faulty shaft test-bed and signal acquisition system.

Figure 10. The position of the eddy current displacement sensor.

Figure 11. The time-domain waveform and amplitude spectra of 
the healthy signal and fault signal. (a) The time-domain waveform 
of the fault signal. (b) The amplitude spectra of the fault signal. (c) 
The time-domain waveform of the healthy signal. (d) The amplitude 
spectra of the healthy signal.

Figure 12. The time-domain waveform and amplitude spectra of 
the fault signal after adding noise. (a) The time-domain waveform. 
(b) The amplitude spectra.

Table 1. The ratios of neighboring singular values.

Sources number NSVR

1 3.138
2 2.270
3 14.055
4 4.217
5 2.006
6 1.298

Meas. Sci. Technol. 29 (2018) 125901
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signals can be separated by the FastICA BSS algorithm. The 
amplitude spectra of the separated fault signals are shown in 
figure 13.

A frequency of 16.6 Hz, which is 1/2 of fr , can be found in 
both figures 13(a) and (c), and can be considered as the feature 
of the rub-impact fault. In figure 13(a), a frequency of 66.65 
Hz is the main frequency, which is the feature of the misalign-
ment fault. In figure  13(b), a frequency of 33.33 Hz is the 
main frequency, which is the feature of the imbalance fault. 
The features of all three faults are easily signified. This dem-
onstrates that the proposed method has a good performance in 
fault feature extraction of a rotating shaft in the case of mixed 
misalignment, imbalance and rub-impact faults.

6. Conclusion

This paper has proposed a method to extract the weak fault 
features of a rotating shaft, and fault features of a single-
channel vibration signal can be clearly extracted. Compared 
with wavelets, VMD and EEMD+BSS, analysis of a simu-
lated signal shows that the proposed method makes the fault 
frequency sharper and more visible. The noise energy is obvi-
ously reduced in the amplitude spectra, which improves the 
efficiency of fault feature extraction. Furthermore, the experi-
ment demonstrates the effectiveness of this method.

Finally, the proposed method is worth being evaluated by 
real faults in large industrial equipment. The effectiveness of 
this method needs to be verified under non-linear conditions 
in future research.
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