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Abstract
Bridging systems biology and drug design, we propose a deep learning framework for de novo
discovery of molecules tailored to bind with given protein targets. Our methodology is exemplified
by the task of designing antiviral candidates to target SARS-CoV-2 related proteins. Crucially, our
framework does not require fine-tuning for specific proteins but is demonstrated to generalize in
proposing ligands with high predicted binding affinities against unseen targets. Coupling our
framework with the automatic retrosynthesis prediction of IBM RXN for Chemistry, we
demonstrate the feasibility of swift chemical synthesis of molecules with potential antiviral
properties that were designed against a specific protein target. In particular, we synthesize an
antiviral candidate designed against the host protein angiotensin converting enzyme 2 (ACE2); a
surface receptor on human respiratory epithelial cells that facilitates SARS-CoV-2 cell entry
through its spike glycoprotein.

This is achieved as follows. First, we train a multimodal ligand–protein binding affinity model
on predicting affinities of bioactive compounds to target proteins and couple this model with
pharmacological toxicity predictors. Exploiting this multi-objective as a reward function of a
conditional molecular generator that consists of two variational autoencoders (VAE), our
framework steers the generation toward regions of the chemical space with high-reward molecules.
Specifically, we explore a challenging setting of generating ligands against unseen protein targets by
performing a leave-one-out-cross-validation on 41 SARS-CoV-2-related target proteins. Using
deep reinforcement learning, it is demonstrated that in 35 out of 41 cases, the generation is biased
towards sampling binding ligands, with an average increase of 83% comparing to an unbiased VAE.
The generated molecules exhibit favorable properties in terms of target binding affinity, selectivity
and drug-likeness. We use molecular retrosynthetic models to provide a synthetic accessibility
assessment of the best generated hit molecules. Finally, with this end-to-end framework, we
synthesize 3-Bromobenzylamine, a potential inhibitor of the host ACE2 protein, solely based on
the recommendations of a molecular retrosynthesis model and a synthesis protocol prediction
model. We hope that our framework can contribute towards swift discovery of de novomolecules
with desired pharmacological properties.

© 2021 The Author(s). Published by IOP Publishing Ltd
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Figure 1. A framework for target-driven molecular design and automatic synthesis plan generation. The conditional molecular
generator, called agent (see (A)), can produce novel structures specifically designed to target a protein of interest. The generative
process starts with the encoding of the primary structure of the target protein into a latent space of protein sequences. The
representation is fed into a molecular decoder of a separately pre-trained molecule VAE to produce a candidate compound. Next,
the proposed compound is evaluated by a critic (see (B)) composed of a multimodal deep learning model that predicts
protein–drug binding affinity using protein and compound sequences as input, and a QSAR-based score to penalize toxicity. By
means of the reward given by the critic, a closed-loop system is created and trained with deep reinforcement learning to maximize
the multi-objective reward. Subsequently, possible synthesis routes are generated for the most promising candidates with a
molecular retrosynthesis prediction model (see (C)). Last, a step-by-step synthesis protocol is generated automatically from the
retrosynthesis tree (see (D)).

1. Introduction

1.1. COVID-19 antivirals
The severe acute respiratory syndrome (SARS) coronavirus disease (COVID-19) is an acute respiratory
disease caused by SARS-CoV-2 that, to date, has infected more than a hundred million humans and killed
more than two million. Despite longstanding efforts to understand the pathogenicity of coronaviruses [1],
no drugs were approved before the outbreak of the COVID-19 pandemic, and thus, new systematic
approaches to identify effective antiviral agents are urgently needed. Current efforts are predominantly
focused on drug repurposing strategies, and lots of effort was initially devoted to the clinical investigation of
a handful of promising candidates, including remdesivir and hydroxychloroquine. Initial hopes regarding
hydroxychloroquine have been diminished as it was not found effective in a meta-study of human clinical
trials [2]. While evidence for remdesivir has been conflicting [3, 4], it has been granted an emergency
approval in North America, Asia and Europe [5]. Recently, protein-protein-interaction studies identified 69
promising compounds by measuring binding affinities of 26 out of the 29 SARS-CoV-2 proteins against
human proteins [6].

With limited success in the drug repurposing strategies, it is worth exploiting de novo drug discovery
approaches against SARS-CoV-2. Drug discovery is a daunting challenge, with a search space of 1060

compounds [7], ~10 years from design to market [8] and costs of up to $3 billion per new FDA-approved
drug [9]. Given that so far there are only ~1500 FDA-approved drugs on the market [10], while the number
of already synthesized molecules is at least 60 million [11], the total attrition rate of drug discovery is above
99.99%. Additionally, it takes around 10 years until a typical compound reaches the market [8]. However, the
availability of high-throughput screenings of compound–protein interactions (CPI) has enabled deep
learning to set new benchmarks for large-scale QSAR prediction models for predicting protein–drug binding
affinity [12]. Deep learning has further been proven capable of in silico design of molecules with desired
chemical properties [13–16] and shown potential to accelerate the discovery of DDR1 inhibitors [17]. A few
studies used deep generative models to release libraries of (unsynthesized) candidates to target 3C-like
protease, a main therapeutic target of SARS-CoV-2 [18–20] but these studies manually curated datasets to
design 3C-like protease inhibitors.

1.2. Our contribution
Here, we aim to bridge systems biology and drug discovery, and use deep learning to explore target-driven
drug design with conditional generative models. Our framework (see (A) and (B)) for conditional molecular
design builds upon our previous work, PaccMannRL [21]; however, note that here we focus on protein-driven
instead of omics-profile-driven drug generation. Our framework can be trained to design compounds
against any primary protein structure. Deep learning for target-driven drug design was first formulated in
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2018 by Aumentado-Armstrong [22] and has since been investigated by others [23–25]. Similarly
to Chenthamarakshan et al [25], our approach implements a conditional generator that can be applied to
unseen protein targets. However, instead of using a conditional rejection sampling approach, we use deep
reinforcement learning and conditionally generate molecules by fusing the latent spaces of protein targets
and small molecules. Importantly, our approach is demonstrated to generalize to unseen targets — it can
generate high fractions of potentially binding ligands for protein sequences it has never been exposed to. We
further couple our model with IBM RXN, an AI-governed platform for retrosynthesis prediction [26, 27], and
demonstrate the entire cycle from design to synthesis of one of the most promising compounds.

We emphasize that our framework is generic in its applicability for protein-target driven molecular
design and synthesis. To showcase the methodology, we focus on on designing novel antiviral candidates
against SARS-CoV-2-related virus and host proteins.

Notably, the main contribution of our work is not claiming to find the most promising SARS-CoV-2
antiviral candidates, but rather to present new technology, namely how a generic, machine-learning-driven,
fully automatic pipeline for design and chemical synthesis may potentially accelerate the discovery of hit-like
molecules.

2. Materials andmethods

2.1. Problem formulation
The goal is to develop a conditional generative model GΘ that can be queried with a protein and returns
novel ligands that have high binding affinities to the target and, as a secondary objective, low toxicity. Let P
denote the space of proteins andM the molecular space. We are interested to learn a mapping GΘ : P →M
s.t. the reward R(p,m) with p ∈ P,m ∈M is maximal.

2.1.1. Predictive models
R(·) is a multimodal reward function depending on p andm. Specifically, let

R(p,m) := Aff(p,m)− γ ·Tox(m) (1)

with Aff(·) as the target-compound binding affinity of p andm, Tox(·) as the toxicity ofm and γ ∈ R+ as a
user-defined parameter to control the importance of toxicity (we used γ= 0.5). Since the exact computation
of Aff and Tox are intractable to compute in- silico (as they require in vitro experiments) they are
approximated using ΦTox and ΦAff. Precisely, ΦTox :M→ ŷTox maps a molecule to a toxicity vector of 12
toxicity classes where 1 means toxic and 0 non-toxic. A positive reward is given if and only if the molecule is
not predicted active in any of the 12 toxicity classes. Furthermore ΦAff : P ×M→ [0,1]maps a
protein-ligand tuple to a probability that the ligand binds to the protein. For details on this model and the
data (e.g. the threshold for binding strength) see subsection 2.2.2 and S1.2 (available online at
stacks.iop.org/MLST/2/025024/mmedia).

2.1.2. Generative models
The two predictive models for binding affinity and toxicity are employed as reward functions for the
conditional generator, which is modelled as follows.

2.1.2.1. Pretraining
First, two separate modelsΘProt : P →P andΘMol :M→M are devised. The parameters of both models
can be optimized without supervision using training data of unlabelled proteins and molecules, respectively.
These models implicitly define a mapping from discrete structures (proteins and molecules) to continuous
representations.ΘProt andΘMol are independent generative models that are parameterized with VAEs [28] so
that both can be represented as a composition of encoder/decoder modules:ΘProt = [ΘDec

Prot ◦ΘEnc
Prot] and

ΘMol = [ΘDec
Mol ◦ΘEnc

Mol]. The two models are tuned to optimize the ELBO: LVAE := E[logp(x|z)]
−DKL[q(z|x),p(z)] where q(z|x) =N (⃗0, I), i.e. the latent code is modelled using a multivariate unit Gaussian
following standard VAE formulation [28]. After training, the generative model can be utilized by sampling
from p(z) and applyingΘDec

Mol : Z→M which constitutes our baseline for molecule generation.

2.1.2.2. Conditional generation
After the above models are trained, the conditional generative model is defined by GΘ : [ΘDec

Mol ◦ΘEnc
Prot] :

P → Z→M. In other words, the conditional generator is obtained by encoding a protein with the protein
VAE and decoding the latent code with the molecular decoder. This means, a moleculem is obtained from a
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protein p by:m= GΘ(p) = ΘDec
Mol(Θ

Enc
Prot(p)). The final training objective function of this hybrid VAE (GΘ) is

RGΘ
=

∑
m∈M

PΘ(m|p)R(p,m) , (2)

where PΘ(m|p) indicates the conditional probability approximated by GΘ. Since equation (2) is intractable
to compute, it is approximated using policy gradient and subject to maximization using REINFORCE [29],
as proposed in ReLeaSE [15]. Notably, the conditional generation is not limited to binary classifiers, as R(·)
can be instantiated with any function. Figures 1(A) and (B) summarize the structure of the proposed system.

2.2. Data and implementation
2.2.1. Toxicity prediction
2.2.1.1. Data
For toxicity prediction, we utilize the Tox21 database [30]. This dataset consists of NTox = 11765 training
molecules that are screened against 12 toxicity assays of nuclear receptor and stress response pathways, and
labelled with binary values for each class (toxic vs non-toxic). The test dataset consists of 648 molecules (data
split is provided).

2.2.1.2. Model
The toxicity prediction model ΦTox :M→ ŷTox was implemented through a multiscale convolutional
attention model that ingested augmented SMILES sequences [31, 32] to predict the 12 toxicity endpoints.
For details see S1.1. The purpose of this in silico screening was to assess the toxicity of parent molecules and
their metabolites. Our work on toxicity prediction is further detailed in [33].

2.2.2. Protein-ligand affinity prediction
2.2.2.1. Data
Drug–protein binding affinity data is obtained from BindingDB [34], a public database of measured binding
affinities between proteins and small drug-like compounds. After data processing (details in S1.2) 1361 076
entries (7302 protein targets, 772 634 compounds) were taken as positive binding examples. Negative
samples, on the other hand, were obtained by randomly assigning 187 compounds to each target from the list
of compounds not reported to bind to that particular target yielding a total of 2273 726 samples. For reasons
on the choice for classification instead of regression see S1.2.

2.2.2.2. Model
To predict CPI, we model ΦAff : P × M→ [0,1] with a bimodal neural network based on the multiscale
convolutional attention model (MCA [35, 36]). This model ingests a moleculem ∈M represented as a
SMILES sequence and a protein p ∈ P represented as an amino acid sequence, applies convolutions (to
aggregate local information) and a contextual attention mechanism (to focus on relevant substructures),
before a continuous prediction y∈ [0, 1] is obtained that is interpreted as probability that a binding occurs.
For model details see S1.2.

2.2.3. Protein VAE
2.2.3.1. Data
For learning the protein space P we utilize 404 552 proteins from UniProt [37]. The proteins considered were
selected by filtering out sequences longer than 8190 amino acids. We choose our training data to be vectorial
representations of 768 dimensions rather than primary structures), specifically embeddings generated by a
BERT [38] language model released in TAPE [39].

TAPE adapted self-supervised natural language models like BERT to learn continuous representations of
proteins on large scale. The amino acid embeddings were pretrained on 32.6 M Pfam sequences [40]
following the original BERT architecture and learned via masked-token prediction [39]. The TAPE model
contains 110 M parameters and we exclusively used it for feature generation to obtain the training data for
the protein VAE. To accommodate the occasional unusually long protein sequences, maximum sequence
length was increased from the original 512 to 8192 tokens. In this work, we used the pretrained amino acid
features from TAPE ‘as is’ by averaging them, i.e. without fine-tuning them for a downstream classification
task. For conditional generation, however, we used the pooled instead of the averaged embeddings, without
observing a notable difference in performance. The approach to use TAPE was pursued to circumvent the
need to train a large-scale protein language model from scratch.
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2.2.3.2. Model
As stated above, we modelΘProt : P →P using a VAE [28] with three dense layers of sizes [768, 512, 256]
with ReLU activation and batch normalization in both encoder and decoder. During training, we use KL
annealing [41], dropout (p= 0.2), a learning rate of 3× 10−3 and optimize RMSE.

2.2.4. SELFIES VAE
2.2.4.1. Data
For learning the molecular spaceM we utilize 1576 904 bioactive compounds from ChEMBL. Ten percent
are held out as validation set. We choose our training datam ∈M not to be SMILES sequences (like for the
toxicity and affinity predictor), but rather SELFIES strings [42], a robust adaption of SMILES that was
devised for generative models and solves the validity problem in SMILES generation.

2.2.4.2. Model
The model for the chemical spaceΘMol :M→M is implemented using a VAE, following Born et al [21], i.e.
it consists of two layers of stack-augmented GRUs [15] in both encoder and decoder. For details see S1.3.
Notably, afterΘMol is pretrained, we sample from p(z) and apply the decoderΘDec

Mol : Z→M as described
above to constitute our baseline for molecular generation.

2.2.5. Conditional generation
2.2.5.1. Data
We retrieved 41 SARS-CoV-2 related protein targets as labelled in UniProt (as on 22 May 2020)5. A full list of
targets is given in table 2 and includes among others the 3C-like protease (Mpro), a promising candidate for
antiviral compound development [43] that has already been investigated with generative models [18] and
molecular docking studies [44]. Other included proteins are the nucleocapsid (N-) protein and the spike
glycoprotein. The latter is a surface protein, which mediates entrance to human respiratory epithelial cells by
interacting with the ACE2 receptor and is the target of chloroquine. Notably, the targets used for conditional
generation do not need to be present in the training data of the affinity predictor or the protein VAE. Hence,
we can generate potential ligands for proteins without the need for any binding data, a key feature to combat
new diseases. Here, 9/41 SARS-CoV-2 related proteins are present in in the training data of the affinity
predictor and 27/41 are present in the training data of the protein VAE.

2.2.5.2. Model
The conditional generator GΘ consists of the pretrained protein encoder and the pretrained molecular
decoder, s.t. GΘ : [ΘDec

Mol ◦ΘEnc
Prot] and learns a mapping P → Z→M. In practice, we set γ= 0.5 in our

multi-objective reward function since optimizing toxicity was a secondary objective of this work compared
to optimizing binding affinity for a target protein. Moreover, we perform a leave-one-out cross-validation
(LooCV) during conditional generation (i.e. NCG = 40) and evaluate the model by the fraction of generated
ligands with high predicted affinity and low toxicity (ΘAff(p,m)> 0.5 andΘTox(m) = 0).

2.3. AI-assisted synthesis of a candidate compound
2.3.1. Retrosynthesis prediction
First, we predicted the best synthetic routes using the interface of IBM RXN6, specifically, a
transformer-based retrosynthesis prediction engine [26]. The prediction is built upon sequence-based
models that operate on SMILES strings, specifically two molecular transformers [45]; one for forward
reaction prediction (reactants to product) and one for backward reaction prediction (product to reactants).
The two models are combined to explore the retrosynthesis hypertree, using a beam search based on the
forward model confidence scores, to find the most likely routes to synthesize a molecule given a set of
commercially available chemicals. Given a SMILES string, this model predicts a reaction tree composed of
starting materials and intermediates (all represented as SMILES) as nodes and reaction types as edges.

Next, we used a transformer model [46] to predict the optimal synthesis protocol using a text
representation of the predicted synthesis steps. The architecture is trained to predict a sequence of actions
given a reaction encoded as SMARTS. The synthesis action generation model is trained with a large number
of chemical recipes extracted from a corpus of organic chemistry procedures [27]. For details on the
methodology see [26, 27, 45, 46].

5 covid-19.uniprot.org/.
6 https://rxn.res.ibm.com/.
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Table 1. Result of bimodal affinity predictor on BindingDB data.

Validation Test Viral

ROC-AUC 0.968 0.969 0.96
Average precision 0.963 0.965 0.92

2.3.2. Chemical synthesis
In the following, the predicted procedure is described in detail. In a glass reactor of 100 ml, 9 ml of
anhydrous THF were added at room temperature. Nine milliliter of a solution of 3-bromo-benzonitrile in
THF (0.11 M, 1 mmol) were added under gentle (100 rpm) stirring. While maintaining the temperature of
the reactor at 25 ◦C, 1 ml of LiAlH4 in THF (2 M concentration) was added dropwise across 180 s. The
reaction mixture was stirred for 5min at 25 ◦C and then the excess of LiAlH4 quenched with 2ml saturated
NaCl aqueous solution and stirred for 60 s. Although the brine was not provided in the predicted synthetic
route, it was favored over water or an alcohol since it prevents the formation of a colloidal dispersion of
aluminum hydroxide. The organic layer was collected and further analysed. 0.3 ml of the organic layer was
diluted 50 times and then analyzed with an LC/MS (Agilent TOF6230). The spectrum is reported in
supplementary figure S7.

3. Results

3.1. Protein-ligand affinity prediction
The results of the binding affinity prediction model on validation and test data from BindingDB are
displayed in table 1. The results show that the model learned reasonably well to classify
compound-protein-interaction samples as binding (positive class) or non-binding (negative class). Because
the conditional generation focuses on antiviral drug design, we had to ensure that the affinity predictor
generalizes well for viral proteins. We therefore additionally measured model performance on ~10k
held-back samples from viral proteins and find reasonable generalization to viral proteins.

3.2. Toxicity predictor
Because toxicity is a major cause of the high attrition rate in drug discovery, we decided to perform a
multi-objective optimization based on toxicity and binding affinity. Across ten runs on the Tox21 dataset,
this model achieved a ROC-AUC of 0.877± 0.04, in predicting toxic vs non-toxic in the 12 Tox21 assays
(ROC-AUC is obtained by concatenating the predictions for each of the 12 classes) surpassing prior results
on this benchmarked dataset. Both the affinity and toxicity predictor are not investigated further herein, but
employed as reward function for the conditional generation. For details see [33].

3.3. Conditional generative model
3.3.1. Workflow of RL optimization
The following procedure of conditional generative design is similar to the one described in [21] with the
difference that here, the biomolecular context is a protein target instead of an omic profile. During the deep
RL optimization, the agent GΘ, a hybrid-VAE receives as input a SARS-CoV-2-related protein, such as
3C-like proteases. First, the protein p ∈ P is encoded into the latent space of proteins usingΘEnc

Prot : P → Z.
Next the molecular decoder generates a compound usingΘDec

Mol : Z→M. This is a valid operation due to the
variational constraint in the bottleneck layer of both VAEs, as imposed by the Kullback-Leibler (KL)
divergence in the ELBO ofΘMol andΘProt. In other words, the independent pre-training of the protein VAE
as well as the SELFIES VAE steered both unimodal models to encode their data points (i.e. proteins and
molecules) as samples of a multivariate Gaussian distribution. This observation is key for the construction of
our hybrid-VAE consisting of a protein-encoder and a molecular decoder. Therefore, during the RL
optimization, initial decodings will thus still be valid molecules. Finally, the compound-protein pair is
evaluated using the reward function R :M×P → R. Over time, the stochastic optimization led to
generating more compounds with high predicted binding affinities, as shown in table 2.

3.3.2. Results of LooCV
In this study, we aim to validate whether our conditional generative framework can go beyond current
approaches for target-driven compound design [17, 18, 25] in the sense that it does not require explicit
optimization for a specific target. We therefore investigated the generalization capabilities of our framework
by performing a leave-one-out-cross-validation (LooCV) on the 41 targets. Prior to starting the RL
optimizatiton, we sampled 3000 molecules from the pre-trained SELFIES VAE and predicted binding
affinities (Affinity0) and toxicity scores (Tox0) for all those molecules. This constitutes our baseline for later
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Table 2. Generating antiviral compounds against unseen SARS-CoV-2 targets. For each of the 41 targets, Affinity0 shows the fraction of
binding molecules sampled before training, Affbest at the best epoch of RL training, and Affmedian the median across all five training
epochs. The same applies to Toxbest and Toxmed Note that Tox0 is independent of the protein and was 8.7%. The best model is
highlighted in bold for each target protein SEM abbreviates standard error of the mean.

Target protein Affinity0 Affmed ± SEM Affb Toxmed ± SED Toxb

VME1-CVHSA 20% 18%± 3% 29% 6%± 3% 19%
IMA1-HUMAN 88% 97%± 1% 100% 5%± 3% 18%
VEMP-SARS2 29% 16%± 2% 20% 9%± 2% 12%
NS7B-SARS2 25% 30%± 5% 33% 7%± 5% 25%
ITAL-HUMAN 24% 16%± 6% 43% 9%± 1% 12%
NCAP-CVHSA 17% 11%± 1% 15% 12%± 2% 14%
R1AB-CVHSA 58% 90%± 2% 91% 9%± 1% 11%
NS8B-CVHSA 9% 12%± 2% 20% 7%± 4% 25%
A0A663DJA2-SARS2 26% 35%± 3% 41% 14%± 3% 18%
NS8A-CVHSA 21% 47%± 4% 55% 10%± 1% 10%
NS7A-SARS2 4% 3%± 1% 7% 10%± 3% 19%
Y14-SARS2 17% 29%± 4% 43% 8%± 2% 14%
NS6-SARS2 20% 12%± 3% 22% 4%± 3% 14%
SMAD3-HUMAN 50% 74%± 3% 86% 6%± 1% 10%
SPIKE-CVHSA 3% 0%± 1% 5% 7%± 1% 11%
DDX1-HUMAN 9% 14%± 2% 20% 9%± 1% 10%
AP3A-SARS2 4% 0%± 1% 3% 9%± 3% 19%
R1A-CVHSA 14% 45%± 3% 50% 9%± 1% 11%
NS8-SARS2 7% 10%± 3% 18% 10%± 1% 15%
PHB2-HUMAN 4% 3%± 0% 4% 11%± 3% 23%
SGTA-HUMAN 11% 12%± 1% 13% 8%± 1% 12%
NS7A-CVHSA 18% 35%± 5% 59% 11%± 2% 15%
ORF9B-CVHSA 9% 11%± 2% 17% 6%± 1% 11%
R1A-SARS2 62% 82%± 3% 89% 8%± 2% 14%
Y14-CVHSA 14% 15%± 2% 23% 11%± 2% 15%
ORF9B-SARS2 18% 12%± 1% 15% 12%± 2% 16%
TMPS2-HUMAN 6% 5%± 1% 6% 6%± 1% 10%
BST2-HUMAN 10% 5%± 3% 16% 10%± 2% 14%
NS3B-CVHSA 25% 23%± 2% 29% 12%± 1% 15%
SPIKE-SARS2 7% 6%± 2% 12% 10%± 1% 12%
FURIN-HUMAN 28% 27%± 4% 36% 9%± 3% 20%
AP3A-CVHSA 9% 0%± 1% 6% 8%± 1% 12%
VME1-SARS2 15% 16%± 3% 27% 6%± 2% 14%
NS7B-CVHSA 21% 26%± 1% 27% 7%± 1% 11%
MPP5-HUMAN 5% 9%± 2% 11% 15%± 2% 16%
ACE2-HUMAN 51% 77%± 4% 85% 5%± 2% 12%
VEMP-CVHSA 21% 25%± 3% 30% 12%± 2% 20%
NS6-CVHSA 10% 13%± 1% 15% 3%± 3% 14%
PHB-HUMAN 3% 0%± 1% 3% 6%± 1% 7%
R1AB-SARS2 83% 100%± 0% 100% 5%± 1% 7%
NCAP-SARS2 25% 5%± 2% 9% 9%± 4% 24%
Average 18% 26%± 4% 33% 9%± 0.5% 15%

comparison. Next, the RL optimizaton was performed for 5 epochs and 500 molecules were sampled in each
epoch. In table 2 we report the percentage of molecules predicted to bind and to be toxic for each of the 41
targets obtained by 41 runs in a LooCV. The results demonstrate that in 35 out of 41 cases the model
proposed more binding compounds against an unseen target, compared to the baseline SELFIES VAE. The
average ratio of compounds predicted to bind increased from 18% to 26% with the best epoch averaging
33% across all targets. Example density plots for 2 out of the 41 individual optimizations are shown
in figure 2. We additionally optimized the generator to propose less toxic compounds. This succeeded to a
lesser extent, probably at least partially caused by the lower weight in the reward function. For a qualitative
evaluation, figure 3 shows a selection of the sampled molecules alongside their QED score [47].

3.3.3. Learned chemical space
Knowing that text-based deep molecular generative models can memorize large fractions of the chemical
space [48], we sought to investigate the learned chemical space, assembled by a dataset of 10 000 random
ChEMBL compounds, 3000 molecules sampled from the unbiased VAE, 3000 molecules sampled during the
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Figure 2. Exemplary density functions of conditional generation. Gray distributions show predicted binding affinities of n= 3000
molecules sampled from an unbiased SELFIES VAE. Depicted in red are the densities obtained by sampling from the RL
optimized conditional generative model. It can be seen that the optimization biased the sampling process toward regions of the
chemical space that are more densely populated with ligands that are predicted to bind.

Figure 3.Molecules sampled against specific protein targets. For a selection of targets, the generated compound with the highest
reward is depicted. a stands for binding affinity. The molecule against VEMP_SARS2 is further discussed in a case study and the
molecule against ACE2_HUMAN was synthesized (for details see text).

RL optimisation and 82 SARS-CoV-2 candidate drugs from the literature (top 15 matches on PubChem and
69 compounds identified via protein-interaction-maps [6], excluding two duplicates). For all these
molecules, binding affinities were computed alongside other pharmacological properties. Next, a UMAP [49]
was performed on the ECFP4 fingerprints, a well-established index for molecular featurization, of all
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Figure 4. Predicted ligand promiscuity. Left: Density plots of ligand promiscuity for 500 random proteins from BindingDB. Right:
Ligand promiscuity density plots for the 41 SARS-CoV-2 related targets. The same sets of molecules were used for both plots
(10 000 ChEMBL, 3000 from unbiased VAE and 3000 generated during RL optimization).

molecules [50] and visualized with Faerun/Tmap [51, 52]. The interactive visualisation (available online7)
shows that the RL optimisation concentrates the compound sampling on a manifold of the chemical space
that is more densely populated with binding compounds (for a snapshot see supplementary figure S4). The
3D UMAP shows that the currently investigated candidate molecules (red) are structurally fairly dissimilar,
i.e. widely scattered across the chemical space. But it gives evidence that our model successfully navigates the
chemical space towards regions of high reward. While this shows that the generator succeeded in its objective
of generating more ligands with high affinities we are aware that the quality of the reward function remains a
bottleneck of the framework.

3.3.4. Target selectivity
Small molecules designed to bind to a specific target can be expected to bind to at least a dozen different
targets [53]. This promiscuity of ligands is an important challenge in targeted drug design as it can induce
side effects such as off-target cytotoxicity or lowered efficacy. Accounting for target selectivity has been
proposed as a means to reduce attrition rates in downstream clinical trials [54]. To assess the selectivity of the
generated molecules we computed a promiscuity score Pm,T for each moleculem and a set of targets T by
measuring the fraction of targets to which the molecule is predicted to bind. The same set of molecules as
described above were used and the results are shown in figure 4. Interestingly, the promiscuity of the
molecules generated during RL optimization was significantly lower than the promiscuity of ChEMBL
molecules as well as molecules from the unbiased VAE (Tukey’s HSD test, p< 0.001 in all pairwise
differences, mean for ChEMBL: 0.19, mean for Optimized: 0.11, see figure 4(A). Note that this was achieved
without explicitly penalizing high promiscuity to unrelated targets. Additionally, investigating promiscuity
within the set of 41 examined SARS-CoV-2 related targets reveals that promiscuity is significantly higher for
the optimized molecules compared to the other two sets (Tukey’s HSD test, p< 0.001 in all pairwise
differences, mean for ChEMBL: 0.12, mean for Optimized: 0.27, see figure 4(B). While further work to
improve selectivity can certainly be done, these results indicate that our conditionally generated molecules
are not only less prone to off-target binding effects but also more likely to bind to related SARS-CoV-2
targets than the other sets of molecules.

3.4. Case study
For a more detailed assessment of the quality of the molecules, we ranked all ~3000 conditionally generated

molecules by their Tanimoto similarity τ(F1,F2) =
|F1∩F2|
|F1∪F2| (where F1 and F2 are binary fingerprints of

moleculesm1,m2 ∈M) to the closest neighbour of the 82 literature candidates. Among the top five
molecules, we found the molecule encircled in figure 3 generated against VEMPSARS2 (UniProt ID: P0DTC4),
the envelope small membrane protein (E-protein), a key player for virion assembly and morphogenesis.
From all 82 literature candidates, our molecule exhibits the highest Tanimoto similarity to the compounds
MZ1 and dBET6 (τ = 0.64 based on RDKit fingerprint). Notably, these two pre-clinical SARS-CoV-2 drug
candidates were identified by Gordon et al [6] as targeting the E-protein, exactly the protein which was used
to condition the generation. MZ1 and dBET6 target E-Protein by degrading the human BRD2 and BRD4
proteins and thus preventing the virus from inducing changes in the host’s protein expression.

7The Faerun visualization of the ECFPs is available at: https://paccmann.github.io/assets/umap_fingerprints.html.
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3.5. Retrosynthesis
The top-5 candidate compounds for each protein target were further analyzed for synthetic feasibility using
IBM RXN’s retrosynthesis engine [26]. We performed the predictions using the Python package
rxn4chemistry8. We used the default settings for the hypertree exploration: limiting the maximum
number of synthesis steps to 6 (to obtain a reasonable yield), applying a confidence threshold on the forward
model score of 0.6 (FAP, forward acceptance probability) and setting the number of beams for the search to
10 (more details can found in the documentation9).

Although the generated molecules are not optimized for synthetic accessibility, more than half of the
>2000 predicted synthesis routes are feasible. Overall, for 29% of the top-5 candidates per target, a synthetic
route could be successfully predicted with at most six synthesis steps. Interestingly, almost half of the
successfully predicted molecules only require a single or two step reactions, indicating that many of the
generated molecules can be synthesized from commercially available materials in a few steps. Moreover, a
correlation analysis between chemical and pharmacological properties indicates that some properties like
QED and synthetic feasibility are highly correlated (for details see supplementary figure S5).

3.6. Selection of synthesis candidates
3.6.1. Selection of ACE2 target
The selected target for the first synthesis was ACE2, a host protein that is widely regarded a promising target
for SARS-CoV-2 antiviral drug design [55–57] and was even argued a priority role [58]. Despite this
encouraging evidence in favour of ACE2, studies using generative models against SARS-CoV-2 host targets
are almost absent; with one exception [59]. For details on docking and drug repurposing studies on ACE2 for
COVID-19 see S1.6. We aim to fill this gap and here exemplify the process of generating and synthesizing
ligands predicted to bind to host targets.

3.6.1.1. Role of ACE2
ACE2 is a type 1 membrane protein that regulates the renin-angiotensin-aldosterone system (RAAS) and is
predominantly expressed in lung alveolar epithelial and endothelial cells [60–62]. It plays an important role
in regulating cardiovascular homeostasis [63, 64], inhibition of cell growth, and protection from alveolar
epithelial cell injury [65–67]. ACE2 has previously been identified as a functional receptor for SARS-CoV to
mediate cell entry by its spike protein [68, 69]. SARS-CoV-2 also utilizes ACE2 as a receptor [70, 71],
specifically by a fusion of ACE2 with the densely glycosylated spike (S) proteins [70], but with an increased
binding affinity due to modifications around the centre of the binding domain [72, 73]. Owing to the
importance of the S-protein in viral cell entry and fusion, developing ACE2 inhibiting drugs seems like a
logical step in tackling SARS-CoV-2. The plausibility of this approach was highlighted using a recombinant
RBD protein to prevent SARS-CoV-2’s RBD from binding to ACE2’s peptidase domain [74, 75]. With strong
evidence of the role played by ACE2 in viral infection, much of the focus is on finding drugs that can prevent
the S-protein from interacting with this enzyme.

3.6.2. Selection of molecule
As a demonstration of the fully autonomous pipeline for swift discovery and synthesis of molecules
generated against unseen SARS-CoV-2-related protein targets, we synthesized 3-Bromobenzylamine, a
molecule proposed by our generative model against ACE2. Note that on rare occasions, our generative model
proposes molecules that already exist in chemical databases and as such are not de-novo. This was the case for
3-Bromobenzylamine, a bioactive compound which has been crystalized with the histidyl-RNA synthetase of
T. cruzi in PDB 4YRI and is known to inhibit neurological enzymes like PNMT [76].

3-Bromobenzylamine was selected anyway for several other reasons. First, a maximum common
subgraph similarity search [77] within the set of 82 COVID-19 literature candidates revealed that
3-Bromobenzylamine is a full substructure of Arbidol (Umifenovir), a broad-spectrum antiviral drug used in
Asia against influenza and hepatitis [78, 79]. Notably, Arbidol was proposed as an antiviral drug for
COVID-19 specifically for its interaction with the ACE2 receptor [80], exactly the target against which
3-Bromobenzylamine was generated. It was first hypothesized that Arbidol may act as a virus host fusion
inhibitor for SARS-CoV-2 [80, 81] (thus preventing viral entry to the target cell, just like in influenza and
hepatitis viruses [82, 83]) and later experimentally confirmed in docking studies [84, 85] as well
as in-vitro [86]. An antiviral effect of Arbidol on SARS-CoV has been known for many years [87] and while
COVID-19 studies are not yet fully conclusive [88], Arbidol was found effective in decreasing mortality [89]

8 https://github.com/rxn4chemistry/rxn4chemistry.
9 https://rxn4chemistry.github.io/rxn4chemistry/_modules/rxn4chemistry.html#rxn4chemistry.core.RXN4ChemistryWrapper.
predict_automatic_retrosynthesis.
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and in increasing negative rate of PCR [90–92]. We therefore hypothesized that 3-Bromobenzylamine as a
smaller and broadly available compound, could operate in a similar mechanism of action by interacting with
ACE2, especially since the presence of bromine was found important for the efficacy of Arbidol [93].

Secondly, the biochemical properties predicted in-silico were desirable, with a predicted ACE2 affinity of
0.77, a high drug-likeness (QED= 0.71), a penalized LogP of 0.25, the presence of an aromatic ring, an
estimated solubility (ESOL [94]) of−2.66, a relatively low promiscuity to the remaining protein targets
(0.13) and a relatively high promiscuity for the other SARS-CoV-2 related targets (0.27). The molecule has a
molecular weight of 186 Dalton, passes the Lipinski rule of five and was predicted to be non-toxic in all but
one Tox21 assays (NR-AR-LBD, the androgen receptor ligand-binding domain). Thirdly, the retrosynthetic
route (shown in supplementary figure S6) was comparably simple (one reaction, eight reactants) and
predicted with high confidence (98.5%) by the retrosynthesis model [26]. Although the reaction itself, a
nitrile reduction, reducing 3-Bromobenzonitrile with lithium aluminium hydride, is challenging, it is a
known, well-understood reaction that minimizes the risk of complication thus making the target compound
the ideal candidate to demonstrate the validity of the end-to-end concept.

3.7. Chemical synthesis
The LC/MS shows a clear signal related to the presence of the 3-Bromobenzylamine with a score of more
than 99%. No signals connected to the precursors were identified by the target screening analysis. Although it
is not possible to use the qualitative analysis for quantitative arguments, the lack of evidences pointing to the
presence of the precursor in the LC/MS analysis corroborates the indications that the automatically suggested
synthesis route successfully completed in a quantitative way (report in supplementary figure S7).

4. Discussion

4.1. Summary
Here, we proposed a novel framework for compound design that can be targeted towards any target protein
without retraining requirements. We showcased the potential of our generative framework by tackling the
problem of designing novel antiviral candidates with high binding affinity to unseen SARS-CoV-2 related
targets, while controlling toxicity of the generated molecules. Without explicitly accounting for target
selectivity, the generated molecules exhibited comparably low promiscuity within a random set of protein
targets but comparably high promiscuity within the set of SARS-CoV-2 related targets. A future endeavour
could be to optimize scaffolds of existing drugs against specific targets by coupling our approach with the
recently proposed deep scaffold generator [95] or to directly optimize binding scores. Furthermore, to assess
the feasibility of synthesizing the generated compounds, we estimated the retrosynthetic pathways of a subset
of candidates for each target. We exemplified how our framework for target-driven de novo discovery of
molecules with potential antiviral properties can be coupled with an AI-assisted synthesis platform for swift
chemical synthesis. One molecule was selected for further testing and successfully synthesized using an
automatically derived synthesis route. This molecule, 3-Bromobenzylamine, is a substructure of Arbidol, a
broad-spectrum antiviral drug [79] with known efficacy in combatting COVID-19 [89]. We are aware that
our synthesized molecule is commercially available, relatively small, and that the true biochemical activity
remains unclear at this point. However, the ultimate goal of our contribution is to showcase a generic
pipeline for rapid generation and chemical synthesis of molecules with desired properties, in this case,
potential binding to SARS-CoV-2 related target proteins.

4.2. Limitations
We are aware that the true bioactivity of the proposed molecules can only be consolidated by in vitro and
in vivo experiments. Another bottleneck in our pipeline is the accuracy of the predictive models such as the
affinity predictor, which could be further improved using recently available data from a large-scale screening
consisting of 1670 compounds tested against SARS-CoV-2 proteins [96]. On the one hand, it is advantageous
that our model operates only on protein primary structures and thus does not necessitate the availability of
3D protein structure, a key limitation especially in situations of new infectious diseases such as COVID-19
where it takes months before tertiary structure of key proteins becomes available [97]. On the other hand,
docking simulations could be beneficial to collect further evidence that the molecules indeed bind to the
target structure prior to synthesis, particularly for target-site specific modeling which has not been tackled
directly in here. It is therefore conceivable that some of the generated ligands bind to unintended drug
binding pockets that do not or only mildly allow the drug to exert its mechanism of action. Predicting
binding affinities for specific sites and conditioning the generative model on specific pockets can in principle
be achieved given the pocket is well defined in terms of primary structure. However, related studies with deep
generative models on SARS-CoV-2 have shown that primary structure can suffice to generate molecules with
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favorable binding free energies that reliably identify the druggable binding pocket within the 3D protein
structure [25].

4.3. Conclusion
A key advantage of our proposed method is that it can generate ligands with high predicted binding affinities
for entirely novel protein sequences, as we found in the leave-one-out-cross-validation on 41 SARS-CoV-2
related proteins. To the best of our knowledge, this is the first report of a conditional molecular generator
that generalizes to unseen protein sequences. Another key novelty of the proposed system is the integration
of molecular generative models with retrosynthesis and synthesis protocol prediction models. This enables
the generation of de novomolecules and the compilation of the synthesis’s experimental procedures without
human intervention. Conclusively, we hope that our framework can be a building block towards the swift
discovery of de novomolecules with desired pharmacological properties.

Code & data availability

The data that support the findings of this study are openly available at: https://ibm.ent.box.com/v/
paccmann-sarscov2. Under the link, we provide processed versions of all datasets used in the study as well as
pretrained models. The following datasets were used: ChEMBL [98]: SELFIES VAE; UniProt [37]: Protein
VAE; BindingDB [34]: Protein-ligand affinity prediction; Tox21 [30]: toxicity prediction; SARS-CoV-2
targets [6]: conditional generation. All models are implemented in PyTorch 1.3.1 and training was done on
POWER8 processors and an NVIDIA Tesla P100. The source code for training the models presented in this
submission is publicly available at: https://github.com/PaccMann/paccmann_sarscov2.
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