Taylor & Francis
Taylor & Francis Group

APPLIED ~
Al Applied Artificial Intelligence

An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Conflict Detection among Multiple Norms in Multi-
Agent Systems

Eduardo Augusto Silvestre & Viviane Torres da Silva

To cite this article: Eduardo Augusto Silvestre & Viviane Torres da Silva (2018) Conflict
Detection among Multiple Norms in Multi-Agent Systems, Applied Artificial Intelligence, 32:4,
388-418, DOI: 10.1080/08839514.2018.1481591

To link to this article: https://doi.org/10.1080/08839514.2018.1481591

% Published online: 04 Jun 2018.

N\
[:J/ Submit your article to this journal &

||I| Article views: 212

A
& View related articles &'

prn

() view Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uaai20

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2018.1481591
https://doi.org/10.1080/08839514.2018.1481591
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2018.1481591
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2018.1481591
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1481591&domain=pdf&date_stamp=2018-06-04
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1481591&domain=pdf&date_stamp=2018-06-04

APPLIED ARTIFICIAL INTELLIGENCE Tavior &F .
2018, VOL. 32, NO. 4, 388-418 e aylor rancis

https://doi.org/10.1080/08839514.2018.1481591 Taylor & Francis Group

W) Check for updates ‘

Conflict Detection among Multiple Norms in Multi-Agent
Systems

Eduardo Augusto Silvestre® and Viviane Torres da Silva®

3nstitute of Computing, UFF (Universidade Federal Fluminsene), Niterdi, Brazil; "IBM Research
(on leave from UFF), Rio de Janeiro, Brazil

ABSTRACT

In open multi-agent systems (MAS), norms are being used
to regulate the behavior of the autonomous, heteroge-
neous and independently designed agents. One of the
main challenges on developing normative systems is that
norms may be in conflict with each other. Norms are in
conflict when the fulfillment of one norm violates the other
and vice-versa. In previous works, the conflict checkers
consider that conflicts can be detected by simply analyzing
pairs of norms. However, there may be conflicts that can
only be detected when we analyze several norms together.
This work presents a conflict checker capable to detect
conflicts between two or more norms at the same time. A
new, more expressive normative language, represented by
a BNF grammar, was developed to define norms and
Conflict Checker was implemented in tool format. Two
validation principles were applied: software testing and
formal verification. The strategy thus developed emerges
as a new syntax for definition and verification of conflicts in
MAS.

Introduction

Multi-agent systems (MAS) have been gaining great importance in the develop-
ment of various applications. MAS are autonomous and heterogeneous societies,
which can work to achieve common or different goals (Wooldridge 2009).

In order to deal with the autonomy and diversity of interests among different
members, the behavior of agents is governed by a set of norms specified to
regulate their actions (da Silva 2008). The norms govern the behavior of agents
by defining obligations (stating the actions that the agents must perform),
prohibitions (stating the actions that the agents must not perform) or permis-
sions (stating the actions that the agents can perform). In a MAS having different
goals, an important issue to tackle is that norms can be in conflict with each
other. A conflict occurs when norms regulating the same behavior have been
activated and are inconsistent (Vasconcelos, Kollingbaum, and Norman 2009).

CONTACT Eduardo Augusto Silvestre) eduardosilvestre@iftm.edu.br @) Institute of Computing, UFF
(Universidade Federal Fluminsene), Niterdi, Brazil.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uaai.
© 2018 Taylor & Francis

http://www.tandfonline.com/uaai
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2018.1481591&domain=pdf&date_stamp=2018-08-10

APPLIED ARTIFICIAL INTELLIGENCE ’ 389

In such cases, the agent is unable to fulfill all the activated norms. The detection
and resolution of conflicts are two of the most challenging area.

Although there are several works that deal with normative conflicts for
example (Cholvy and Cuppens 1995), (Elhag, Breuker, and Brouwer 1999),
(Kollingbaum et al. 2007), (Vasconcelos, Kollingbaum, and Norman 2009) and
(da Silva and Zahn 2013), to the best of our knowledge, all these approaches
check for conflicts by analyzing the norms in pairs. However, there are conflicts
that can only be detected when we consider several norms together.

For instance, let us consider a conflict that can only be detected if norms N1, N2
and N3 are analyzed together. N1 obliges agent A to dress a red shirt. N2 forbids
agent A to dress red pants. N3 obliges agent A to dress pants and a shirt of the same
color. There are no conflicts between the pairs N1-N2, N2-N3 and N1-N3, but
when the three norms are analyzed together, we can figure out the conflict.

To detect these conflicts it is necessary to generate all possible combinations of
norms. This is a NP-complete problem (Shoham and Tennenholtz 1995) (Morales
et al. 2014). The first challenge of our approach was to deal with this problem. In
order to overcome such an issue, we have defined several filters to divide the norms
in subsets. Norms that are not in the same subset are not in conflicts. The conflicts
must be checked only among norms of the same subset.

The second challenge of the approach was to be able to check for conflicts
among norms having potentially different deontic concepts, i.e. be able to
check for conflicts among several obligations, permissions and prohibitions.
This problem was solved by applying deontic transformations (von Wright
1951) with the goal to normalize the deontic concepts of the norms. All
norms were transformed to permissions.

Our third challenge was to check for the direct conflicts between the
normalized norms of the same subset. The solution for this problem was to
find out a paticular situation where all actions being regulated by the
permission could be executed. If such a situation existed, there would be
no conflict between the norms.

The remainder of this paper is organized as follows. Section 2 presents
the background material about the definition of norms. Section 3 describes
the multiple norm conflict checker by detailing the approaches to solve our
three challenges. Section 4 presents details about the implementation of
MuNoCC tool. Section 5 describes the approach used for validation.
Section 6 analyzes some of the main works related to this research. Finally,
Section 7 states some conclusions and future work.

Norms

Norms have been vastly used in open MAS to cope with the heterogeneity,
autonomy and diversity of interests among the different members. Norms

390 e E. A. SILVESTRE AND V. T. DA SILVA

describe the behavior that can be performed, that must be performed and
that cannot be performed.

Our norm definition is based on (da Silva et al. 2011). In (da Silva et al.
2011), the authors analyze the key strategies found in the literature for
describing a norm. According to (da Silva et al. 2011), a norm prohibits,
permits or obliges an entity to execute an action in a given context during a
certain period of time. The difference between our norm definition and the
one presented in (da Silva et al. 2011) is the representation of the action
being regulated. In (da Silva et al. 2011), the action is represented by a single
constant (e.g. pursue, reach ...). Our representation is more expressive.
Furthermore, we consider only action for the behavior; we are not consider-
ing states. From now, it will only be used the term action.

For our definition of norm, consider the following definitions for sets:
Nrm is the set of all norms, C is the set of all contexts, E is the set of all
entities, A is the set of all actions, Cd is the set of all activations and
deactivations condition, O is the set of all organizations, Env is the set of
all environments, Ag is the set of all agents and R is the set of all roles.

A norm n € Nrm is a tuple of the form:

(deoC, ¢, e, a, ac, dc)

where deoC is a deontic concept from the set {O, F, P}, respectively, obliged,
tforbidden and permitted; ¢ € C is the context where the norm is defined; e €
E is the entity whose action is being regulated; a € A is the action being
regulated; ac € Cd indicates the condition that activates the norm and dc
Cd is the condition that deactivates the norm.

Every norm is defined in the scope of a context. The entity, whose action is
being regulated, must fulfill the norm when executing in the context where
the norm is being defined. In this paper, we consider that a norm can be
defined in the context of an organization o € O or of an environment env
Env. The set of possible contexts is defined as C = O U Env. A norm regulates
the action of an agent a € Ag, an organization (or group of agents) o€ O or a
role r € R. Agents, organizations and roles are entities of the set E = AgUR
u 0.

The activation and deactivation conditions, ac € Cd and dc € Cd, can state
an event that can be a date, the execution of an action, the fulfillment of a
norm, etc. In this paper, we will focus on the specification of dates because it
is easier to figure out which event has occurred first. Thus, we use simple
mathematic symbols for example < and > to indicate that an event occurs
before or after another (Vn € N, ac < dc¢).

An action is defined by the name of the action and, optionally, an object
where the action will be executed and a list of attributes (with their values).
Thus, in this paper, we define four different ways to represent the action:

APPLIED ARTIFICIAL INTELLIGENCE ’ 391

(i) action;
(ii) action object;
(iii) action (attributel = {valuel}, attribute2 = {value2}, ...});
(iv) action object (attributel = {valuel}, attribute2 = {value2},...}).

The designer of a MAS can set any of the types of norms to represent your
domain. These different ways of defining a norm represent a great flexibility
in creating a MAS. In order to exemplify these four ways to describe an
action, let us consider the following four prohibition norms:

(i) Na forbids agent A to get dressed;

(ii) Nb forbids agent A to dress pants;
(iii) Nc forbids agent A to dress red;
(iv) Nd forbids agent A to dress red pants.

The actions described in the norms are represented as:

(i) Na: dress;
(ii) Nb: dress pants;
(iii) Nc: dress (color = {red});
(iv) Nd: dress pants (color = {red}).

<norm>:: = ‘<’<deontic_concept>’," <action>’," <context>', <entity>'," <activation_date>',
<deactivation_date>">"

<deontic_concept>:: = ‘OBLIGED’ | ‘FORBIDDEN’ | ‘PERMITTED’

<context>: = ‘ORGANIZATION’ | ‘ENVIRONMENT

<entity>:: = ‘AGENT’ | ‘ROLE’ | ‘ORGANIZATION’ | ‘ALL’

<action>:: = < action_name> | <action_name> <information_of_the_action>
<information_of_the_action>: = < object> | ‘(‘<attributes_and_values>")’ | <object>
‘(‘<attributes_and_values>)’

<attributes_and_values>:: = < attribute>’ = {'<values>"}’ | <attribute>’ = {'<values>'},’
<attributes_and_values>

<values>: = < value> | <value>'/<values>

<action_name>:: = ldentifier

<object>:: = Identifier

<attribute>:: = Identifier

<value>:: = |dentifier

<activation_date>:: = < date>

<deactivation_date>:: = < date>

<date>: = < month> <year>

2 = Numbers /'

<month>:: = Numbers '/

<year>: = Numbers

Numbers = {Number}+

Identifier = {Letter}+

392 e E. A. SILVESTRE AND V. T. DA SILVA

We present our normative language described as a BNF grammar with the
aim to formally describe the norm. The grammar is represented in the syntax
of GOLD Parser Builder (Builder 2015).

The grammar represents all data that may exist in the norm (according to the
presented syntax). The grammar is able to represent the four types of norms
defined by the language. All norms start from a definition of the norm
(<norm>) and from this definition, it is possible to fill the data of the norm.
The deontic concept (<deontic_concept>), the context (<context>) and the
entity (<entity>) are generated from constants. The activation condition (<acti-
vation_date>) and deactivation condition (<deactivation_date>) are generated
from dates. The action (<action>) is the part of the norm with greater complex-
ity. It is always formed by a name (<action_name) and can also be composed of
other elements like objects (<object>), attributes (<attribute>) and values
(<value>). Recursion is used for creating norms of more expressiveness.

Conflict checker

The main goal of this section is to present the approach through which one
can detect direct conflicts among multiple norms. This section is divided in
tive subsections. Section 3.1 focuses (a) on identifying the type of norms,
which must be considered when checking for conflicts among multiple
norms and the ones, which must only be considered when analyzing the
norms in pairs, and (b) on stating the types of norms, which can be
compared when checking for conflicts. Section 3.2 focuses on presenting
the strategies used while checking for conflicts among multiple norms; in
3.2.1, we present the strategy to separate the norms in sets in order to reduce
the complexity of the conflict checker; in 3.2.2, the approach that transforms
all norms into permissions and in 3.2.3, we check if the norms “intersect”, its
if there is a situation where all actions being regulated by the permission can
be executed. Section 3.3 presents an application of the strategy over an
example. Section 3.4 presents the main algorithms used on checking for
conflicts. Section 3.5 presents some considerations about the complexity of
the conflict checker.

Combination of norms

The four different ways to represent the actions that were described in
Section 2 generate the four types of norms (from (i) to (iv)) being considered
in this section. Not all types can be considered together when checking for
conflicts among multiple norms, as follows:

e Norms of TYPE (i) do only describe the actions being regulated (with-
out mentioning attributes and objects); thus, it must be analyzed

APPLIED ARTIFICIAL INTELLIGENCE ’ 393

together with norms of any type. For instance, let us consider Na, where
agent A is forbidden to dress. Such a norm will conflict with any other
norm that obliges the agent to dress, independently of attributes and
objects.

e Norms of TYPE (ii) must be analyzed together with norms of TYPE (ii)
and TYPE (iv) (besides TYPE (i)), since norms of these types also specify
an object. For instance, let us consider Nb, where an agent A is for-
bidden to dress pants. Such a norm conflicts with an obligation to dress
pants (example of TYPE (ii)) and conflicts with an obligation to dress
red pants (example of TYPE (iv)). However, such a norm, Nb, does not
conflict with an obligation to dress red clothes (example of TYPE (iii)),
because the obligation does not mention the object pants.

e Norms of TYPE (iii) must be analyzed together with norms of TYPEs
(iii) and TYPE (iv) (besides TYPE (i)), because norms of these types do
also describe attributes. For instance, let us consider Nc, which prohibits
agent A to dress red clothes. Such a norm conflicts with an obligation to
dress red clothes (example of TYPE (iii)) and conflicts with an obliga-
tion to dress red pants (example of TYPE (iv)). However, such a norm,
Nc, does not conflict with an obligation to dress pants (example of
TYPE (ii)).

e Norms of TYPE (iv) use a complete representation of the norm (an
action applied over a object with some attributes and values); thus, it
must be analyzed together with norms of any type when checking for
conflicts. For instance, let us consider Nd where an agent A is forbidden
to dress red pants. Such a norm conflicts with an obligation do dress red
pants (example of TYPE (iv)).

From the set of four types of norms, only norms of TYPE (iv) must be
considered when checking for direct conflicts among multiple norms because
the structure of the actions used by this type of norms makes possible the
identification of objects and their attributes. In order to find conflicts among
multiple norms, it is necessary to find similarities among the objects of the
norms. Norms N1, N2 and N3 (described in Section 1) exemplify this
scenario. N3 obliges agent A to dress pants and a shirt of the same color.
Notice that the action is applied over two different objects: pants and a shirt.
Thus, it is necessary to have two more norms for analyzing the conflict: a
norm that states the possible colors of pants and a norm that states the
possible colors of shirts. The relationship among the objects identified in the
actions is necessary for the existence of a conflict among multiple norms.

394 (&) E.A. SILVESTRE AND V. T. DA SILVA

Applied strategy

In this section, we will focus on presenting the part of the conflict checker
that is dedicated to detect conflicts among multiple norms, because it is the
main goal of this paper. Therefore, the norms being considered in this
section are norms of TYPE (iv). Although the focus is only norms of TYPE
(iv), the conflict checker developed (Section 3.4) captures all types of conflicts
defined in Section 3.1. The conflict-checker algorithm is divided in the
following three steps.

Step 1: Applying filters

The first step is responsible for filtering the norms by including them into
sets of similar norms. In order to do so, such a step uses three filters. The first
filter separates into sets the norms that apply in the same context, the second
filter separates into subsets the norms that govern the same entity and the
third filter separates into subsets the ones that regulate the same action.
Figure 1 illustrates the sets created by applying the three filters.

After applying all filters, only the norms stored in the same set are the ones
that may be in conflict. Norms stored in different sets apply in different
contexts, govern different entities and regulate different actions; thus, they do
not conflict with one another. In Section 3.5, we explain in detail why the
complex of the algorithm that checks for conflicts depends on the filtering
strategy.

1% filter

Norms
in
context

Norms Norms
governing governing governing
e2 el

Norms Norms
regulating regulating regulating
al a2 ak

Figure 1. Sets created by the application of the filters.

APPLIED ARTIFICIAL INTELLIGENCE ’ 395

Step 2: Transforming norms into permissions

The second step of the algorithm is carried out to solve the problem of
analyzing several norms with different deontic concepts at the same time.
Our strategy to overcome such a problem is to use a single deontic concept to
analyze the norms. A copy of the original norms (that are not permissions)
with all its deontic concepts transformed to permissions is created. Note that
we do not change the original norms, but the copies of such norms.

(1) Op & =P-p (2) Fp < =Pp

Several approaches studied the deontic transformations. Some approaches
use the O operator as primitive (McNamara 2014) while others use the P
operator (von Wright 1951). In this work, we use the P operator as primitive
and apply the following abbreviations to transform an obligation to a permis-
sion (case (1)) and a prohibition to a permission (case (2)):

(a) From obligation to permission

The authors in (von Wright 1951) proposed the weak axiom Op->Pp
that indicates that when p is obliged, p is permitted. Following such an
axiom and assuming that the designer wants to enable agent A to
execute p, we consider that if there is a norm obliging an agent A to
execute an action p, such a norm can be used as a permission to execute
action p. Thus, in this step of the algorithm, all obligations are used as
permissions.

(b) From prohibition to permission

In this paper, we are using the Closure Principle which says that what is not
explicitly forbidden is permitted (Trypuz 2013) (Czelakowski 2015). Therefore,
if there is not a prohibition addressed to an agent to execute an action over an
object, the agent is permitted to execute such an action over the object.

Following this principal, we consider that if there is a norm prohibiting
an agent A to execute an action p, such a norm states that A is not
permitted to execute p. We assume that it is not necessary to create
permissions related to everything that is not said in the prohibition.
Thus, in this step of the algorithm, all prohibitions are used as negations
of permissions.

Step 3: Checking if norms intersect
The checking for conflicts is executed in the third step of the algorithm.
The algorithm checks if the norms in each set are in conflict. Since all

396 e E. A. SILVESTRE AND V. T. DA SILVA

norms are permissions, the analysis made by the conflict checker is very
simple; it checks if the norms “intersect”. Two or more norms intersect if
there is at least one possible situation where all the permissions are
activated and can be fulfilled. In such a case, the norms are not in conflict
because there is a situation where the agent is able to fulfill all the original
norms.

The conflict checker starts by checking the norms in a set by pairs of
norms and then considers all possible sets of k-norms until k be equal to the
number of norms in the set. At the end, the algorithm has checked for
conflicts among all the norms of the set at the same time.

Running example

In order to exemplify our approach, let us consider the three norms
described in Section 1. We have augmented these norms by including the
context where the norms are executed and the periods during while the
norms are activated.

N1: Obliges agent A in orgO to dress a red shirt in 03/01/2015.

N2: Forbids agent A in orgO to dress red pants from 01/01/2015 until
12/31/2015.

N3: Obliges agent A in orgO to dress pants and a shirt of the same color
after 02/01/2015.

Norm N3 applies to two objects. It is natural to imagine (without loss
of information) that this norm can be divided into two norms: one on
pants and one on the shirt (strategy to facilitate visualization and
checking for conflicts). As the colors of the pants and the shirt are
indifferent, but must be the same color, a variable is used (for conve-
nience, X) and this variable must have the same value for pants and the
shirt. We get:

N1: (O, orgO, agentA, dress a shirt (color = {red}), 03/01/2015, 03/01/2015)
N2: (F, orgO, agentA, dress pants (color = {red}), 01/01/2015, 12/31/2015)
N3a: (O, orgO, agentA, dress pants (color = {X}), 02/01/2015, _)

N3b: (O, orgO, agent A, dress a shirt (color = {X}), 02/01/2015, _)

In the first step, the algorithm groups all norms in the same set because
they are applied in the same context (orgO), govern action of the same entity
(agentA) and regulate the same action (to dress). Figure 1 illustrates the set
that includes all these norms, where cl1 = orgO, el = agent A and al = to
dress.

In the second step, the algorithm transforms the norms to permissions.
Remembering that this transformation is not made in the original norms. Let
us take a look to norm N2 that prohibits agent A to dress red pants. N2 does

APPLIED ARTIFICIAL INTELLIGENCE ’ 397

not say anything about agent A to dress shirts (of any color), to dress white
or black pants or execute the action of writing papers. In short, the prohibi-
tion is just about to dress red pants.

In order to transform a prohibition into a permission, we assume that it is
not necessary to create permissions related to everything that is not said in
the prohibition (since it is already done by applying the Closure Principle).
In addition, any permission that talks about actions and objects that are not
the ones refereed in the prohibition are not relevant to the checking of
conflicts between the prohibition and any other norm. Therefore, a prohibi-
tion like N2 is transformed to a permission that only talks about the agent,
action, object and attributes described in the norm. N2 is transformed to a
norm that permits agent A to dress pants NOT red.

Returning to our example, the transformation of norms N1, N3a and N3b
into permissions is very simple since they are obligations, as follows:

N1: (P, orgO, agentA, dress a shirt (color = {red}), 03/01/2015, 03/01/2015)

N3a: (P, orgO, agentA, dress pants (color = {X}), 02/01/2015, _)

N3b: (P, orgO, agent A, dress a shirt (color = {X}), 02/01/2015, _)

The transformation of N2, which is a prohibition, to a permission is done
by negating the color of the pants, i.e. the color of the pants is changed to its
complement.

N2: (P, orgO, agentA, dress pants (color = {NOT red}), 01/01/2015, 12/31/2015)

In the third step, the checking for conflicts is executed. In our example of N1,
N2 and N3, it is easy to see that any group of two norms is not in conflict.
Therefore, it is possible to find out situations where all norms can be fulfilled. The
conflict only takes place when we consider the three norms together. In 03/01/

+ y=color of pant
N1

1A
%

red

x=color of shirt

Figure 2. Graph representing the normative conflict.

398 e E. A. SILVESTRE AND V. T. DA SILVA

2015, when the three norms are activated, agentA executing in orgO is permitted
to dress a red shirt, a not red pants and a pants and a shirt of the same color.

Figure 2 shows a diagram indicating that there is not an intersection among the
norms. The rows represent the colors of pants and the columns represent the
colors of shirts. A continuous line (N1 and N3) indicates that there is a permission
only in situations, which coincide with the line. A dashed line (N2) indicates that
there is not a permission in situations, which coincide with the line. For instance,
N1 indicates that there is a permission to dress a red shirt and N3 indicates that
there is a permission to dress pants and shirts of same color. Already, N2, a dashed
line, indicates that there is not a permission to dress red pants. Figure 2 shows that
the three norms do not intersect (represented by a circle). At the only point where
norms could intercept, the N2 norm is not permitted.

Algorithms

We now present the main algorithms used. The algorithms were implemented in
Java and are available at http://goo.gl/JTh9CV4. The implementation allows creating
norms of TYPE (i), TYPE (ii), TYPE (iii) and TYPE (iv), by following the
specifications in Section 2. The program is able to detect direct conflicts using
any combination of four types of norms. In the following paragraphs, we will
present the algorithms that conducted the strategy of the conflict checker.

Algorithm 1 receives a set of norms and calls four other algorithms: to classify
the norms in sets (Algorithm 2), convert the norms to permissions (Algorithm 4),
check for conflicts among norm with the same type (Algorithm 5) and check for
conflicts among norm with the different types (Algorithm 12). The algorithm
returns the set of norms in conflict.

Algorithm 1 Function: conflictChecker

Require: norms: list of norms
function conflictChecker (norms)
1NormsSets « classifyNormsInSets (norms)
lPermittedNorms ~ convertNormsToPermissions (norms)
1Conflicts « checkForConflictsEqualTypes (1NormsSets, lPermittedNorms)
1ConflictsDiff « checkForConflictsDiffTypes (1NormsSets)
add “1ConflictsDiff” to list “1Conflicts"
return l1lConflicts
endfunction

Algorithm 1. Main function of the analysis of conflicts.

Algorithms 2 and 3 classify the norms in sets of related norms. Since all
norms in a set are similar, i.e. they apply in the same context, govern the
same agent and the same action, each new norm is compared with only one
of the norms in the set. If the new norm is similar to the norms in the set, the
new norm is included in the set. If the new norm is not similar to the norms
in the already created sets, a new set is created to store the new norm.

http://goo.gl/Jh9CV4

APPLIED ARTIFICIAL INTELLIGENCE ’ 399

Algorithm 2 Function: classifyNormsInSets

Require: norms: list of norms
function classifyNormsInSets (norms)
1NormsSets « new list of list of norms
for i « 1 until size (norms) do
included ~ false
norm « norms[i]
if (not 1NormsSets.empty) then
for §j — 1 until size (1NormsSets) do
tempSet ~ 1NormsSets[]]
if (normsAreEquivalent (tempSet[1l], norm)) then
add “norm” to list “tempSet”
1NormsSets[j] « tempSet
included « true
endif
endfor
endif
if (not included) then
tempSet < new list of norms
add “norm” to list “tempSet”
1NormsSets[size (1NormsSets)+1] — tempSet
endif
endfor
return 1NormsSets
endfunction

Algorithm 2: Insert, group and classify the norms.

Algorithm 3 Function: normsAreEquivalent

Require: norml: a norm, nom2: a norm
function normsAreEquivalent (norml, norm?2)
if (not contextChecker (norml, norm2)) then
return false
endif
if (not entityChecker (norml, norm2)) then
return false
endif
if (not actionChecker (norml, norm2)) then
return false
endif
return true
endfunction

Algorithm 3: Analysis of the equivalence between the two norms.

Algorithm 4 is responsible to convert the norms to permissions. In order
to transform an obligation to a permission, it is only necessary to rewrite its
deontic concept to permission. In order to transform a prohibition to a
permission, it is necessary not only to rewrite the deontic concept to

400 (&) E.A.SILVESTRE AND V. T. DA SILVA

permission, but also to invert the values of the attributes, as explained in
Section 3.2.2.

Algorithm 4 Function: convertNormsToPermissions

Require: norms: list of norms
function convertNormsToPermissions (norms)
for i « 1 until size (norms) do
if (norms[i].deonC == “OBLIGATION”) then
norms[i] .deonC « “PERMISSION”
elseif (norms[i].deonC == “PROHIBITION")
then
norms[i] .deonticConcept ~ “PERMISSION”
newAction « norms[i].action
newAction
invertAttributesValues (newAction)
norms[i] .action « newAction
endif
endfor
return norms
endfunction

Algorithm 4: Convert the norms for norms permitted.

Algorithm 5 receives a set of grouped norms and norms converted to
permissions. The main responsibility of this algorithm is to send the norms
to check conflicts.

Algorithm 5 Function: checkForConflictsEqualTypes
Require: 1NormsSets: list of norms grouped, lPermittedNorms: list of permitted norms
function checkForConflictsEqualTypes (1NormsSets, lPermittedNorms)
1Conflicts « new list of list of norms
for i « 1 until size (1NormsSets) do
groupOfNorms « 1NormsSets[i]
if (size(groupOfNorms) < 2) then
continue
endif
normsRet « verifyConflictsAmongEqualTypes (normsNtoN, lPermittedNorms)
add “normsRet” to list “1Conflicts”
endfor
return I1Conflicts
endfunction

Algorithm 5: Function that checks the conflicts.

Algorithm 6 receives a set of two or more norms at a time and its
main functions: classify and distribute. The norms are classified in
groups of norms, which have the same type and sent to algorithms.

APPLIED ARTIFICIAL INTELLIGENCE . 401

There is an alogorithm for detecting conflicts for each type of norm, i.e.
one for TYPE (i), one for TYPE (ii), one for TYPE (iii) and one for
TYPE (iv).

Algorithm 6 Function: verifyConflictsAmongEqualTypes

Require: normsNtoN: combination of norms, lPermittedNorms: list of permitted norms
function verifyConflictsAmongEqualTypes (normsNtoN, lPermittedNorms)
1Conflicts « new list of list of norms
//creates a structure that classifies the norms by type
map « classifyNorms (normsNtoN)
typel — map[“TYPE1”] //gets all norms of type 1
if (size(typel) > 1) then
normsRet « verifyConflictsTypel (typel)
add “normsRet” to list “1lConflicts”
endif
type2 « map[“TYPE2”] //gets all norms of type 2
if (size(type2) > 1) then
normsRet « verifyConflictsType2 (type2)
add “normsRet” to list “1lConflicts”
endif
type3 —~ map.get[“TYPE3”] //gets all norms of type 3
if (size(type3) > 1) then
normsRet « verifyConflictsType3 (type3
add “normsRet” to list “1Conflicts”
endif
typed — map[“TYPE4”] //gets all norms of type 4
if (size(type4) > 1) then
for i «~ 2 until size(type4) do
normsNtoN « genAllCombinations (typed, 1)
for j — 2 until size (normsNtoN) do
normsRet « verifyConflictsTyped (normsNtoN[j], lPermittedNorms)
add “normsRet” to list “1lConflicts”
endfor
endfor
endif
return 1Conflicts
endfunction

Algorithm 6: Function that verifies conflicts among norms of same type.

Algorithm 7 is called from the next algorithms to verify if the norms
can be fulfilled simultaneously, i.e. if they intersect. The algorithm
receives a set of norms and checks if there is an intersection among
all periods of activation and deactivation. This algorithm works as a
new filter because the process only proceeds to the next step if there is
a period where all norms are activated at the same time. The further
implementation of this filter takes into account their higher cost (neces-
sary to compare periods of activation and deactivation), the activation
period is analyzed for each combination of norms generated and this
filter does not apply to group of norms itself, but each combination
generated from the norms of the group.

402 (&) E.A.SILVESTRE AND V. T. DA SILVA

Algorithm 7 Function: normsIntersect

Require: norms: a list of norms
function normsIntersect (norms)
for o « 1 until size (norms) do
dlBegin « norms[o].activationDate
dlEnd « norms[o] .deactivationDate
for i —~ 1 until size(norms) do
d2Begin — norms[i].activationDate
d2End « norms[i] .deactivationDate
ret « dlBegin <= d2End && d2Begin <= dlEnd;
if (not ret) then
return false
endif
endfor
endfor
return true
endfunction

Algorithm 7: Function that checks intersection among the norms.

Algorithm 8 receives the norms of TYPE (i) of a given group; it generates all the
combinations of two norms of entry and checks the conflicts. As the norms have
the same context, entity, action and intersect, conflict only exists if the norms have
opposite deontic concept (obligation x prohibition and permission x prohibition).

Algorithm 8 Function: verifyConflictsTypel

Require: norms: list of norms of type 1
function verifyConflictsTypel (norms)
1Conflicts « new list of list of norms
normsNtoN « genAllCombinations (norms, 2)
for i « 1 until size (normsNtoN) do
norms « normsNtoN[i]
if (not normsIntersect (norms)) then
continue
endif
norml — norms([1]
norm2 — norms([2]

if (deonticConceptChecker (norml, norm2)) then
add “norms” to list “1Conflicts”
endif
endfor

return 1Conflicts

Algorithm 8: Finction that verifies conflicts among norms of TYPE (i).

Algorithm 9 receives the norms of TYPE (ii) of a given group; it generates
all the combinations of two norms of entry and checks the conflicts. As the
norms have the same context, entity, action and intersect, conflict exists if the
norms have opposite deontic concept (obligation x prohibition and permis-
sion x prohibition) and the same object.

APPLIED ARTIFICIAL INTELLIGENCE ’ 403

Algorithm 9 Function: verifyConflictsType2

Require: norml: a norm, nom2: a norm
function verifyConflictsType2 (norml, norm2)
lConflicts « new list of list of norms
normsNtoN « genAllCombinations (norms, 2)

for i — 1 until size (normsNtoN) do
norms « normsNtoN[i]
if (not normsIntersect (norms)) then
continue
endif
norml — norms[1]
norm2 « norms([2]

if (deonticConceptChecker (norml, norm2)) then
if (norml.objectName == norm2.objectName) then
add “norms” to list “1lConflicts”
endif
endif
endfor
return 1Conflicts
endfunction

Algorithm 9: Function that verifies conflicts among norms of TYPE (ii).

Algorithm 10 receives the norms of TYPE (iii) of a given group; it generates all
the combinations of two norms of entry and checks the conflicts. As the norms
have the same context, entity, action and intersect, conflict exists if the norms have
opposite deontic concept (obligation x prohibition and permission x prohibition)
and exists the same value of attribute in two norms.

Algorithm 10 Function: verifyConflictsType3

Require: norml: a norm, nom2: a norm
function verifyConflictsType3 (norms)
lConflicts « new list of list of norms
normsNtoN « genAllCombinations (norms, 2)
for i — 1 until size (normsNtoN) do
norms « normsNtoN[i]
if (not normsIntersect (norms)) then
continue
endif
norml — norms([1]
norm2 « norms/[2]
if (deonticConceptChecker (norml, norm2)) then
mapl « norms[l].action.map
map2 « norms[2].action.map
for i « 1 until size (mapl) do
keyl — mapl.key //an attribute of the norm
if (not map2.contain(keyl)) then
continue
endif
valueOfAttrl « mapl.get (keyl)
valueOfAttr2 « map2.get (keyl)
interTemp — valueOfAttrl N valueOfAttr

if (interTemp != ¢) then
add “normsNtoN[i]” to list “1lConflicts”
endif
endfor
endif
endfor
return 1Conflicts
endfunction

Algorithm 10: Function that verifies conflicts among norms of TYPE (iii).

404 (&) E.A.SILVESTRE AND V. T. DA SILVA

Algorithm 11 makes the verification of conflicts among multiple
norms. It receives the combinations of norms and norms converted to
permissions and verify if the norms can be fulfilled simultaneously, i.e. if
they intersect. In the algorithm, the mapAttr variable contains the
attributes of the norms. For each attribute, we make intersection
between the values of such an attribute in all norms of a set. If the
intersection is empty, algorithm returns the norms where such an inter-

section occurred.

Algorithm 11 Function: verifyConflictsType4

Require: normsNtoN: combination of norms, lPermittedNorms: list of permitted norms

function verifyConflictsType4 (normsNtoN, lPermittedNorms)
1Conflicts « new list of list of norms
1Conflicts « preEvaluationOfConflicts (normsNtoN)
for i « 1 until size(normsNtoN) do
norms « normsNtoN[i] //a combination from a group of norms
if (not normsIntersect (norms)) then
continue
endif
normsPerm « new list of norms
normsPerm « gets the norms in permitted from lPermittedNorms
//contains the list of all attributes of a norm (e.g., color, ..)
mapAttr « norms[1l].action.map

inter — stores the intersections of the norms, the intersection is made for each attribute

for i « 1 until size (mapAttr) do

key « mapAttr.key //an attribute of the norm

interTemp « @ //an empty set

for i « 1 until size(normsPerm) do

//gets the values of an attribute in a specific norm

valueOfAttr — normsPerm[i].action.map.get (key
interTemp « interTemp N valueOfAttr

endfor

//each attribute stores the result of its intersection among the norms
inter[key] « interTemp
endfor
for i — 1 until size (mapAttr) do
key « mapAttr.key //an attribute of the norm

//if the intersection of an attribute is empty means that exists a conflict

if (inter[key] == @)
add “norms” to list “1Conflicts” //conflicting norms
endif
endfor
return 1Conflicts
endfunction

Algorithm 11: Function that verifies conflicts among norms of TYPE (iv).

Algorithm 12 Function: checkForConflictsDiffTypes

Require: 1NormsSets: list of norms grouped
function checkForConflictsDiffTypes (1NormsSets,
1Conflicts « new list of list of norms

for i « 1 until size (1lNormsSets) do

groupOfNorms ~ 1NormsSets[i]

if (size(groupOfNorms) < 2) then
continue

endif

if (allNormsHaveSameType (groupOfNorms))
continue

endif

1PermittedNorms)

normsNtoN — genAllCombinations (groupOfNorms,
normsRet « verifyConflictsAmongDiffTypes (normsNtoN)

add “normsRet” to list “1Conflicts”
endfor
endfor
return 1Conflicts
endfunction

APPLIED ARTIFICIAL INTELLIGENCE . 405

Algorithm 12 has the same fundamentals of the Algorithm 5, but the focus
here is to prepare the norms for verification of conflicts among different types.
The group norms will only be redirected if it has at least two norms, and if
such norms have an activation period that intersects (Algorithm 7). The
algorithm generates all the combinations of two norms for this group; after
this step, this group of norms will be sent to conflict detection.

Algorithm 12: Function that checks the conflicts.

Algorithm 13 receives a group of norms, where each element of this group
contains two norms and checks if there is conflict between these two norms.
The verification of conflicts complies with the description given in Section
3.1. The algorithm checks if the two norms are of different types, and then
makes the necessary verification to examine the existence of conflicts.

Algorithm 13 Function: verifyConflictsAmongDiffTypes

Require: normsNtoN: combination of norms
function verifyConflictsAmongDiffTypes (normsNtoN)
1Conflicts « new list of list of norms
for i « 1 until size (normsNtoN) do
if (not normsIntersect (normsNtoN)) then
continue
endif
norml — normsNtoN[1]
norm2 — normsNtoN[2]
//returns the type of the norms
nlType — getBehaviorType (norml)
n2Type « getBehaviorType (norm?2)
//after this, only different types of norms

if (“™NONE” == nlType or “NONE” == n2Type or n2Type == nlType) then
continue
endif
if (“TYPE1l” == nlType or “TYPE2” == n2Type) then
continue
endif
if (not deonticConceptChecker (norml, norm2)) then
continue
endif
if (“"TYPE1l” == nlType or “TYPE2” == n2Type) then
add “normsNtoN[i]” to list “1Conflicts”
elseif (“TYPE2” == nlType or “TYPE2” == n2Type) then
if (norml.actionName == norm2.actionName) then
if (norml.objectName == norm2.objectName) then
add “normsNtoN[i]” to list “1Conflicts”
endif
endif
else

mapl « norml.action.map
map2 « norm2.action.map
for i « 1 until size (mapl) do
keyl « mapl.key //an attribute of the norm
valueOfAttrl « mapl.get (keyl)
valueOfAttr2 « map2.get (keyl)
interTemp ~ valueOfAttrl N valueOfAttr
if (interTemp != @)
add “normsNtoN[i]” to list “1lConflicts”
break
endif
endfor
endif
endfor
return 1Conflicts
endfunction

Algorithm 13: Function that verifies conflicts among norms of different types.

406 (&) E.A.SILVESTRE AND V. T. DA SILVA

Analysis of algorithms

The computational cost of the conflict checker (Algorithm 1: conflictChecher
- the main) is determined by the costs of the calls of the algorithms 2 to 13.
The call tree of the algorithms is given by:

Computational Cost Conflict Checker

(Begin: Algorithm 1)conflictChecker
(Begin: Algorithm 2)classifyNormsInSets
(Algorithm 3)normsAreEquivalent
(End: Algoritmo 2)classifyNormsInSets
(Algorithm 4)convertNormsToPermissions
(Begin: Algorithm 5)checkForConflictsEqualTypes
(Begin: Algorithm 6)verifyConflictsAmongEqualTypes
(Begin: Algorithm 8)verifyConflictsTypel
(Algorithm 7)normsIntersect
(End:Algorithm 8)verifyConflictsTypel
(Begin: Algorithm 9)verifyConflictsType?2
(Algorithm 7)normsIntersect
(End:Algorithm 9)verifyConflictsType?2
(Begin: Algorithm 10)verifyConflictsType3
(Algorithm 7)normsIntersect
(End:Algorithm 10)verifyConflictsType3
(Begin: Algorithm 1ll)verifyConflictsType4
(Algorithm 7)normsIntersect
(End:Algorithm 11)verifyConflictsType4
(End: Algorithm 7)verifyConflictsAmongEqualTypes
(End: Algorithm 5)checkForConflictsEqualTypes
(Begin: Algorithm 12)checkForConflictsDiffTypes
(Begin: Algorithm 13)verifyConflictsAmongDiffTypes
(Algorithm 7)normsIntersect
(End:Algorithm 13)verifyConflictsAmongDiffTypes
(End: Algorithm 12)checkForConflictsDiffTypes
(End: Algorithm 1)

The computation cost is expressed using the big O notation. Algorithms 3,
4, 6, 8 and 9 are linear (O(n)). Algorithms 2, 7, 10, 11, 12 and 13 are
polynomials (O(n®), where ¢ is constant). Algorithm 5 is the most expensive,
because it is exponential (0(2%)). The function genAllCombinations makes
the algorithm exponential. It was not presented here because it is a well-
known combinatorial analysis function. The time and space complexity
should be in the order of the number of combinations produced, which is
equivalent to the sum of the n-th row of the binomial coefficients in Pascal’s
triangle or the power set of a set, for example. Thus, the dominant cost of our
approach (Algorithm 5) is exponential.

The value of k (complexity of Algorithm 5) comes from the algorithm that
groups the norms in sets of similar norms, i.e. norms with the same context,
entity and action. The value of k may vary from 1 to n, where n is the
number of norms to be checked. Therefore, the best case of the algorithm

APPLIED ARTIFICIAL INTELLIGENCE ’ 407

occurs when k = 1. In this case, each set of norms stores exactly one norm,
i.e. the norms apply in different contexts and govern different entities and
actions. In such a case, the norms are not in conflict and there is not a need
to execute the third step of the mechanism.

The worst case of the algorithm occurs when of k = n, i.e. all norms are stored
in one set. It can happen if all norms apply in the same context, govern the same
entity and regulate the same action. The cost of the algorithm in the worst case is
0(2¥) = O(2"), where 1 is the number of norms. The cost of the medium case is
O(2%), where x is the number of norms in the bigger set. Such an evaluation
depends on the application domain. Although it is not possible to calculate the
medium case, we strongly believe that the use of filters can drastically reduce the
cost of the conflict checker because it is natural to find different contexts, entities
and actions in MAS. An SMA is typically defined by a set of agents playing
different actions. Therefore, in a SMA it is not reasonable to think that all norms
are applied to the same agent and regulate only one action.

MuNoCC (multiple norms conflict checker)

This section provides details of the tool called MuNoCC. The tool was developed
using the Java language and the project is available at http://goo.gl/Th9CV4. The
tool provides several types of screens. Some of the most interesting are related
the creation of all the components of the norm defined in Section 2. This way, is
possible to create visually the norms for conflict detection. Another interesting
teature, which will be addressed in depth in the next paragraphs, is the possibility
to transform norms inserted in semi-structured language to norms described
using definition presented in Section 2.

Figure 3 shows the screen where the user can import norms and check
their conflicts. It shows the norms described in Section 3.3 and the conflict
that the algorithm found. The authors created a compiler to make the process
of translating a norm in semi-structured language to Java objects.

The Lexical analysis is the first phase of the compiler. It takes the user input
written in the form of sentences and break the sentences into a series of tokens.

The Syntax analysis is the second phase of the compiler. It takes the input
from a lexical analyzer in the form of token streams. The parser analyzes the
token stream against the production rules to detect any errors in the code.

The Code generation is the final phase of compilation. It takes the result of
syntax analysis and produce java objects instances of class Norm.java. Each
line as input produces one instance.

Validation

This section presents the strategies applied for validating the process created
and the conflict checker. The main purpose of the validation section is to

http://goo.gl/Jh9CV4

408 (&) E.A.SILVESTRE AND V. T. DA SILVA

7 - o X

| Import Norms From File Insert Norms

Norms Number of Norms:

14| Code| Deontic Concept | Behavior [Entty| contet | Activation Constraint | Deactivation Constraint]

1[30|OBLIGATION __[NAME = dress - OBJECT = shirt color(red) |AGENT |ORGANIZATION |2016-01-01 2016-12-30

231 |PROHIBITION | NAME = dress - OBJECT = pant color(red) |AGENT [ORGANIZATION |2016-01-01 [201612.30

(3132 |OBLIGATION | NAME = dress - OBJECT = pant color(A) _|AGENT |ORGANIZATION |2016-01-01 [201612:30

4132 _[OBLIGATION __|NAME = dress - OBJECT = shirt color(A) _|AGENT |ORGANIZATION |2016-01-01 [2016-12:30 |

Conflicts Type | Conflicts Typell | | Conflicts Typelll | | Conflicts Type IV Al Conflicts

Conflicts Nurmber of Conflicts
Conflicted Norms I

(234 |

|

‘

\

Figure 3. Import norms, parse them and detect conflicts.

ensure that: (i) our approach is able to detect all conflicting norms (without
false positives and false negatives) (Section 5.1), (ii) the technique is compu-
tationally feasible (Section 5.1), (iii) the strategy is applicable to another
approaches (Section 5.2) and (iv) the algorithms of the conflict checker are
valid such partial and total correctness (Section 5.3).

Case studies

We have designed case studies (detailed in the source code) that execute
different tests. In the first case study, which is the simplest one, the authors
have manually defined 40 norms (nine norms of TYPE (i), nine norms of
TYPE (ii), nine norms of TYPE (iii) and 13 norms of TYPE (iv)) in a domain
of clothing. The conflict checker detected 625 conflicts (six conflicts among
norms of TYPE (i), six conflicts among norms of TYPE (ii), 10 conflicts
among norms of TYPE (iii), 510 conflicts among norms of TYPE (iv), 12
conflicts between norms of TYPE (i) and TYPE (ii), 12 conflicts between
norms of TYPE (i) and TYPE (iii), 17 conflicts between norms of TYPE
(i) and TYPE (iv), zero conflict between norms of TYPE (ii) and TYPE (iii)
(as expected), 17 conflicts between norms of TYPE (ii) and TYPE (iv) and 35
conflicts among norms of TYPE (iii) and TYPE (iv)). The program was able
to detect these conflicts without identifying false positives and forgetting false
negative conflicts. The data analysis was done manually.

In the second and third case studies, we have developed a tool to randomly
generate norms based on the four types (TYPE (i), TYPE (ii), TYPE (iii) and
TYPE (iv)). We have defined a set of contexts, entities, actions, activation/
deactivation periods, objects, attributes and values to be used by a random

APPLIED ARTIFICIAL INTELLIGENCE ’ 409

function to generate a predefined number of norms. The function generates
the norms by randomly choosing the type of the norm and its elements. This
strategy allows the creation of a large set of norms.

In the second case study, detailed in Table 1, we have created several test
cases to analyze the program’s ability to create norms and detect their
conflicts. Each test case created norms of all four types with the same
probability function. As detailed in Table 1, we have tested our approach
in six test cases. Our intention with the first three test cases, where the
random function have generated respectively 50, 100 and 500 norms, was
to show that even with 500 norms the algorithm quickly checks for conflicts.
It is also possible to notice that the time spent on checking for conflicts is
more related to the number of norms in the bigger set than to the number of
generated norms.

In the last three test cases, we have called the random function to generate
the same number of norms in each test case (1000 norms), but considering
different configurations for the elements of the norms. Our intention with
these test cases is to demonstrate that the more similar are the norms, the
bigger is the time spent to check for conflicts among them. In the fourth test
case, the bigger set stored 29 norms; what means that 29 norms have the
same context, entity and action. In such a case, it was necessary to make all
possible combinations of 29 norms (2°°) in order to find out the conflicts that
this set may have.

When we increase the number of contexts, entities and actions to be
used to generate the 1000 norms (what is the case of the last test case), the
number of similar norms decreases. Thus, the number of norms in the
bigger set decreases and, consequently, the time spent to check for conflict
decreases. These test cases confirm our hypothesis that the filters applied
in our approach really helps on improving the performance of the
algorithm.

Table 1. Comparative analysis of different test cases.

Test Cases

Number elements related to the norm 1 2 3 4 5 6

Norms generated 50 100 500 1000 1000 1000
Contexts 4 4 4 4 4 8
Entities 4 4 4 4 4 8
Actions 4 4 4 4 4 8
Activation periods 4 4 4 4 8 4
Deactivation periods 4 4 4 4 8 4
Objects 5 5 5 5 5 5
Attributes 3 3 3 3 3 3
Values per attribute 5 5 5 5 5 5
Sets of norms created after the filters 36 50 64 64 64 445
Norms in the bigger set 3 6 16 29 24 7
Conflicts detected 9 27 460 3165 2201 250
Duration (in ms) 183 217 668 8642 1966 524

410 (&) E. A.SILVESTRE AND V. T. DA SILVA

Table 2. Comparative analysis of test cases in TYPE (iv).

Number elements related to the norm Test Case 1 Test Case 2
Contexts 2 1
Entities 2 1
Actions 2 1
Activation periods 2 2
Deactivation periods 2 2
Objects 2 2
Attributes 3 3
Values per attribute 5 5
Norms generated 14 14
Sets of norms created after the filters 8 1
Norms in the bigger set 3 14
Conflicts detected 2 9588
Duration (in ms) 194 4,72,280

In the third case study, illustrated in Table 2, the function randomly
generates only norms of TYPE (iv) in order to focus on the checking of
multiple conflicts. Test Case 2 explores the worst scenario, i.e. all 14 norms
generated have the same context, entity and action and, therefore, are stored
in the same set. In this case, the time spent by the algorithm to check a small
set of 14 norms is tremendous. On the other hand, Test Case 1 explores a
more feasible scenario where a set of 14 norms is also generated, but now
considering different contexts, entities and actions. Since the bigger set only
has five norms, the time spent to check for conflicts in Test Case 1 (508 ms)
is extremely smaller than the time spent in Test Case 2 (472.280 ms). These
test cases also demonstrate the applicability of the filter we have defined.

Rescue-operation system

The main purpose of the validation section is to ensure that the technique
can be applicable in a famous scenarios found in literature. The approach was
applied in a rescue-operation scenario. The scenario described is adapted
from (Vasconcelos, Kollingbaum, and Norman 2009). A simplified non-
combatant evacuation scenario in which software agents help humans to
coordinate their activities and information sharing. In this scenario, there are
two coalition partners, viz., team A and team B, operating within the same
area, but each with independent assets. In our scenario, team A has received
information that members of a non-governmental organization (NGO) are
stranded in a hazardous location. Intelligence has confirmed that these
people must be evacuated to a safe location as soon as possible and that
the successful completion of this operation takes highest priority.

Team A is based on an aircraft carrier just off the coast and has a number
of assets at its disposal, including autonomous unmanned aerial vehicles
(AUVs), deployed with sensors to provide on-going visual intelligence for
the operation, and helicopters that can be deployed to rescue the NGO

APPLIED ARTIFICIAL INTELLIGENCE ’ 411

workers. Team B is located on land within close distance from the location of
the NGO workers. The assets available to team B include ground troops and
helicopters.

The most effective plan to complete the rescue mission is to deploy an
AUV to provide real-time visual intelligence of the area in which the NGO
workers are located, and then to dispatch the helicopter team to uplift the
NGO workers and return them to the aircraft carrier. Team A operates under
the following norms: (N1) obliged to obtain intelligence using AUV, (N2)
permitted to share intelligence and (N3) obliged helicopter to move to the
areas 6, 8 and 10. Team B operates under the following norms: (N4)
permitted helicopter to move to the areas 5, 7 and 9 and (N5) forbidden
helicopter to move to the areas 6, 13 and 15.

Let us suppose that team A discovered that the workers of NGOs are in the
area 6 and noticed that its helicopters are not sufficient. They need the help of
team B. Since, in the system, there is a norm (N6) that permits helicopters of
both teams to move to the same area, team A found that team B could help.

In the defined notation, these norms can be represented as:

N1. O obtain_intelligence_ A AUV

N2. P share_intelligence_A AUV

N3. O move helicopter_A area = {6, 8, 10}

N4. P move helicopter_B area = {5, 7, 9}

N5. F move helicopter_B area = {6, 13, 15}

N6. P move helicopter_A e helicopter_B area = X

The application of the conflict checker described in this paper identifies
conflicts not found in other approaches in the literature. There is a multiple
conflict in norms 3, 5 and 6 and another multiple conflict in norms 3, 4 and 6.
In this case, the first parameter is the deontic concept (O, F and P), the second
parameter is the action (move), the third parameter is the object (helicopter_A
and helicopter_B) and the last parameter is the attribute (area) with its possible
values. The constant “X” in norm 6 represents that any value is acceptable, but
the value should be the same for helicopter_A and helicopter_B. This example
is depicted in Figure 4.

Formal verification

Although the software testing is the primary means to establish the reliability
of software, to carry out exhaustive tests is not feasible even for small soft-
ware. This section presents the application of techniques of formal verifica-
tion to prove the correctness of the conflict checker. This research uses the
Design-by-contract (DBC) (Meyer 1997) technique to prove the correctness
of our approach. The DBC paradigm was applied using the concepts of the
Java Modeling Language (JML) [18]. The implementation of the JML used

412 (&) E. A.SILVESTRE AND V. T. DA SILVA

&) -]
‘ Import Norms From File ‘ l Insert Norms ‘ ’ Clean Tahles

Norms Number of Norms:

Id | Code | Deontic Concept Behavior Entity Context Activation Constraint| Deactivation Constr..

1 OBLIGATION |NAME=ohtain_intelligence OBJECT=null AGENT |ORGANIZATION |01/01/2016 31122016

2 |2 |PERMISSION [NAME=share_intelligence OBJECT=null AGENT |ORGANIZATION (01/01/2016 31122016

3 3 |OBLIGATION |NAME=move OBJECT=helicopterh area(8 10) |AGENT |ORGANIZATION |01/01/2016 31122016

4 |4 |PERMISSION [NAME=move OBJECT=helicopterB area(579) AGENT |ORGANIZATION |01/01/2016 3112/2016

5 |5 |PROHIBITION [NAME=move OBJECT=helicopterB area(3 15 6) AGENT |ORGANIZATION [01/01/2016 31122016

B 6 OBLIGATION |NAME=move OBJECT=helicopterA area(X) AGENT |ORGANIZATION |01/01/2016 31122016
7 |6 |OBLIGATION [NAME=move OBJECT=helicopterB area() |AGENT |ORGANIZATION |01/01/2016 31122016

‘t Conflicts Type |l ‘ l Conflicts Type Il : Conflicts Type lll J i Conflicts Type IV ‘ ’ All Conflicts |
Conflicts Number of Conflicts

Conflicted Norms
(3467)
(3567)

Figure 4. Rescue-operation conflicts.

for checking the correctness of the methods was the KeY tool (Ahrendt et al.
2016). It can proof the correctness of a program according to its specifica-
tion. There are two kinds of proofs: partial correctness (does not require the
program to terminate, but when terminates is correct) and total correctness
(requires that the program terminate). Details of this implementation are
available at http://goo.gl/Th9CV4.

The classes and methods of the conflict checker were annotated with the
JML features: preconditions, postcondition, loop invariants and class invar-
iants. After annotating the source code with JML, we conducted the proof of
the methods by using KeY.

In order to exemplify our approach, Figures 5, 6 and 7 present an example
of implementation that was conducted and checked by the KeY. The figures

1 package verifymultiple;

3 import java.io.Serializable;

private static final long serialVersionUID = 1L;
private /*@ spec_public @*/ int day;

private @*/ int month;

private @*/ int year;

5 public class LocalDateSimulator implements Serializable {
P
7

/*@ spec_public
/*@ spec_public

/*@ normal behavior
@ ensures this.day == day;
@ ensures this.month == month;
@ ensures this.year == year
@ assignable this.day;
@ assignable this.month;
@ assignable this.year;
@*/
public LocalDateSimulator (int day, int month, int year
20 this.day = day;
2 this.month = month;
this.year = year;

Figure 5. Example 1 JML class localdatesimulator.

http://goo.gl/Jh9CV4

APPLIED ARTIFICIAL INTELLIGENCE ’ 413

/*@ normal_behavior

@ ensures \result == (this.day == temp.day && this.month == temp.month && this.year == temp.year)
@ assignable \strictly nothing;
@*/

public boolean isEqual (LocalDateSimulator temp) {
if (this.day == temp.day && this.month == temp.month && this.year == temp.year) ({
return true;
}
return false;
i

/*@ normal behavior

@ ensures \result == (this.year > temp.year || this.month > temp.month || this.day > temp.day);
@ assignable \strictly nothing:

a9 @*/

40 public boolean isAfter (LocalDateSimulator temp) {

41 if (this.year > temp.year) {

42 return true;

43 }

if (this.month > temp.month) {
return true;

}

if (this.day > temp.day) {

48 return true;

49 }

50 return false;

51)

Figure 6. Example 2 JML class localdatesimulator.

T
536 /*@ normal behavior

54 @ ensures \result == (this.year < temp.year || this.month < temp.month || this.day < temp.day);
55 @ assignable \strictly nothing;

56 @*/

57 public boolean isBefore (LocalDateSimulator temp) {

if (this.year < temp.year) {
return true;

}

if (this.month < temp.month) {
return true;

}

if (this.day < temp.day) {
return true;

}

return false;

}

/*@ normal_behavior

@ ensures \result == day;
@ assignable \strictly nothing;
@*/

public int getDay() {
return day;

Figure 7. Example 3 JML class localdatesimulator.

present a piece of the class LocalDateSimulator that was created to substitute
the class LocalDate of Java 1.8. The methods of this class were proved under
partial and total correctness.

To prove the correctness of algorithms that have loop, one must use the loop
invariants in the proof. In JML, a loop specification consists of the following
parts: the keyword loop_invariant (specifies a loop invariant), the keyword
decreasing (specifies a value which is always positive and strictly decreased in

414 (&) E. A.SILVESTRE AND V. T. DA SILVA

each loop iteration; it is used to prove termination of the loop) and the keyword
assignable/modifies (limits the locations that may be changed by the loop).
Figures 8 and 9 show parts of the JML added to Java code for a method.
The method takes two vectors of any size and returns a resultant vector of the
intersection between the two vectors. Figure 8 shows on line 529 that the
vectors must not be null. Lines 530 and 531 ensure that all vectors will
be executed to its limits (lower limit and upper limit). From lines 532 to
537, the method ensures that the elements belonging to the resulting vector
are both setA and setB vectors. Figure 9 shows the Java code to perform the
intersection between vectors. In line 539, the pure keyword indicates that this
method does not modify class variables (only local variables). The two JML
blocks, shown in lines 544-548 and 551-554, are very similar. The loop
invariants used restrict the allowed values for vectors setA and setB. These

F28 /*@ normal behavior
@ requires setA l= null && setA.length > 0 && setB != null && setB.length > 0;
@ ensures (\forall int i; 0 <= i && 1 < setA.length;
@ (\forall int j; 0 <= j && j < setB.length)):
@ ensures (\forall int i; 0 <= i && 1 < \result.length:
@ (\exists int k; 0 <= k && k < setA.length:;
@ \result[i].equals (setA[k]
@ &&
@ (\exists int j; 0 <= j && j < setB.length;
@ \result[i].equals (setB[J]))));
@*/

Figure 8. Example 1 JML set intersection.

9= public /*@ pure */ static String[] intersection(String setA[], String setB[]) {
) int sizeSetA sizeNotNulllD(setA);
il int sizeSetb sizeNotNulllD(setB);
2 int smaller = (sizeSetA < sizeSetb) ? sizeSetA : sizeSetb;
3 String[] tmp = new String[smaller]:;
4 int counter = 0;
5 /*@ loop invariant 0 <= i && i1 < setA.length;
546 @ modifies i, tmp;
547 @ decreasing setA.length - i;
e*/
549 for (int i = 0; i < setA.length; i++) {
550 if (getA[i] != null) {
51 /*@ loop invariant 0 <= j && j < setB.length;

@ modifies j, tmp;

@ decreasing setB.length - j;

e*/
for (int j = 0; j < setB.length; j++) {

if (setB[]j] != null) {
if (setA[i].equals(setB[]])) |
tmp[counter++] = new String(setA[i]);

[
0o L DN

oM

(]
o

}

}
}

return tnp;

Figure 9. Example 2 JML set intersection.

APPLIED ARTIFICIAL INTELLIGENCE ’ 415

kinds of invariants are typical in this scenario. The modifies clause indicates
the variables that can be modified in the loop scope.

By considering the execution of Java code annotated with JML, KeY was
able to prove the partial correctness of the method by ensuring that the list of
actions applied to preconditions implies the postconditions. The Key tool
was also able to prove the total correctness of the method by ensuring that
the variants in lines 547 and 553 decrease in each iteration of the loop and
concluding that the algorithm terminates.

One of the most labor-intensive tasks in verifying total correctness of
programs is to find the strongest loop invariant for correctness of programs;
this task is sometimes undecidable (Blass and Gurevich 2001).

In order to help the authors in such a task, we used the DynaMate tool
(Galeotti et al. 2014) to automatically generate loop invariants for the pro-
gram. However, despite generating several loop invariants for each method,
those loop invariants were not different from the set of invariants manually
generated by the authors. In (Galeotti et al. 2014), the authors say that from
the perspective of software engineering methods, DynaMate can prove are
not complex. Unfortunately, the state-of-the-art evidence that proves of large
and complex systems is impossible without significant manual effort by
highly trained people.

Related work

Several approaches work with normative conflicts in MAS. Some of them
deal with the identification of conflicts and others carried out both the
identification and resolution of conflicts. However, to the best of our knowl-
edge, all approaches that check for conflicts do only analyze the norms in
pairs. There are some papers in the literature that discuss the complexity of
considering multiple norms when checking for conflicts, but none of them
presents a solution to overcome such a problem.

For instance, the works in (Vasconcelos, Kollingbaum, and Norman
2009) (Cholvy and Cuppens 1995) (Elhag, Breuker, and Brouwer 1999)
(Kollingbaum et al. 2007) (da Silva and Zahn 2013) (Kagal and Finin
2007) (Oren et al. 2008) (Garcia-Camino, Noriega, and Juan-Antonio
2007) (Beirlaen, Strafler, and Meheus 2013) focus on the identification
of direct and indirect conflicts (i.e. conflicts that occur when the elements
of norms being analyzed are not the same, but are somehow related). All
of these approaches analyze the norms in pairs when checking for
conflicts.

Shoham and Tennenholtz (Shoham and Tennenholtz 1995) evaluate the
complexity of norm synthesis, i.e. they evaluate the complexity of finding the
set of norms that do not conflict. They attested that the problem is NP-
complete through a reduction from 3-SAT. In (Vasconcelos, Kollingbaum,

416 (&) E.A.SILVESTRE AND V. T. DA SILVA

and Norman 2009), the authors also state that the complexity of inserting or
removing a norm in a set of norms is exponential in the worst case. Other
approaches that evaluate norm synthesis (i.e. (Morales et al. 2014) (Morales
et al. 2013) (Christelis and Rovatsos 2009)) are based on heuristics and often
intractable in the general case.

These studies have corroborated to show that the detection of conflicts among
multiple norms is a very complex activity. Therefore, before thinking in a
strategy to find the conflicts, it is necessary to think in a strategy to minimize
the complexity of the problem, as we have done in our solution to the problem.

Conclusions and future work

Research in the area of MAS has strongly increased in recent years; in
particular, research in normative systems. Despite significant research in
the area, there are still many challenges to be considered. In case of
normative conflicts, several research problems have not yet been
addressed.

After an extensive literature search, several articles were found on the
identification of normative conflicts, which is the topic of this paper. Such
works focus on the identification of normative conflicts by considering pairs
of norms. However, there are conflicts, as the ones exemplified in the text,
which can only be detected when checking for conflicts among multiple
norms.

The paper presents an approach able to check for conflicts among multiple
norms that uses filters and transformations to reduce the computational cost
of the algorithm. The main contributions of the paper are:

e An extended specification of norms able to regulate different kinds of
actions and their objects (Section 2);

e The specification of filters to divide the norms in sets and make the
checking for conflicts quicker (Sections 3.2.1);

e The deontic transformation to deal with norms having the same deontic
concept (Section 3.2.2);

e The algorithm to check for conflicts based on the intersection between
the (Section 3.4);

e A tool to help MAS designer to check for normative conflicts (Section 4);

e The proof of correctness of the approach (Section 5.3).

A direct consequence of this work is the investigation of how the
conflicts among multiple norms should be solved. Can the techniques
used to solve conflicts among pairs of norms be used to solve conflicts
among multiple norms? An initial approach should investigate the applic-
ability of famous techniques found in literature used to solve conflicts

APPLIED ARTIFICIAL INTELLIGENCE ’ 417

among pairs of norms; for example, lex posterior, lex superior and lex
specialis; setting priority among norms and association of a value stating
the importance of a norm, should also be investigated for the solving of
conflicts.

In this work, we have not considered indirect conflicts (da Silva and
Zahn 2013). The algorithm presented in this paper does only check for
direct conflicts, i.e. conflicts among norms that have the same entities,
contexts and actions. An important and necessary extension of our work
is the identification of indirect conflict among multiple norms.

References

Ahrendt, W., B. Beckert, R. Bubel, R. Hahnle, V. Klebanov, and P. H. Schmitt. 2016. The key
book: Deductive software verification in practice. Cham, Switzerland: Springer International
Publishing.

Beirlaen, M., C. Strafler, and J. Meheus. 2013. An inconsistency-adaptive deontic logic for
normative conflicts. Journal of Philosophical Logic 42 (2): 285-315. Springer Netherlands.
doi: 10.1007/s10992-011-9221-3.

Blass, A., and Y. Gurevich. 2001. Inadequacy of computable loop invariants. ACM
Transactions Computation Logic 2 (1): 1-11. New York, NY, USA: ACM. doi: 10.1145/
371282.371285.

Builder, G. P. 2015. GOLD Parsing System - Multi-Programming Language, Parser. Accessed
2015 May 15, http://www.goldparser.org/

Cholvy, L., and F. Cuppens. 1995. Solving normative conflicts by merging roles. Proceedings
of the 5th International Conference on Artificial Intelligence and Law, 201-09. ICAIL ’95.
New York, NY, USA: ACM. doi:10.1145/222092.222241.

Christelis, G., and M. Rovatsos. 2009. Automated norm synthesis in an agent-based planning
environment. Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems - Volume 1, 161-68. AAMAS ’09. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems. http://dl.acm.org/citation.
cfm?id=1558013.1558035.

Czelakowski, J. 2015. Freedom and enforcement in action: A study in formal action theory.
Dordrecht, Netherlands: Springer Netherlands.

da Silva, F., K. Viviane, T. da Silva, and C. de Oliveira Braga. 2011. Modeling norms in multi-
agent systems with normML. Proceedings of the 6th International Conference on
Coordination, Organizations, Institutions, and Norms in Agent Systems, 39-57.
COIN@AAMAS’10. Berlin, Heidelberg: Springer-Verlag. http://dl.acm.org/citation.cfm?
id=2018118.2018122.

da Silva, V. T. 2008. From the Specification to the implementation of norms: An automatic
approach to generate rules from norms to govern the behavior of agents. Autonomous
Agents and Multi-Agent Systems 17(1):113-55. doi:10.1007/s10458-008-9039-8.

da Silva, V. T., and J. Zahn. 2013. Normative conflicts that depend on the domain.
Coordination, Organizations, Institutions, and Norms in Agent Systems {IX} - {COIN}
2013 International Workshops, COIN@AAMAS, St. Paul, MN, USA, May 6, 2013,
COIN@PRIMA, Dunedin, New Zealand, December 3, 2013, Revised Selected Papers,
311-26. doi:10.1007/978-3-319-07314-9_17.

http://dx.doi.org/10.1007/s10992-011-9221-3
http://dx.doi.org/10.1145/371282.371285
http://dx.doi.org/10.1145/371282.371285
http://www.goldparser.org/
http://dx.doi.org/10.1145/222092.222241
http://dl.acm.org/citation.cfm?id=1558013.1558035
http://dl.acm.org/citation.cfm?id=1558013.1558035
http://dl.acm.org/citation.cfm?id=2018118.2018122
http://dl.acm.org/citation.cfm?id=2018118.2018122
http://dx.doi.org/10.1007/s10458-008-9039-8
http://dx.doi.org/10.1007/978-3-319-07314-9%5F17

418 (&) E. A.SILVESTRE AND V. T. DA SILVA

Elhag, A. A. O.,]. A. Breuker, and B. W. Brouwer. 1999. On the formal analysis of normative
conflicts. In JURIX 1999: The twelfth annual conference, eds. H. Jaap van den Herik, et al.,
35-46. Frontiers in Artificial Intelligence and Applications. Nijmegen: GNIL.

Galeotti, J. P., C. A. Furia, E. May, G. Fraser, and A. Zeller. 2014. DynaMate: Dynamically
inferring loop invariants for automatic full functional verification. In Hardware and soft-
ware: Verification and testing: 10th International haifa verification conference, HVC 2014,
Haifa, Israel, November 18-20, 2014. Proceedings, ed. E. Yahav, 48-53. Cham: Springer
International Publishing. doi:10.1007/978-3-319-13338-6_4.

Garcia-Camino, A., P. Noriega, and R.-A. Juan-Antonio. 2007. An algorithm for conflict
resolution in regulated compound activities. Proceedings of the 7th International
Conference on Engineering Societies in the Agents World VII, 193-208. ESAW’06.
Berlin, Heidelberg: Springer-Verlag. http://dl.acm.org/citation.cfm?id=1777725.1777739.

Kagal, L., and T. Finin. 2007. Modeling conversation policies using permissions and obliga-
tions. Autonomous Agents and Multi-Agent Systems 14 (2): 187-206. Kluwer Academic
Publishers. doi: 10.1007/s10458-006-0013-z.

Kollingbaum, M. J.,, T. J. Norman, A. Preece, and D. Sleeman. 2007. norm conflicts and
inconsistencies in virtual organisations. In Coordination, Organizations, Institutions, and
Norms in Agent Systems 1I, eds. P. Noriega, J. Vazquez-Salceda, G. Boella, O. Boissier, V.
Dignum, N. Fornara, and E. Matson, vol. 4386, 245-58. Lecture Notes in Computer
Science. Springer Berlin Heidelberg. doi:10.1007/978-3-540-74459-7_16.

McNamara, P. 2014. Deontic Logic. In The stanford encyclopedia of philosophy, ed. E. N. Zalta.
Winter, 201. Stanford: Metaphysics Research Lab, Stanford University.

Meyer, B. 1997. Design by contract: Making object-oriented programs that work. {TOOLS}
1997: 25th International Conference on Technology of Object-Oriented Languages and
Systems, 24-28 November 1997, Melbourne, Australia, 360. doi:10.1109/TOOLS.1997.681888.

Morales, J., M. Lopez-Sanchez, J. A. Rodriguez-Aguilar, M. Wooldridge, and W. Vasconcelos.
2013. Automated synthesis of normative systems. Proceedings of the 2013 International
Conference on Autonomous Agents and Multi-Agent Systems, 483-90. AAMAS ’13.
Richland, SC: International Foundation for Autonomous Agents and Multiagent
Systems. http://dl.acm.org/citation.cfm?id=2484920.2484998.

Morales, J., M. Lopez-Sanchez, J. A. Rodriguez-Aguilar, M. Wooldridge, and W. W. Vasconcelos.
2014. Minimality and simplicity in the on-line automated synthesis of normative systems. 109-16.
AAMAS ’14, Paris, France: IFAAMAS.

Oren, N., M. Luck, S. Miles, and T. J. Norman. 2008. An argumentation inspired heuristic for
resolving normative conflict. Heidelberg, Germany: Springer-Verlag Berlin Heidelberg.

Shoham, Y., and M. Tennenholtz. 1995. On social laws for artificial agent societies: Off-line
design. Artificial Intelligence 73(1-2):231-52. doi:10.1016/0004-3702(94)00007-N.

Trypuz, R. 2013. Krister segerberg on logic of actions. Dordrecht, Netherlands: Springer
Netherlands.

Vasconcelos, W. W., M. J. Kollingbaum, and T. J. Norman. 2009. Normative conflict resolu-
tion in multi-agent systems. Autonomous Agents and Multi-Agent Systems 19(2):124-52.
doi:10.1007/s10458-008-9070-9.

von Wright, G. H. 1951. Deontic Logic. Mind; a Quarterly Review of Psychology and
Philosophy 60 (237): 1-15. Oxford University Press. doi:10.1093/mind/LX.237.1.

Wooldridge, M. 2009. An introduction to multiagent systems, 2nd ed. Hoboken, New Jersey,
USA: John Wiley & Sons.

http://dx.doi.org/10.1007/978-3-319-13338-6%5F4
http://dl.acm.org/citation.cfm?id=1777725.1777739
http://dx.doi.org/10.1007/s10458-006-0013-z
http://dx.doi.org/10.1007/978-3-540-74459-7%5F16
http://dx.doi.org/10.1109/TOOLS.1997.681888
http://dl.acm.org/citation.cfm?id=2484920.2484998
http://dx.doi.org/10.1016/0004-3702(94)00007-N
http://dx.doi.org/10.1007/s10458-008-9070-9
http://dx.doi.org/10.1093/mind/LX.237.1

	Abstract
	Introduction
	Norms
	Conflict checker
	Combination of norms
	Applied strategy
	Step 1: Applying filters
	Step 2: Transforming norms into permissions
	Step 3: Checking if norms intersect

	Running example
	Algorithms
	Analysis of algorithms

	MuNoCC (multiple norms conflict checker)
	Validation
	Case studies
	Rescue-operation system
	Formal verification

	Related work
	Conclusions and future work
	References

