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Abstract
Deep learning methods applied to chemistry can be used to accelerate the discovery of new
molecules. This work introduces GraphINVENT, a platform developed for graph-based molecular
design using graph neural networks (GNNs). GraphINVENT uses a tiered deep neural network
architecture to probabilistically generate new molecules a single bond at a time. All models
implemented in GraphINVENT can quickly learn to build molecules resembling the training set
molecules without any explicit programming of chemical rules. The models have been
benchmarked using the MOSES distribution-based metrics, showing how GraphINVENT models
compare well with state-of-the-art generative models. This work compares six different
GNN-based generative models in GraphINVENT, and shows that ultimately the gated-graph
neural network performs best against the metrics considered here.

1. Introduction

Due to the recent success of deep learning (DL) models across a wide-range of fields, it is often said that we
are in the third wave of artificial intelligence (AI) [1]. Some of the most utilized architectures at the forefront
of the recent AI boom are recurrent neural networks (RNNs), used to model sequential processes (such as
speech), and convolutional neural networks, used in computer vision tasks [2]. More recently, there has been
an increase in the use of graph neural networks (GNNs), or more generally, graph networks (GNs) [3], for
modeling patterns in graph-structured data. Graphs are widespread mathematical structures that can be
used to describe an assortment of relational information, and would seem natural choices for organic
chemistry as graphs are natural data structures for describing molecular structures.

The idea of designing novel pharmaceuticals can be boiled down to generating graphs which meet all the
criteria of desirable drug-like molecules. This is the guiding principle behind graph-based molecular design.
De novomolecular design is the process of designing novel molecules with a specific set of desired
pharmacological properties from scratch. This approach is the antithesis of QSAR-based high-throughput
screening, where instead the structures are known and their corresponding pharmacological and physical
chemical properties are unknown. Deep molecular generative models have emerged as promising methods
for exploring the otherwise intractably large chemical space through de novomolecular design [4–13], with
the first string-based study emerging in 2016 [14], and the first graph-based studies emerging in 2018 [9, 15].

While string-based methods are surprisingly powerful, graphs are more natural data structures for
describing molecules, and have many potential advantages over strings, especially when used with GNs, as
GNNs have the ability to learn permutation invariant representations for graphs [16–20]. Additionally, the
graph representation can naturally be expanded to include additional descriptors (e.g. spatial coordinates) in
applications where more information than simply the identity and connectivity of atoms in a molecule is
required (e.g. conformer generation) [21–23]. Finally, GNNs have the potential to learn from fewer examples
as they can directly learn the connectivity rules underpinning atoms in molecules, as opposed to, for
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Figure 1. Schematic of a message passing neural network (MPNN), the main class of GNN used in this work. The goal of an
MPNN is to learn a graph representation vector, g, via a neighborhood aggregation scheme of node states, hli, and edge states, eij.

example, RNNs learning a syntax. All these reasons, supplemented by the relatively more recent development
of tools for efficiently working with graphs, make GNNs appealing to study for molecular generation.

Here, a new platform, GraphINVENT, is introduced for training deep generative models directly on the
molecular graph representations using GNNs. First, the various elements of GraphINVENT are introduced,
with similarities and differences to string-based generative models highlighted along the way. The six
different GNNs used in this work are then described in detail in the methods section, together with
hyperparameter tuning and training. The Molecular Sets (MOSES) benchmark [24] and other internal
evaluation metrics are then used to compare model performance in training speed, reproduction of
molecular properties of the training set, and comparison to both string- and graph-based models where
metrics have been previously published.

1.1. Graph networks
GNNs are a class of GNs, which have recently emerged as powerful tools for representation learning of
graphs [3, 20, 25]. In summary, GNs take graph-structured data as input and output a latent representation
for the input graph. This output graph representation is the result of aggregating hidden node states
(vectors) obtained in the different propagation blocks of the GN [3, 16, 26]. The learned graph
representations are node-order invariant, and a smaller distance between two graph representations implies a
greater degree of similarity.

In this work, the representation learning power of GNNs is applied to molecular graph generation. The
focus is on GNNs which generalize convolutions to graphs, such as graph convolutional networks (GCNs)
and message passing neural networks (MPNNs). The difference between GCNs and MPNNs is that the
propagation rules in GCNs can be directly derived from spectral graph theory and approximations thereof,
whereas the propagation rules in MPNNs can use ‘arbitrary’ neighborhood aggregation functions [27]. Being
widely referenced throughout this work, the functional form of an MPNN is illustrated in figure 1; MPNNs
are discussed in more detail in section 2.1.1.

Introduced by Scarselli et al in 2008 [25, 28], many GNN variants have since been reported in the
literature, the majority applied to molecules only in the past couple of years [16, 20, 27, 29]. The general
GNN architecture is L propagation blocks using a non-linear propagation rule,

Hl+1 = fprop(H
l,E) ∀ l ∈ L, (1)

followed by a readout function. The propagation block can be thought of as a convolution layer. In the
expression above, E is the adjacency tensor, and the hidden node states H0 are initialized to the node features
matrix, X.

The GNN can be used for (local or global) property prediction with an appropriate readout function to
obtain the target property Y= freadout(HL). Often, the goal of a readout function is to calculate a node-order
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invariant embedding for the molecular graph, g, which can then go on to be used for property prediction
tasks.

Different GNNs are distinguished by the specific functions used for fprop or freadout .

1.2. Generative models
The last three years has seen a lot of work on DL-based generative models; some of this work will be
summarized in the next sections. For more in-depth reviews on generative models, see [30–33].

1.2.1. String-based generative models
Since 2016, extensive work has been done on string-based generative models. Many of these models
[4, 34–37] have been benchmarked using the MOSES distribution-based metrics [24], discussed in
section 2.4.4. These benchmarked models have been used for comparison with GraphINVENT models.

Many of these string-based generative models borrow methods from natural language processing, such as
RNNs, generative adversarial networks (GANs), and autoencoders (AEs), which train on a general set of
molecular strings and learn the underlying syntax. A model which has then learned the syntax behind
molecular strings in a training set can then be used to generate new molecular strings which sample the same
distribution of tokens (e.g. ‘C’, ‘= ’, ‘1’) found in the training set. Because these methods are often
probabilistic, there is always a chance of sampling a novel permutation of tokens that then leads to new
molecular strings not found in the training set, and thus, novel molecules. In drug design, the most common
string representation used is SMILES [38]. SMILES and RNNs work incredibly well together for deep
molecular generation; for a nice overview of string-based molecular generation, see [39].

1.2.2. Graph-based generative models
The first works on molecular graph generation were published in 2018 [9, 15], and there has since been a
surge of graph-based generative models published in the past two years [9–13, 15, 40–60]. Graph-based deep
molecular generative models also use a variety of architectures, such as GNNs, AEs, RNNs, and GANs, to
learn representations (i.e. vectors) for the different nodes in the graph and/or the graph itself. New molecular
graphs can then be generated which sample the prior distribution of nodes and edges. The way in which new
nodes and edges are sampled varies greatly between each method; below we detail two.

The methods of Li et al [9, 10] inspired the beginning of this work in late 2018. In these models, new
graphs are generated by iteratively adding nodes and edges to incomplete subgraphs; they do this by
sampling from learned distributions of possible actions, such that the graph generation process can be seen
as a sequence of decisions for each subgraph. Neither of these methods encodes explicit chemical rules into
their models, which makes it so impressive that they are able to learn such a large fraction of chemically valid
molecules.

We have adopted similar approaches in this work. Two of the local readout functions from [9] have been
implemented in GraphINVENT, whereas the action space has been divided similarly to [10]. To build upon
that work, many additional GNN blocks were explored in GraphINVENT in combination with a tiered
global graph readout function. Moreover, GraphINVENT has then been compared to state-of-the-art
(SOTA) methods, something the previous studies did not do.

In [9], the decision space is split into three possible actions for building the graphs: faddnode, which
determines whether to terminate the graph building process or add a new node to the graph; faddedge, which
determines whether to add a new edge to a newly created node; and fnodes, which determines a score for each
node and thus determines which node to build upon next. All of these actions use the learned node and graph
embeddings, which are calculated from L stacked GNN blocks. Furthermore, all GNN implementations used
can be described using the MPNN framework, discussed in detail in the next section. Many of the message
passing and node update functions used in [9] have been implemented in GraphINVENT (e.g. feed-forward
neural networks and RNNs), with the exception that GraphINVENT does not use any long short-term
memory cells for the message update functions as they were found to be comparable in performance to gated
recurrent unit cells. GraphINVENT also uses two of the local readout functions used in [9]: a simple sum
and the graph gather function [17], both amply used within the GNN literature.

GraphINVENT differs from [9] in the use of a tiered global readout, as well as in the handling of training
data, both to be discussed in detail below. Notably, on-the-fly training data generation was found not to scale
to larger training sets (i.e. millions of structures), such that a data preprocessing scheme was adopted in
GraphINVENT which would allow it to maintain a relatively low RAM requirement during training. While
GraphINVENT has been made publicly available, the authors of Li et al [9] did not publish any code.

In [10], the authors used a similar sequential graph construction approach as discussed above, where
sampled actions are iteratively applied to intermediate graphs until the ‘terminate’ action is sampled. The
authors introduce the terminology decoding route to refer to the specific route, r, that is taken to construct a
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Figure 2. General schematic of GraphINVENTmodels. Shown is a single molecule, but in practice both training and generation is
done on a mini-batch of graphs.

particular graph such that r= ((G0, t0),(G1, t1), . . . ,(GN, tN)); here Gn is a specific graph state and tn is an
action that takes Gn →Gn+1. We found this terminology very useful when discussing graph generation.

The authors then split their decision space into four possible actions for building subgraphs:
initialization, which adds a single node to an empty graph; append, which adds a new node and connects it to
an existing node in the graph; connect, which connects the last appended node to another node in the graph;
and termination, which ends the graph generation process. The authors deviated from the traditional MPNN
framework, and opted instead for the graph convolution architecture published by Wu et al [61]. At each
propagation step, each node aggregates information not only from nearest neighbors, but also from remote
neighbors. Although a less elegant framework than the one presented above, the authors were able to scale
their calculations to molecules containing up to 50 heavy atoms, and even introduced recurrence in one of
their models (MolRNN), to much improvement. Our models deviate from theirs in structure both in the
GNN blocks and in the global readout blocks, but we have chosen to divide our action space similarly to
theirs. The authors of [10] have made their code, which is built using Python 2.7 and scikit-learn, publicly
available.

Unfortunately, few of the GNN-based molecular generative models introduced in this section have
compared to SOTA methods, such that it is difficult to compare the advantages of each method. This is partly
explained due to the relative newness of the field and, until recently, lack of established standards and
open-source benchmarking tools; however, following the publication of various open-source benchmarking
methods [7, 24, 62], this is likely to change. To the best of our knowledge, one graph-based deep generative
model, the JTN-VAE [11], has been benchmarked using the MOSES metrics, making it suitable for
comparison with GraphINVENT.

2. Methods

The methods section is organized as follows:

(a) model architectures;
(b) model input/output formats;
(c) training sets;
(d) workflow;
(e) evaluation metrics;
(f) hyperparameter optimization; and
(g) computational details.

2.1. Model architecture
The generative models in GraphINVENT consist of two segments, which will be referred to as ‘blocks’:

(a) a GNN block;
(b) a global readout block.
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Table 1. Datasets used in this work.

Dataset Sizea Sizeb |Vmax| Atom types Formal charges

GDB-13 1K rand 1K, 1K, 1K 12K, 12K, 12K 13 {C, N, O, S, Cl} {−1, 0,+1}
GDB-13 1K canon 1K, 1K, 1K 12K, 11K, 11K 13 {C, N, O, S, Cl} {−1, 0,+1}
MOSES rand 1.5M, 176K, 10K 33M, 3.8M, 210K 27 {C, N, O, F, S, Cl, Br} {0}
MOSES canon 1.5M, 176K, 10K 26M, 3.3M, 192K 27 {C, N, O, F, S, Cl, Br} {0}
MOSES arom 1.5M, 176K, 10K 40M, 4.4M, 247K 27 {C, N, O, F, S, Cl, Br} {0}

Here, the size of each split (train, test, val) is the number of graphs abefore and bafter preprocessing, rounded. 1K= 1000; 1M=

1 000 000.

These are described in the following subsections. In short, the GNN block takes as input the molecular
graph representation, i.e. the adjacency tensor, E, and node features matrix, X, and outputs the transformed
node feature vectors, HL, and the graph embedding, g (figure 2).

The global readout block then predicts a global property of the graph using HL and g. Here, the global
property one is interested in calculating is the action probability distribution (APD) of each graph, which is a
vector containing probabilities for all possible actions for growing a graph; sampling it tells the model how to
grow a graph.

As the APD defines all possible actions for growing any subgraph, the APD contains invalid actions from
the point of view of a single graph. The model must learn to assign zero probability to invalid actions for a
given input graph.

2.1.1. The GNN block
Six unique GNN blocks were constructed in GraphINVENT. Each GNN block is a different MPNN [16].
These are:

(a) MNN—message neural network.
(b) GGNN—gated-graph neural network [17, 63].
(c) S2V—set2vec [63, 64].
(d) AttGGNN—GGNN with attention [63].
(e) AttS2V—S2V with attention [63].
(f) EMN—edge memory network [63, 65].

The MNN has not been investigated before for molecular tasks. The names from the list above are used
both here and in the code. This is emphasized as some of the above networks have inconsistent names in the
literature. The names of the GNN blocks are also used to refer to the models in GraphINVENT, as the GNN
block is what distinguishes them.

Many of these GNNs have been previously explored for property prediction tasks [16, 19, 65–67] and
found to be comparable to SOTA methods, but they have not been tested in architectures for generative tasks.

The first three MPNN implementations—MNN, GGNN, and S2V—can be represented using the
following functional form.

(1) Amessage passing phase, consisting of l∈ Lmessage passing blocks:

ml+1
i =

∑
vj∈N (vi)

Ml

(
hli,h

l
j,eij

)
hl+1
i = Ul

(
hli,m

l+1
i

)
,

wheremi and hi are the incoming messages and hidden states of node vi,N (vi) is the set of vi’s nearest
neighbors, and eij is the edge feature vector for the edge connecting vi and vj.Ml and U l are the message
passing and node update functions, respectively. The message passing phase is followed by the following.

(2) A graph readout phase:

g= R(HL,H0),

where g is the final graph embedding. The graph readout, R, is an aggregation function that collects the
initial and final node states, transforms them, and returns a single graph embedding.
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The fourth and fifth implementations—AttGGNN and AttS2V—can almost be represented using the
same functional form, but with a slight modification to the message passing phase:

ml+1,′
i =

∑
vj∈N (vi)

wl
ij ⊙Ml

(
hli,h

l
j,eij

)
hl+1
i = Ul

(
hli,m

l+1,′
i

)
,

where⊙ is the element-wise multiplication operator, and

wl
ij = SOFTMAX(f(hlj),N (vi)).

The second argument above indicates the set over which the softmax is computed (if the second argument is
omitted, then the softmax is applied over the dimension of the input vector). For example, usingN (vi)
above ensures that

∑
vj∈N (vi)

wl
ij = (1, . . . ,1). This is a form of attention [68].

Finally, the sixth implementation (EMN), can also be described using the attention description above;
however, instead of having hidden states on the nodes, hidden states are on the edges, and messages are
passed between edges, such that the role of the edges and nodes is flipped.

The precise functions used forMt , U t , and R in each of the six models discussed herein can be found in
appendix C.

2.1.2. Global readout block
The GNN block is followed by a global readout block. The global readout block uses both the node- and
graph-level information to predict the APD. Many different global readout block architectures were tested
before selecting the one presented here, and are described elsewhere [69].

The global readout block has a tiered multi-layer perceptron (MLP) structure, where the first two MLPs
generate a preliminary f ′add and f

′
conn (see section 2.2.2), which are then concatenated with the graph

embedding g. This concatenated tensor is input to the second block of MLPs, and their output concatenated
and normalized to return the APD. Note that f term only depends on g.

f ′add = MLPadd,1
(
HL

)
f ′conn = MLPconn,1

(
HL

)
fadd = MLPadd,2 ([f ′add,g])

fconn = MLPconn,2 ([f ′conn,g])

fterm = MLPterm,2 (g)

APD= SOFTMAX([fadd, fconn, fterm]) .

2.2. Model input and output
2.2.1. Model input
The input to all GraphINVENT models is the molecular graph representation. All the graphs in this work are
represented by the following two tensors:

(a) node features matrix, X ∈ {0,1}|Vmax|×C

(b) adjacency tensor, E ∈ {0,1}|Vmax|×|Vmax|×|B|.

|Vmax| and |Emax| are the number of nodes and edges, respectively, in the largest graph in the dataset. For
all graphs, X and E are padded to the size of the largest graph in the dataset. For a detailed example, see
appendix D.

Above, C is a constant which denotes the size of the node features; it is the sum of the number of one-hot
encoded features per node, C= |A|+ |F|+ |H|+ |C| (table 2). The size of the edge features is the number of
one-hot encoded features per edge, |B| (table 3).

2.2.2. Model output
The learned output for all of the models is the APD, which specifies how to grow the input subgraphs. The
APD is made up of three components: fadd, fconn, and f term, similar to previous work [10].

fadd contains probabilities for adding a new node to the graph. fconn contains probabilities for connecting
the last appended node in the graph to another existing node in the graph. f term is the probability of
terminating the graph.
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Table 2. Node features used in graph representations in this work. The specific elements in each set are user-defined and depend on the
dataset used. Asterisks (∗) denote optional features.

Node feature Set label Example elements

Atom Type A {C, N, O, S, Cl}
Formal Charge F {−1, 0,+1}
Implicit Hs∗ H {0, 1, 2, 3}
Chirality∗ C {None, S, R}

Table 3. Edge features used in graph representations in this work. The asterisk (∗) denotes an optional element in the bond set.

Edge feature Set label Elements

Bond Type B {Single, Double,
Triple,
Aromatic∗}

Table 4. fadd tensor shape for a mini-batch of graphs. Optional dimensions are indicated by an asterisk (∗). Any nonzero term in fadd
means there is a possibility of appending a new node to the graph with the features indicated by dims 2–5 using the bond type indicated
by dimension 6. The new node will be appended to the node denoted by dimension 1. γ is the mini-batch size.

Dim Property Size

0 Subgraph index γ
1 Node to connect to |Vmax|
2 New atom type |A|
3 New formal charge |F|
4∗ New implicit Hs |H|
5∗ New chirality |C|
6 New bond type |B|

Table 5. fconn tensor shape for a mini-batch of graphs. Any nonzero term in fconn means there is a possibility of appending the last
appended node to the node denoted by dimension 1, with the bond type indicated by dimension 2. γ is the mini-batch size.

Dim Property Size

0 Subgraph index γ
1 Node to connect to |Vmax|
2 New bond type |B|

Table 6. f term tensor shape for a mini-batch of graphs. Any nonzero term in f term means that there is a possibility of terminating that
graph’s generation. γ is the mini-batch size.

Dim Property Size

0 Subgraph index γ

The shapes of the three (unflattened) APD components are described in tables 4–6. The APD is a vector
property which contains the probabilities of all possible actions for growing an input subgraph; as it is a
vector property, fadd and fconn are flattened in the APD. The APD for each graph sums to 1.

2.2.3. The graph decoding route
The APDs are computed for all graphs in the training set during preprocessing, and are the target vectors to
learn during training. The APDs can be derived from the graph decoding route as outlined below.

Li et al [10] introduced the concept of a graph decoding route in their work, using it to refer to the specific
route, r, that has been taken to construct a particular graph. GraphINVENT uses a similar concept. For each
graph in the training data, r= ((G0,APD0),(G1,APD1), . . . ,(GN,APDN)) is computed. Here, APDn describes
how to get from Gn to Gn+1, G0 is an empty graph, GN is the final graph, and N is the total number of
construction actions. G1...N−1 are the intermediate sized graphs. APDN encodes the final ‘terminate’ action.

Which subgraphs are found in r is determined by how the graph is traversed; this is detailed in
section 2.4.1 below.

2.3. Training sets
Datasets used in this work are listed in table 1. The GDB-13 1K subsets each consist of 1000 randomly
selected structures from the full GDB-13 dataset [70]. The GDB-13 dataset is made up of small organic
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Figure 3. Graph deconstruction used by GraphINVENT during training data preprocessing. The numbers on the nodes
correspond toOBFS. The last node traversed using the mod-BFS algorithm will be the first node to be removed (node 4), followed
by the second-to-last node traversed (node 3). However, as node 3 has two edges, one edge must first be removed; in the next
deconstruction step, node 3 and the remaining edge are removed together. This process is repeated until there are no nodes
remaining in the graph.

molecules generated in silico so as to enumerate the chemical space of up to 13 heavy atoms (with a few
additional constraints). This dataset was used for quick hyperparameter optimization runs.

The MOSES datasets were used for evaluating GraphINVENT models and were downloaded from the
MOSES GitHub [71]. The MOSES dataset is a subset of the ZINC dataset [72], and consists of slightly larger
commercially available organic molecules, curated for virtual screenings.

Subsets of MOSES were also used to test the effect of dataset size on learning; these subsets were obtained
by randomly sampling 10% and 1% of structures from the full MOSES dataset.

2.4. Workflow
The workflow can be split up into four general phases:

(a) preprocessing;
(b) training;
(c) generation; and
(d) benchmarking

Each of these phases is detailed below. With the exception of preprocessing, all the workflows were
non-trivially parallelized for faster performance on a GPU.

2.4.1. Preprocessing
In order for a model to learn to build molecular graphs, the training set molecules must be preprocessed in a
way that the model can learn how to reconstruct them. The model cannot simply be fed the final molecule,
but also information on how to build the molecule from an empty graph in a step-by-step fashion.

Preprocessing the training data is in essence a graph traversal problem. To create the training data, all
molecules in the training set are fragmented step-wise (Algorithm 1 in appendix E), so as to obtain each
molecule’s decoding route, r. Each time a graph Gn is fragmented into Gn−1, the corresponding APDn− 1 is
computed for Gn−1; APDn− 1 contains the information needed to reconstruct Gn.

The order of the node/edge removal is determined by reversing a breadth-first search (BFS) (Algorithm 2
in appendix E), modified to ensure that disconnected fragments in the graph are never created after
removing any edge.

Starting with a molecular graph GN from the training set, r is calculated via the following steps:

(a) Assign a rank to each node vi in GN. This rank can be either (a) random or (b) canonical5.
(b) Traverse graph using modified BFS algorithm. LetOBFS(VN) be the graph traversal node order.
(c) UsingOBFS, deconstruct graph step-by-step until empty graph, G0, is reached, to obtain r.
(d) Repeat for all graphs in the mini-batch.

The deconstruction algorithm is illustrated in figure 3.

2.4.2. Training
Training is done in mini-batches. The training loss in the models is the Kullback–Leibler divergence between
the target APD and predicted APD. All models are trained using the Adam optimizer using the default
PyTorch parameters (except for weight decay in specified cases).

5 In GraphINVENT, the RDKit [73] canonicalization algorithm is used.
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Figure 4. Graph generation scheme in GraphINVENT. Upon seeing a graph, a trained model predicts an APD for the input graph.
An action is then sampled from the APD and applied to the graph to generate the next graph in the sequence. The process is
repeated until the ‘terminate’ action is sampled.

During training runs, the models are evaluated by sampling n_samples graphs every fixed number of
epochs. The generated graphs are used to calculate the evaluation metrics detailed in section 2.4.4. The
model state is saved after every evaluation epoch.

2.4.3. Generation
GraphINVENT models receive graphs as input and output APDs, from which possible actions can be
sampled and applied to the graphs. As detailed above in section 2.2.2, the three possible actions are

• adding a new node to the graph;
• connecting the last appended node to another node in the graph; and
• terminating the graph construction.

The specific details of each action (e.g. what type of atom to add) are encoded as nonzero elements in the
APD. The graph generation scheme is illustrated in figure 4.

Invalid actions are not masked during graph generation, as well-trained models will seldom sample these
and it is desirable to avoid hard-coding any rules into the models. Furthermore, invalid actions are not
masked so as to avoid artificially inflating the quality of generated molecules.

As such, in addition to sampling the ‘terminate’ action, the generation process is terminated for a graph if
an invalid action is sampled for it. There are three invalid actions which can occur during generation. These
are attempts to:

(a) add a node to a non-existing node in a graph6,
(1) exception: adding node to empty graph;

(b) connect a pair of already-connected nodes; or
(c) add a node to a graph already having the maximum number of nodes.

None of these invalid actions are chemistry related, but rather graph related.
If hydrogens are ignored during training data preprocessing, they are also ignored during generation. In

such cases, hydrogens are added to the generated graphs using RDKit [73] based on the valency of each atom.
Deciding at which point to stop training a generative model and use it for generating new and interesting

structures is a task-dependent question. In this study, training was stopped when the training loss of a model
had converged to within three significant figures. Early stopping criteria were also investigated, but found not
to work as well as simply training until convergence [69].

2.4.4. Benchmarking
The MOSES benchmark consists of distribution-based metrics for generative models and uses subsets of
ZINC [72] for the training and hold-out test sets. MOSES benchmarks were run using the code available at
[71]. 30 000 samples were used for evaluating each GNN-based model.

6 For example, building on a ‘padding’ node in the graph.
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The benchmarking metrics computed by MOSES are as follows:

• Fréchet ChemNet Distance (FCD) : difference in distributions of last layer activations in ChemNet [74]
between generated and test sets.

• Nearest neighbor similarity (SNN) : average similarity of generated molecules to nearest molecule from
test set(s).

• Fragment similarity (Frag) : cosine distances between histograms of fragment occurrences corresponding
to the generated and test set(s).

• Scaffold similarity (Scaff) : cosine distances between histograms of scaffold occurrences corresponding to
the generated and test set(s).

• Internal diversity (IntDiv1 & IntDiv2) : accesses chemical diversity within set of generated molecules
(digit indicates different powers of the Tanimoto similarity).

• Filters : fraction of molecules passing various chemistry filters.

Furthermore, the FCDs for the following molecular properties are calculated between the generated and
test sets: lipophilicity (logP), Synthetic Accessibility score (SA), Quantitative Estimation of Drug-likeness
(QED), Natural Product-likeness score (NP), and molecular weight (MW). All of the above metrics are
calculated for two test sets: a holdout test set (Test) and a scaffold-only test set (TestSF).

2.5. Evaluationmetrics
To evaluate the performance of GraphINVENT models, the following metrics were calculated for each
generated set:

• PV : Percent valid molecules.
• PU : Percent unique molecules.
• PPT : Percent molecules that were ‘properly terminated’ via sampling of a terminate action (as opposed to
sampling of an invalid action).

• PVPT : Percent of valid molecules in the set of PPT molecules.
• Vav : Average number of nodes per graph.
• Eav : Average number of edges per node.
• UC-JSD : The uniformity-completeness Jensen–Shannon Divergence introduced in [7]. This is a similarity
measure for the distributions of negative log-likelihood (NLL) per sampled action for the training, valida-
tion, and generation sets.

When reporting PU, it is necessary to also report the size of the generated set because as n_samples→∞,
PU→ 0.

For computing the PV and PU, the graphs are first converted to canonical SMILES as it is easier to do
string comparison than graph comparison. To do this, graphs are first converted to Mol objects, then
converted to SMILES. If the rdkit.Chem.MolToSmiles() function raises an exception, it is caught and the
corresponding graph is flagged as invalid.

2.6. Hyperparameter optimization (HO)
HO is crucial for the models presented here. Without suitable hyperparameters, the models will not train
well and the molecules generated will be largely invalid.

An initial HO was first performed using GDB-13 1K, as models train in a couple minutes on GDB-13 1K
and thus a wide range of hyperparameters could be investigated. The best hyperparameters were then used as
a starting point for HO on the significantly larger MOSES dataset. The HO strategy is discussed further in
appendix F.

2.7. Computational details
All the software was written in Python 3.6.8 and is available at https://github.com/MolecularAI/Graph
INVENT. The models were written using PyTorch 1.3 [75], cudatoolkit 10.0.130, NumPy 1.17.3, tensorboard
2.1.0, and RDKit 2019.03.4.0. The Conda environment specifications used for all calculations in this work
can be found in the GitHub repository. All plots were made using matplotlib 3.1.1. The GPU hardware used
to train the models were NVIDIA Tesla K80 and Volta V100 16 GB VRAM cards using CUDA 10.0 and driver
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Table 7. Performance of the best GGNNmodels using the MOSES datasets; r= random, c= canonical,+w= with weight decay, and a
= aromatic. Bold values indicate the best value for each field.

Model rGGNN cGGNN rGGNN+w cGGNN+w aGGNN Target

sampling epoch 40 40 50 50 40 —
deconstruction random canon random canon canon —
use_aromatic False False False False True —
weight_decay 0.0 0.0 0.001 0.001 0.0 —

PV 95.1 96.4 77.8 89.4 95.5 100
PPT 97.1 98.0 83.2 89.4 98.8 100
PVPT 95.1 96.9 76.9 87.4 95.3 100
PUa 99.1 99.5 94.2 94.3 97.9 100
Vav 22.073 21.877 21.194 20.063 22.082 21.672
Eav 2.149 2.138 2.183 2.132 2.156 2.146
a n_samples= 30 000.

version 418.87.01, with development on a machine with an NVIDIA RTX-2080 Ti card using CUDA 10.1
and driver version 430.50.

3. Results

3.1. Model evaluation
The performance of all the models using the GDB-13 1K and MOSES datasets is detailed in appendix G.
Using the evaluation metrics alone, all GraphINVENT models actually perform decently well, with MNN
performing slightly better and AttS2V performing slightly worse on both datasets. The top three models
were: MNN, GGNN, and S2V. The models all averaged around 94% PV and successfully modeled the
GDB-13 1K prior at Epoch 400. As this dataset has only 1K structures, the low PU for these models
(57%–78%) is not concerning.

On the MOSES dataset, all top three models averaged around 95% PV and 99.8% PU while successfully
modeling the prior at Epoch 30. While it was not possible to select the best model from the evaluation
metrics alone, the MOSES benchmarks (discussed below) revealed the GGNNmodel to have a slight
advantage over the MNN and S2V models for molecular generation tasks. The performance of the best
GGNNmodels trained on the MOSES dataset is highlighted in table 7. All GGNN models achieve PV> 90
and PU> 99 (n_samples= 30 000).

3.1.1. Canonical deconstruction path
The node ranking used to traverse the graphs and process training data has an effect on how the models learn.

When using a canonical deconstruction path7 to preprocess training data (appendix H.3) instead of a
random deconstruction path (appendix G.1), an improvement in both the PV and PU was observed in the
structures sampled when using GDB-13 1K (c.a.+1% increase in PV, and+5% increase in PU).

Furthermore, canonical deconstruction with dropout leads to a slight negative to negligible effect on the
PV and PU for most of the models studied compared to using randomly deconstructed training data with
dropout (appendix H.1). Weight decay, on the other hand, has a positive effect on the PU while only
marginally decreasing the PV for all models (appendix H.2). Using canonicalization with weight decay is
thus a viable way of increasing the uniqueness of the generated structures.

Similarly, using a canonical deconstruction path for the MOSES dataset leads to models with slightly
higher PV and PU (table 7). As such, canonical deconstruction is recommended for GraphINVENT models.

3.1.2. Effect of dataset size
The effect of training set size was investigated using the best model, cGGNN, by training on both 10% and
1% randomMOSES subsets. Detailed results are available in appendix G.2.0.1.

With 10% of the dataset, the model still performs well: >90% PV and >99% PU (n_samples= 30 000).
However, achieving a comparable PV using only 1% of the dataset requires heavy overfitting of the model; at
Epoch 100 the models achieve 92% PV, but the PU drops to 70%. These results suggest that the ideal dataset
for GNN-based molecular generation contains at least 100 000 molecules, although the models can still learn
from less data.

7 Specifically, using a random initial node, although random or fixed does not affect the results for either ordering (both tried).
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3.2. Benchmarking
3.2.1. Distribution-based benchmarks
GraphINVENT models were benchmarked using the MOSES distribution-based benchmarks. Results are
summarized in tables 9–11 for all models at Epoch 10. This epoch was chosen for comparison as it is
achievable by all models, with the limiting model being the EMN (10 epochs= 23 GPU days). The best
GGNNmodels (table 7) were also benchmarked at their respective best epochs.

While all the models introduced in this work perform reasonably well for all MOSES benchmarks, the
GGNNmodels are consistently the best, performing on par with previously published models. The cGGNN
performs the best.

3.2.2. Best model—cGGNN
Using the MOSES dataset, both the rGGNN and cGGNN peaked at Epoch 40. At this epoch, generated
structures are most similar to the test set structures based on the FCD distances (table 11) and give the best
results across the various MOSES benchmarks (tables 9 and 10). Nonetheless, the cGGNNmodel has a slight
edge on most MOSES metrics. Examples of generated molecules using some of the best models are shown in
appendix I.

Based exclusively on the MOSES metrics at Epoch 10, the rEMNmodel could be the best model. EMN
models train significantly slower than the other GraphINVENT models, however, and are impractical for
training on MOSES.

3.3. Hyperparameter optimization (HO)
3.3.1. Transferability of hyperparameters
The best hyperparameters for the GDB-13 1K set were used as a starting point for the MOSES dataset. These
worked well except for the learning rate decay scheme. As the MOSES dataset is significantly larger (table 1),
keeping the batch size fixed (1000) means many more mini-batches need to be processed in MOSES. As such,
the learning rate decay scheme was adjusted by increasing the learning rate decay interval (lrdi) to 10 000 for
the larger dataset. Further optimization was not performed.

3.3.2. Optimizing the best model—the GGNN
The effect of various (optional) parameters on performance was investigated for the best model, the GGNN.
These variants of the GGNN were: aromatic bonds (aGGNN), canonicalization (cGGNN), randomization
(rGGNN), training set size, and regularization(GGNN+w). Results are shown in tables 7, 9, 10, and 11.

The best models were rGGNN and cGGNN, with the canonical model performing better than the
random model. Adding weight decay to these models worsened their performance across all MOSES
metrics—both PV and PU dropped significantly. Even with low weight decay values, the models could not
reach a low enough loss. Models also took longer to train.

Including aromatic bond representations noticeably (although not prohibitively) slowed down the
training time of GraphINVENT models as it led to more graphs in the preprocessed training data. This is a
direct result of having the additional bond type available, which increases the available set of graph matrix
representations. The aGGNNmodel can generate graphs resembling the prior with high PV and PU, but
does not perform as well as the cGGNNmodel on the MOSES benchmarks. However, the aGGNN is on par
with the other GGNNmodels.

3.4. Computational resource requirements
Run times for the three different job types in this work are listed in table 8. Care was taken to obtain all run
time benchmarks using the same dataset (GDB-13 1K), hyperparameters (table G6), and GPU card
(NVIDIA RTX-2080 Ti).

All jobs are parameter and dataset dependent. It takes a lot longer to process larger molecules with more
atom and edge types. As such, while the GDB-13 1K rand dataset takes 2 min to preprocess in its entirety, the
MOSES rand dataset takes c.a. 11 CPU days, and the MOSES canon dataset c.a. 5.7 CPU days. Using
canonicalization generally cuts the preprocessing speed in half as there are more repeat graphs.

The MNN, GGNN, and S2V models not only train faster, but also generate structures faster, than the
three Attention models. This gives them a significant practical advantage. The GPU memory requirement of
Training and Generation jobs was generally <10 GB.

The benchmarking time was calculated using 30 000 samples and running MOSES benchmarking jobs
for both the Test and Scaffold benchmarks. The GPU memory requirement for Benchmarking jobs using
MOSES was 33 GB.
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Table 8. Run time for GraphINVENT models. All time averages are calculated using the GDB-13 1K random set.

Model Prep.a Train.b Gen.c Bench.d

MNN 29 345 (2.8) 1311 1.5
GGNN — 287 (3.4) 1488 —
S2V — 228 (4.3) 1068 —
AttGGNN — 80 (12.2) 161 —
AttS2V — 75 (13.0) 158 —
EMN — 33 (29.5) 43 —
a Molecules per second (model-independent).
b Molecules per second (in parentheses: seconds per epoch).
c Molecules per second.
d Hours (model-independent).

4. Discussion

4.1. Advantages of GraphINVENTmodels
Good performance against SOTAmethods. The GNN-based generative models introduced here perform on
par with SOTA benchmarked models on most metrics (FCD, SNN, Frag, Scaf, logP, MW), even performing
better than most SOTA models on certain metrics (IntDiv).
Robustness. It has been previously reported that generative models using GNNs can be unstable,

converging to different solutions on different runs using the same set of hyperparameters [9]. However, once
an adequate set of hyperparameters was identified, these GNN-based models were actually highly robust and
stable during training.
High diversity of generated structures. As mentioned previously, all GNN-based models introduced

here can generate highly diverse structures when trained on the MOSES dataset. This is evidenced by the
high PU and IntDiv scores. This could be highly advantageous for tasks such as library design.
Quick training. Compared to the training time for published graph-based generative models, the MNN,

GGNN, and S2V models reported here are very quick to train. In one day of compute time on a single GPU,
these models can reach 10+ training epochs on the MOSES dataset. As such, a model can be fully trained in a
matter of a few days. Not all datasets of interest are as large as the MOSES dataset, and as such potential users
could expect even faster training times. This compares favorably to other published models, such as the
JTN-VAE and hgraph2graph [58] models, which are reportedly slow to train (although they give good
performance). Nonetheless, there are no current studies comparing the training time on equivalent hardware.
Convergence in relatively few epochs. Compared to string-based models such as CharRNN [76] and

REINVENT [7], GNN-based models reach convergence on relatively few epochs (i.e. tens versus hundreds
for the MOSES dataset). This could be considered an advantage, as it means GNN-based models do not need
to see the structures as often as do RNN-based models, and suggests GNNs could be more efficient at
learning the chemistry of training set molecules.
Training on small datasets. GraphINVENT models perform well even with only 1% of the MOSES

dataset. As such, reducing the size of the dataset is something that can easily be done without worrying about
drastic changes in performance. Furthermore, GraphINVENT models are even able to learn complex
chemical rules with high fidelity from only 1000 structures (GDB-13 1K).
Flexible input representation. It is straightforward to expand the graph matrix representation to

accommodate additional features. This is done by appending new elements to the node feature vectors xi and
edge feature vectors eij of a graph. Examples of features researchers might be interested in include: valencies,
atomic radii, quantum mechanical properties, and spatial information (3D coordinates, bond lengths, bond
angles, and torsional angles).

4.2. Disadvantages of GraphINVENTmodels
Relatively low PV.Many SOTA string-based models have PVs above 95%, and some even 100%. By
comparison, the best GNN-based generative model presented here reaches a relatively lower 96% PV.
Exploring how to increase the PV further without affecting the high PU of these models is a subject of future
work.

As a way of increasing the PV, adding a mask that blocks invalid actions from being sampled during the
generation phase was considered. The mask, however, was ultimately removed, as it was the equivalent of
simply generating more structures and then removing the invalid graphs. This is because using a mask slows
down the sampling phase. Not using a mask has the additional advantage that different GraphINVENT
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Table 10. Table 9 cont. MOSES benchmarks for the various models using the holdout scaffold set, plus Filters scores. Bold values
indicate the best value for each field, considering previously benchmarked models and the models introduced here-in separately.

Model FCD (↓) SNN (↑) Frag (↑) Scaff (↑) Filters (↑)

Train 0.476 0.586 0.999 1.000 1.000

AAE 1.057 0.568 0.99 0.079 0.996
CharRNN 0.52 0.565 0.998 0.11 0.994
VAE 0.567 0.578 0.998 0.059 0.997
LatentGAN 0.824 0.514 0.998 0.1 0.973
JTN-VAE 0.996 0.527 0.995 0.1 0.978

rMNN (10) 2.914 0.477 0.987 0.082 0.838
rGGNN (10) 2.292 0.486 0.984 0.134 0.884
rAttGGNN (10) 2.747 0.451 0.987 0.160 0.857
rS2V (10) 4.247 0.443 0.982 0.113 0.835
rAttS2V (10) 3.231 0.462 0.982 0.112 0.829
rEMN (10) 1.436 0.508 0.992 0.151 0.939
rGGNN (40) 3.101 0.499 0.969 0.137 0.919
cGGNN (40) 1.223 0.539 0.986 0.127 0.950
rGGNN+w (50) 6.991 0.378 0.980 0.103 0.722
cGGNN+w (50) 4.265 0.473 0.953 0.129 0.871
aGGNN (40) 3.862 0.478 0.980 0.117 0.897

models can still be compared on the basis of PV—otherwise all decent models would trivially reach ~100%
valid structures.
Hyperparameter optimization is challenging. As with any DL model, HO is crucial for successfully

training a GNN-based model. However, this proved to be more challenging than expected in GraphINVENT.
Although published hyperparameters for similar MPNN implementations were used as an initial guideline
[10, 63, 65], in many cases the ideal hyperparameters were found to differ significantly from previously
published values (most notably, the hidden node features size). It is thus crucial to start with a broad range of
hyperparameters during HO, which can slow down the process of finding good parameters.
Slow generation speed. Graph-based molecular generation using GNN-based models is slower than

string-based. For example, generating 1M structures using GraphINVENT would require about 15min,
something which might take only a few minutes using RNN-based models [7]. This is not surprising as the
action space is much larger here compared to strings.
Fixed largest graph size. Another disadvantage of GraphINVENT is that models will have difficulty

learning to make anything that is larger than the largest graph in the training set (in terms of number of
nodes). Other models, such as hgraph2graph [58], are not limited in this way.

4.3. Interesting observations
Graph representation.While various matrix representations were experimented with, models require at
minimum the atom type, formal charge, and bond types to be defined in the matrix representations to
faithfully reconstruct molecules. Including implicit hydrogens (Hs) was found to make no difference in
model performance, despite increasing the memory and disk space requirements. If ignored, Hs are added to
generated graphs using RDKit. All other features are optional. Notably, explicitly including aromaticity in
molecules did not improve performance.
Data augmentation. It is interesting to remark that data augmentation—that is, using randomized

deconstruction for training data processing—did not improve model performance as it does for
SMILES-based methods. We actually expected models trained on randomly deconstructed training examples
to perform better than those trained on canonically deconstructed training examples, as the models see more
ways to build a given graph. Nonetheless, models trained on canonically deconstructed graphs performed
better on MOSES benchmarks. Understanding why is a topic of future work. However, one hypothesis is that
seeing only one random deconstruction example per molecule (as is currently done in GraphINVENT) is
perhaps not enough for the models to outperform those trained on canonical examples.
Choosing parameters. Depending on the goals of a generative model, one can choose to either

randomize or canonicalize the training structures during preprocessing. Although using a canonical
preprocessing scheme leads to better performance across the board for GNN-based generative models, there
are few metrics in which using randomization leads to superior performance. Structures generated based on
a randomized deconstruction are more diverse (↑ PU and ↑ IntDiv). For tasks such as library design, diversity
in the generated structures may be crucial; as such, a randomized deconstruction path could be preferred.
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4.4. Comparing GNN performance
Of the six generative models studied, the GGNN performed best for molecular graph generation. As they are
the most similar, it is interesting to examine why the GGNN outperforms the MNN and S2V networks.

It is likely that the GGNN can achieve better learned graph embeddings for the training data, since the
graph readout function R is more complex and includes information not only on the final transformed node
feature states HL but also from the initial node feature states H0; on the other hand, the MNN graph readout
function simply sums over HL. Regardless, both readout functions work quite well.

The GGNN and S2V message passing functionsMl are similar but complementary. The GGNN uses
MLPs and the transformed node feature states HL as input, multiplying the output by the edge feature states
E. On the other hand, the S2V uses an MLP and the edge feature states E as input, multiplying the output by
the transformed node feature states HL. It thus becomes clear thatMl is more effective when the MLP can
learn from HL. The GGNN is as a result better at learning how to close rings. Molecules generated using the
GGNN have fewer macrocycles—which is the most common ‘mistake’ observed in GNN-generated
molecules.

Adding attention to the GGNN and S2V networks did not improve their performance; however, this is in
part due to the significantly slower training time for the Attention networks. It means that fewer
hyperparameter combinations can be tested for the Attention networks in the same amount of time, thus
leading to suboptimal performance in these models.

4.5. Avenues for future work
Properly evaluating and comparing generative models for drug discovery remains an open question, as the
ultimate test of a generative model lies in the synthesis and eventual observation of biological activity in
generated molecules. As such tests are time-consuming and expensive to carry out, studying the percent
chemical space coverage of an enumerated database [7] can provide an alternative metric of how
GraphINVENT performs against SOTAmodels by providing insight into how well chemical space is sampled.

Further work is anticipated in the investigation of GNN-based models for library design applications, as
well as the implementation of an RNN in the global readout function (e.g. a graph-RNN) which could
improve the performance of these models. Like string-generation, treating graph-generation as a sequential
task could be a better model for learning chemical rules.

GraphINVENT can also be used to bias the models toward molecules with specific desired properties
where few examples are known using techniques like transfer learning. Nonetheless, incorporating the model
into a reinforcement learning framework is a topic of future work, so as to be able to generate targeted
structures in scenarios where no examples of molecules with the desired properties are known (e.g. no
known actives).

5. Conclusions

In this paper, a new molecular design platform, GraphINVENT, has been presented and used for the
exploration of novel graph-based architectures for molecular generation. The GraphINVENT platform has
been made publicly available on GitHub so that it can continue to be explored for molecular design
applications. Based on the modular nature of the code, models can be easily added or modified in
GraphINVENT, such that it is easy to investigate different message passing, message update, or graph readout
functions, as well as different global readout functions.

Here, it has been demonstrated how GNNs can be used in deep generative models, where six different
GNNs have been investigated using GraphINVENT: MNN, GGNN, AttGGNN, S2V, AttGGNN, and EMN.
The GGNN performs best both in terms of speed and quality of generated structures. The model
architectures introduced here have not been used for molecular graph generation before, although some have
seen notable success in molecular property prediction. For example, the EMN (D-MPNN [65]) was recently
used to successfully predict and identify antibiotics in a high-profile paper [77]. Finally, GraphINVENT
contains no manually encoded chemical rules; these are learned directly from the training data.

Graph-based generative models are worth investigating for molecular graph generation as there are many
advantages to working directly with the graph representation that string representations do not have. First
and foremost, every molecular subgraph is interpretable; this cannot be said for all molecular substrings.
This advantage would be interesting to explore in further work by e.g. computing target properties of
molecular graphs as they are being built. Finally, it is much more natural to incorporate additional
information into a matrix representation than into a string representation (e.g. spatial information or
quantum mechanical properties). Graph-based generative models are thus highly flexible, promising tools
for addressing challenges in molecular design.
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Appendix A. Abbreviations

AE : Autoencoder
AAE : Adversarial autoencoder
APD : Action probability distribution
AttGGNN : Gated-graph neural network with attention
AttS2V : Set2vec with attention
DL : Deep learning
EMN : Edge memory network
GAN : Generative adversarial network
GCN : Graph convolutional networks
GGNN : Gated-graph neural network
GN : Graph network
GNN : Graph neural network
GRU : Gated recurrent unit
HO : Hyperparameter optimization
HPC : High-performance computing
LSTM : Long short term memory
ML : Machine learning
MLP : Multi-layer perceptron
MNN : Message neural network
MPNN : Message-passing neural network
MOSES : Molecular Sets benchmark
PPT : Percent properly terminated
PU : Percent unique
PV : Percent valid
PVPT : Percent valid of properly terminated
RNN : Recurrent neural network
S2V : Set2vec
VAE : Variational autoencoder
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Appendix B. Mathematical notation

Throughout this work, the following general guidelines have been followed for the mathematical notation:
special calligraphic font for sets8, tuples, and ordered lists; lowercase normal math font for integers, vectors,
and set elements; uppercase normal math font for matrices and tensors; and typewriter font for special
functions.

B.1. Sets, tuples, and ordered lists
G : graph (tuple)→G = (V,E)
Gn ⊆ G : subgraph of G (tuple)
V : set of all nodes in a graph, G

vi ∈ V : specific node
E : set of all edges in a graph, G

(i, j) ∈ E : specific edge
N (vi): set of all nodes bonded to node vi (e.g. nearest neighbors of vi)
A : set of atom types e.g. {C, N, O, S, Cl}
F : set of formal charges e.g. {−1, 0,+1}
H : set of implicit hydrogens e.g. {0, 1, 2, 3}
C : set of chiral states e.g. {None, S, R}
B : set of bond types e.g. {Single, Double, Triple, Aromatic}
Orank(V) : ordered list of node ‘rank’ for nodes in V ; can be random or canonical
OBFS(V) : ordered list of node order using mod-BFS search on V

B.2. Tensors
X ∈ {0,1}|Vmax|×C : node features matrix

xi∈X : node feature vector
E ∈ {0,1}|Vmax|×|Vmax|×|B| : adjacency tensor (aka edge feature tensor)

Ei ∈ {0,1}|Vmax|×|B| : slice of adjacency tensor
eij ∈ R|B| : the edge feature vector for edge connecting vi and vj

Hl ∈ R|Vmax|×C : transformed node features matrix
H0 : initial (transformed) node features matrix, usually equal to X
HL : final transformed node features matrix (aka the node embeddings)
hli ∈Hl,∈ RC : node feature vector for node vi at GNN layer l

J ∈ Z+: fixed graph embedding size
mi ∈ Rµ: messages incoming to node vi

µ ∈ Z+ : fixed message size
o ∈ Z+ : fixed output size
π ∈ Z+ : fixed memory size in S2V and AttS2V readout
γ ∈ Z+ : mini-batch size

B.2.1. GNN-specific tensors
g ∈ RJ : graph embedding in MNN, GGNN, AttGGNN, and EMN
g ∈ R2π : graph embedding in S2V and AttS2V
MLPe(hlj)→ Rµ : found in GGNNmessage passing (depends on edge type e)

MLPa(hli)→ Ro : found in GGNN readout
MLPb([hli,h

0
i ])→ Ro : found in GGNN readout

MLP(eij)→ RC×µ: found in S2V message passing
W ∈ R|B|×µ×C : a trainable weight tensor found in MNNmessage passing

We ∈ Rµ×C : a slice of this tensor for edge type e ∈ B
qt ∈ Rπ : query vector found in S2V and AttS2V readout
ct ∈ Rπ : LSTM cell state found in S2V and AttS2V readout
bt ∈ R|Vmax| : energy vector found in S2V and AttS2V readout
P ∈ R|Vmax|×π : memory matrix fount in S2V and AttS2V readout
at ∈ R|Vmax| : attention vector found in S2V and AttS2V readout

8 Except in the case of sets of real numbers or integers, in which case the traditional blackboard font was used.

19



Mach. Learn.: Sci. Technol. 2 (2021) 025023 R Mercado et al

MLP1,e(hlj)→ Rµ : found in AttGGNNmessage passing

MLP2,e(hlj)→ Rµ : found in AttGGNNmessage passing

M̃l ∈ R|Vmax|×µ : preliminary messages (before attention) for all nodes in a graph, found in AttS2V and
AttGGNNmessage passing

Bl ∈ R|Vmax|×µ : attention energies for all nodes in a graph, found in AttS2V and AttGGNNmessage passing
Al ∈ R|Vmax|×µ : attention weights for all nodes in a graph, found in AttS2V and AttGGNNmessage passing
Ml ∈ R|Vmax|×µ : final messages incoming to each node in a graph, found in AttS2V and AttGGNN message

passing
MLP1(eij)→ Rµ : found in AttS2V message passing
MLP2([eij,hlj])→ Rµ : found in AttS2V message passing

Ẽ ∈ R|Vmax|×|Vmax|×ϵ : preprocessed edge feature vectors for all edges in a graph, found in the EMN
ε : the fixed edge embedding size in the EMN
ẽij ∈ Rπ : a specific preprocessed edge feature vector

Ql ∈ R|Vmax|×|Vmax|×ϵ : edge embeddings for all edges in a graph, found in the EMN
Bl ∈ R|Vmax|×|Vmax|×ϵ : attention memories per edge for all edges, found in the EMN
Al ∈ R|Vmax|×|Vmax|×ϵ : attention weights per edge for all edges, found in the EMN
Ml ∈ R|Vmax|×|Vmax|×ϵ : messages passed per edge for all edges, found in the EMN
Zl ∈ R|Vmax|×|Vmax|×ϵ : incoming edge memories for all edges, found in the EMN
fadd ∈ Rγ×S : probability of adding a new node to the input graph, assuming all optional features used

S= |Vmax| × |A|× |F|× |H|× |C|× |B|
fconn ∈ Rγ×S : probability of connecting the last appended node to another node in the input graph

S= |Vmax| × |B|
fterm ∈ Rγ : probability of terminating the input graph

B.3. Functions
MLP : a multi-layer perceptron followed by a SELU [78] layer (applies to all MLPs in this work)
embedding : a single linear layer (i.e. an embedding layer), found in S2V and AttS2V readout
GRU : a gated recurrent unit, where the first argument is the input state and the second argument is the hidden

state
SOFTMAX : softmax function (if the function has two arguments, the second specifies the set over which to

softmax)
σ : sigmoid function
tanh : hyperbolic tangent
Ml : message passing function
U l : message update function
R : readout function
[ ] : concatenation
| | : size (of a set)
⊙ : element-wise multiplication (Hadamard product)

B.4. Indices
l∈ {0, 1,…, L} : GNN layer index, where L ∈ Z+

i ∈ {0,1, . . . , |V|} : primary node index (e.g. vi)
j ∈ {0,1, . . . , |V|} : secondary node index (e.g. eij)
n ∈ {0,1, . . . , |E|+ 1} : subgraph index
t ∈ {0, 1,…,T} : index for a specific LSTM layer, where T ∈ Z+

Appendix C. MPNN formulation

Below the mathematical forms of the six MPNN implementations are expressed in a common notation. See
appendix B for details on notation, dimensions, etc Note that all networks use a GRU for the update function
U l; no other functions were explored for U l.

TheMNN, ormessage neural network, has the simplest functional form:
(1)Message passing phase:

h0i = xi
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ml+1
i =

∑
vj∈N (vi)

Wehlj

hl+1
i = GRU

(
ml+1

i ,hli

)
 ∀ l ∈ L,

whereW is a trainable weight tensor, andW e is a slice of this tensor. GRU represents a gated recurrent unit,
where the first argument is the input state and the second argument is the hidden state.

(2) Graph readout phase:

g=
∑
vi∈V

hLi .

The GGNN, or gated-graph neural network [17], consists of a message passing phase which uses a unique
feed-forward network for each edge type inMl, and the graph-gather function in the local readout phase:

(1)Message passing phase:

h0i = xi

ml+1
i =

∑
vj∈N (vi)

MLPe
(
hlj

)
eij

hl+1
i = GRU

(
ml+1

i ,hli

)
 ∀ l ∈ L, (C1)

where MLP represents a multi-layer perceptron9.
(2) Graph readout phase:

g=
∑
vi∈V

σ
(
MLPa

(
hLi
))

⊙ tanh
(
MLPb

(
[hLi ,h

0
i ]
))

, (C2)

The S2V, or set2vec model, consists of a message passing phase using a single feed-forward network for
Ml, and a readout phase based on seq2seq [64]:

(1)Message passing phase:

h0i = xi,

ml+1
i =

∑
vj∈N (vi)

MLP
(
eij
)
hlj

hl+1
i = GRU

(
ml+1

i ,hli

)
 ∀ l ∈ L, (C3)

(2) Graph readout phase:

p= embedding
(
[hLi ,h

0
i ]
)
,

r0,q0, c0 = {0}π,

qt+1, ct+1 = LSTM(rt, [qt, ct])
bt+1 = qt+1 × p

at+1 = SOFTMAX
(
bt+1

)
rt+1 = at+1 × p

 ∀ t ∈ T,

g= [qT, rT], (C4)

where t indexes the LSTM layer, qt is the query vector, ct is the LSTM cell state, bt is the energy vector, p ∈ Rπ

is the memory vector, and g ∈ R2π is the graph embedding. The memory size, π, is fixed. embedding is a
single linear layer.

The AttGGNN, or gated-graph neural network with attention, uses a slightly more complicated message
passing phase than the GGNN implementation:

(1)Message passing phase:

h0i = xi,

9 All MLPs mentioned in this work in practice refer to an MLP+ SELU+ (optional) AlphaDropout stack.
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m̃l+1
i =

∑
vj∈N (vi)

MLP1,e
(
hlj

)
eij

bl+1
i =

∑
vj∈N (vi)

MLP2,e
(
hlj

)
eij

al+1
i = SOFTMAX

(
bl+1
j ,N (vi)

)
ml+1

i =
∑

vj∈N (vi)

al+1
i ⊙ m̃l+1

j

hl+1
i = GRU

(
ml+1

i ,hli

)



∀ l ∈ L,

where m̃l
i is the preliminary incoming message to vi andml

i is the final incoming message to vi.
The graph readout phase is the same as that of the GGNN implementation (equation (C2)).
The AttS2V, or set2vec with attentionmodel, has the following functional form:
(1)Message passing phase:

h0i = xi,

m̃l+1
i =

∑
vj∈N (vi)

MLP1
(
eij
)
hlj

bl+1
i =

∑
vj∈N (vi)

MLP2
(
[eij,h

l
j]
)

al+1
i = SOFTMAX

(
bl+1
j ,N (vi)

)
ml+1

i =
∑

vj∈N (vi)

al+1
i ⊙ m̃l+1

j

hl+1
i = GRU

(
ml+1

i ,hli

)



∀ l ∈ L.

The graph readout phase is the same as in the S2V implementation (equation (C4)).
The EMN, or edge memory networkmodel, uses three different MLPs to pass messages between edges

(not nodes) in the message passing phase:
(1)Message passing phase:

ẽij =
∑

vj∈N ′(vi)

tanh
(
MLPa([xi,xj,eij])

)
,

Z0 = {0}|B|×ϵ,

ql+1
ij = MLPb

(
[̃eij,z

l
ij]
)

bl+1
ij =

∑
(i,j)∈E

[
MLPb(ẽij),MLPc(zij)

]
al+1
ij = SOFTMAX

(
bl+1
ij

)
ml+1

ij =
∑

(i,j)∈E

al+1
ij ⊙ ql+1

ij

zl+1
ij = GRU

(
ml+1

ij

)



∀ l ∈ L,

where ẽij is a preprocessed edge in the graph, ε is the fixed edge embedding size, qlij is an edge embedding, blij
is the attention energy (for one edge),ml

ij is the message passed (for one edge), and zli is the incoming edge

memory. Z0 is initialized to a matrix of zeros, but all other Zl are the output hidden states from the GRU
layer. Note that for all of these operations the direction of the edges is important, as (i, j) ̸= ( j, i). Finally, the
graph readout phase is similar to that in the GGNN implementation (equation (C2)), but with edge
memories instead of node memories as input:

(2) Readout phase:

g=
∑

(i,j)∈E

MLPa
(
zLi
)
⊙σ

(
MLPb

(
[zLi ,z

0
i ]
))

.
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Figure D1. Formic acid. The above node numberings are used in the example graph representations below.

The EMNmodel was originally published online by Lindelöf et al [63], and subsequently published as
D-MPNN in [65], where it has gained a lot of attention.

Appendix D. Example representation

The input to the generative models is the molecular graph representation. Molecular graphs are represented
in matrix form using a node features matrix, X, and an adjacency tensor, E. The adjacency tensor is also often
referred to as the edge feature tensor.

As an example, node and edge feature tensors for the formic acid molecule (figure D1) are illustrated
below.

Each row of X is a concatenation of one-hot encodings of the features from table 2; vertical lines are
shown to visualize the one-hot encodings. Similarly, each row of Ei∈E is a one-hot encoding of the bond type
linking nodes vi and vj:

X=

0 1 0 0 0 0 1 0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0 0 1 0 0 1 0 0



E=

0 0 0
0 1 0
0 0 0

 ,

 0 1 0
0 0 0
1 0 0

 ,

0 0 0
1 0 0
0 0 0

 .

Only heavy atoms are included in the graph representation shown; hydrogens are treated as implicit and
included in X as one-hot encodings. Implicit hydrogens are frequently used in molecular representations to
reduce the number of elements and make the representations more compact.

For practical purposes, X and E are padded to the size of the largest graph in the dataset using zeros. For
example, if |Vmax|= 5, the padded representation for formic acid would look as follows:

X=


0 1 0 0 0 0 1 0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



E=

0 0 0
0 1 0
0 0 0

 ,

0 1 0
0 0 0
1 0 0

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
0 0 0

 ,

0 0 0
0 0 0
0 0 0

 .

In other words, the last two rows of X, x4 and x5, and the last two elements of E, E4 and E5, are all zeros.

Appendix E. Algorithms

Pseudocode for how the graph deconstruction routes are obtained is outlined in Algorithms 1 and 2.
In the modified BFS graph traversal algorithm, we actually experimented with using both a fixed starting

node for graph traversal (deterministic if coupled with the canonical node ordering) or a random starting
node (non-deterministic regardless of node ordering i.e. random or canonical), but ultimately observed it
not to make a difference during training, as it had no effect on the quality of the structures generated. As
such, in the published version of the code (and in Algorithm 2 below) the mod-BFS algorithm always starts
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fromOrank(V)[0] (the first node in the list of node orderings), regardless of how the node order was
determined, akin to always starting at the most highly ranked node. In other words,OBFS(V)[0] is always
equal toOrank(V)[0].

Algorithm 1: Pseudocode for obtaining graph decoding route, r. ForOBFS, see Algorithm 2. In practice this procedure is
done for a mini-batch of molecules at a time.a

a OBFS(V)[−1] is the last node to be traversed in the input set V , whereasOBFS(V)[0] is the first node to be traversed.

Algorithm 2: Pseudocode for traversing graph using BFS.Orank andOBFS are ordered lists.

Appendix F. Hyperparameters

F.1. Hyperparameter optimization (HO) strategy
To simplify the HO procedure, most hyperparameters were fixed and only the ones anticipated to be
important were varied (table F1). This was necessary due to the large number of hyperparameters (> 30) for
each model. A random search was used to find suitable hyperparameters, beginning with wide ranges
systematically narrowed as good parameters were identified.

Based on observations for the GDB-13 1K subset, the ∗_hidden_dim, ∗_depth, andmessage_passes
parameters were fixed to 500, 4, and 3, respectively, before performing HO for the remaining
hyperparameters in table F1 on the MOSES dataset.
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Table F1. Varied parameters and hyperparameters for each model.

Parameter Range

epochs {0–500}
init_lr {1× 10−3–1× 10−6}
lrdf a {0.99, .999, .9999}
lrdib {10, 100, 1000, 10 000}
∗_hidden_dim {100–1200}
∗_depth {1–5}
message_passes {2–15}
min_rel_lr {1× 10−2, 5× 10−2 1× 10−3}
dropout_p {0.0, 0.05, 0.1, 0.25}
weight_decay {0.0, 0.001, 0.005}
a Learning rate decay factor (defines the learning rate decay scheme along with lrdi).
b Learning rate decay interval (defines the learning rate decay scheme along with lrdf ).

F.2. Default hyperparameters
General optimized parameters for all models are shown in table F2. Then, the optimal hyperparameters for
each model are shown in tables F3–F5. There is no separate table for the MNN, as all these parameters are
already in table F2.

Table F2. Optimal general parameters and hyperparameters for all models.

Parameters Value

activation_function SELU
batch_size 1000
block_size 100 000
∗_dropout_pa 0.0
group_size 1000
gru_bias True
hidden_node_featuresa 100
init_lr 1× 10−4

lrdf a 0.9999
lrdia c100; d10 000
message_passesa 3
message_sizea,b 100
min_rel_lra c5× 10−2; d1× 10−3

mlp_bias True
mlp{1,2}_deptha 4
mlp{1,2}_hidden_dima 500
ramp_up_lr False
tune_lr True
weight_decaya 0.0
weights_initialization uniform
a These parameters were obtained via HO.
b Message size does not apply for the EMN.
c These parameters were used for the GDB-13 1K dataset.
d These parameters were used for the MOSES dataset.

Table F3. Optimal S2V and AttS2V hyperparameters. All MLP depths and hidden dims were obtained via HO.

Model Parameter Range

S2V enn_depth 4
& enn_hidden_dim 500
AttS2V s2v_lstm_computations 3

s2v_memory_size 100

AttS2V att_depth 4
only att_hidden_dim 500
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Table F4. Optimal GGNN and AttGGNN hyperparameters. All MLP depths and hidden dims were obtained via HO.

Model Parameter Range

GGNN enn_depth 4
& enn_hidden_dim 500
AttGGNN gather_att_depth 4

gather_att_hidden_dim 500
gather_emb_depth 4
gather_emb_hidden_dim 500
gather_width 100

AttGGNN att_depth 4
only att_hidden_dim 500

msg_depth 4
msg_hidden_dim 500

Table F5. Optimal EMN hyperparameters. All MLP depths and hidden dims were obtained via HO.

Model Parameter Range

EMN att_depth 4
att_hidden_dim 500
edge_emb_depth 4
edge_emb_hidden_dim 500
gather_att_depth 4
gather_att_hidden_dim 500
gather_emb_depth 4
gather_emb_hidden_dim 500
gather_width 100
msg_depth 4
msg_hidden_dim 500

The names used for the parameters in each table are those used in the code. Furthermore, note that all
the MLP depths and hidden dims have the same optimal values; this is because all the depths were tuned
simultaneously, and all the hidden dims were tuned simultaneously. This was done so as to speed up the HO
process.

Appendix G. Evaluationmetrics

G.1. Results for GDB-13 1K
The performance metrics of the models using the best hyperparameters and the GDB-13 1K subset are
reported in table G6 below. Note that the low PU values are due to the small size of the dataset (1K) and the
number of structures generated for evaluating the PU (2K). The models are not overfit at Epoch 400.
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Table G6. Best results from random hyperparameter search for the GDB-13 1K subset (using random deconstruction). Average of three
runs for each set of hyperparameters; the error is the standard deviation.

MNN GGNN AttGGNN S2V AttS2V EMN Target

epochs 400 400 400 400 400 400 —
init_lr 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 —
lrdf a 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 —
lrdib 100 100 100 100 100 100 —
∗_depth 4 4 4 4 4 4 —
∗_hidden_dim 500 500 500 500 500 500 —
message_passes 3 3 3 3 3 3 —

PV 94.8± 0.55 94.6± 1.3 87.6± 0.8 93.4± 2.3 80.0± 1.4 94.4± 0.4 100
PPT 94.5± 2.5 96.7± 0.7 90.7± 1.8 96.6± 1.7 88.3± 0.95 97.0± 1.2 100
PVPT 95.1± 1.1 95.2± 1.2 87.0± 0.46 92.9± 2.2 79.3± 2.1 94.2± 0.91 100
PUc 77.9± 0.9 64.8± 1.7 68.5± 0.89 69.5± 5.6 71.3± 2.1 56.7± 0.42 100
Vav 12.6± 0.03 12.7± 0.02 12.5± 0.04 12.7± 0.05 12.3± 0.02 12.7± 0.02 12.818
Eav 2.15± 0.002 2.16± 0.002 2.14± 0.004 2.16± 0.01 2.14± 0.01 2.15± 0.003 2.159
a lrdf stands for ‘learning rate decay factor’ (multiplier).
b lrdi stands for ‘learning rate decay interval’ and is the number of mini-batches between learning rate updates.
c n_samples= 2000.

G.2. Results for MOSES
The performance of all the models at Epoch 10 and 30, respectively, for the MOSES dataset, using the best set
of hyperparameters, is listed in tables G7 and G8.

Table G7. Results for all models trained on the MOSES dataset for 10 epochs (using random deconstruction).

MNN GGNN AttGGNN S2V AttS2V EMN Target

epochs 10 10 10 10 10 10 —
init_lr 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 —
lrdf a 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 —
lrdib 10 000 10 000 10 000 10 000 10 000 10 000 —
∗_depth 4 4 4 4 4 4 —
∗_hidden_dim 500 500 500 500 500 500 —
message_passes 3 3 3 3 3 3 —

PV 94.6 92.2 89.1 93.1 76.9 92.4 100
PPT 97.2 96.8 92.4 97.0 90.8 96.2 100
PVPT 94.4 92.9 90.6 93.8 90.8 93.9 100
PUc 99.7 99.8 99.4 99.8 98.9 99.7 100
Vav 21.628 21.867 21.496 20.132 21.595 21.290 21.672
Eav 2.139 2.151 2.143 2.130 2.158 2.134 2.146
a lrdf stands for ‘learning rate decay factor’ (multiplier).
b lrdi stands for ‘learning rate decay interval’ and is the number of mini-batches between learning rate updates.
c n_samples= 30 000.
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Table G8. Results for MNN, GGNN, and S2V models trained on the MOSES dataset for 30 epochs (using random deconstruction).

MNN GGNN S2V Target

epochs 30 30 30 —
init_lr 1× 10−4 1× 10−4 1× 10−4 —
lrdf a 0.9999 0.9999 0.9999 —
lrdib 10 000 10 000 10 000 —
∗_depth 4 4 4 —
∗_hidden_dim 500 500 500 —
message_passes 3 3 3 —

PV 96.3 94.0 95.8 100
PPT 98.2 97.4 97.6 100
PVPT 97.96 94.0 96.5 100
PUc 99.8 99.8 99.8 100
Vav 21.949 21.85 22.424 21.672
Eav 2.124 2.151 2.148 2.146
a lrdf stands for ‘learning rate decay factor’ (multiplier).
b lrdi stands for ‘learning rate decay interval’ and is the number of mini-batches between learning rate updates.
c n_samples= 30 000.

G.2.1. Effect of dataset size
In order to test the effect of dataset size, the best model, cGGNN, was trained on subsets of the MOSES
dataset to see how the model would perform with less data. The results at Epoch 30 are compared in table G9
below, as well as at Epoch 100 for the model trained on 1% of the data.

Table G9. Results for best cGGNNmodels trained on MOSES datasets (100%, 10%, and 1%; using canonical deconstruction).

100 % 10% 1% 1% Target

epochs 30 30 30 100 —
init_lr 1× 10−4 1× 10−4 1× 10−4 1× 10−4 —
lrdf a 0.9999 0.9999 0.9999 0.9999 —
lrdib 10 000 10 000 10 000 10 000 —
∗_depth 4 4 4 4 —
∗_hidden_dim 500 500 500 500 —
message_passes 3 3 3 3 —

PV 95.7 92.2 85.2 91.6 100
PPT 97.4 95.4 91.2 96.6 100
PVPT 95.1 92.2 87.7 90.9 100
PUa 93.2 99.7 97.4 70.7 100
Vav 22.294 21.929 21.295 21.849 21.672
Eav 2.141 2.155 2.143 2.155 2.146
a lrdf stands for ‘learning rate decay factor’ (multiplier).
b lrdi stands for ‘learning rate decay interval’ and is the number of mini-batches between learning rate updates.
c n_samples= 30 000.
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Appendix H. GDB-13 1K experiments

H.1. Dropout in GDB-13 1K
The results of adding dropout to the best models trained on the GDB-13 1K subset are presented in
tables H10–H12 below. Keeping all other hyperparameters fixed, adding dropout does not improve
performance.

The third column in each of the three tables below indicates the results for training with a different
deconstruction path (canonical), all other parameters in the model being the same as those in the second
column. A canonical deconstruction path was experimented with in preprocessing the training data (see
section 3.1.1 for details).

Table H10. Dropout search in the MNNmodel for the GDB-13 1K subset. Average of three runs for each set of hyperparameters; the
error is the standard deviation. Hyperparameters are the same as those of table G6 except for dropout_p.

MNN MNN MNN MNN Target

epochs 400 400 400 400 —
dropout_p 0.05 0.05 0.1 0.25 —
Deconstruction Random Canonical Random Random —

PV 74.1± 1.8 65.7± 5.2 60.2± 15 52.2± 43 100
PPT 81.8± 2.2 70.5± 15 49.0± 9.6 0.0± 0.0 100
PVPT 73.3± 3.6 62.7± 6.5 61.7± 15 0.0± 0.0 100
PUa 99.4± 0.058 98.1± 1.1 99.6± 0.0 24.7± 42 100
Vav 12.5± 0.04 12.3± 0.2 12.4± 0.2 5.47± 4 12.818
Eav 2.08± 0.007 2.11± 0.05 2.14± 0.09 1.94± 0.1 2.159
loss 2.47± 0.05 2.36± 0.1 3.15± 0.1 4.1± 0.02 —
a n_samples= 2000.

Table H11. Dropout search in the GGNNmodel for the GDB-13 1K subset. Average of three runs for each set of hyperparameters; the
error is the standard deviation. Hyperparameters are the same as those of table G6 except for dropout_p.

GGNN GGNN GGNN GGNN Target

epochs 400 400 400 400 —
dropout_p 0.05 0.05 0.1 0.25 —
Deconstruction Random Canonical Random Random —

PV 77.9± 1.4 81.0± 1.8 85.3± 2.7 62.1± 13 100
PPT 91.9± 1.5 92.2± 0.87 98.3± 1.4 43.4± 42 100
PVPT 77.3± 1.5 79.8± 2.3 85.2± 3.3 62.1± 14 100
PUa 97.2± 1.9 97.6± 1.2 86.0± 12 83.5± 13 100
Vav 12.2± 0.2 12.3± 0.1 10.2± 0.8 11.2± 2 12.818
Eav 2.09± 0.006 2.08± 0.04 1.9± 0.1 1.83± 0.04 2.159
loss 1.97± 0.06 1.94± 0.05 3.12± 0.05 4.13± 0.01 —
a n_samples= 2000.

Table H12. Dropout search in the S2V model for the GDB-13 1K subset. Average of three runs for each set of hyperparameters; the error
is the standard deviation. Hyperparameters are the same as those of table G6 except for dropout_p.

S2V S2V S2V S2V Target

epochs 400 400 400 400 —
dropout_p 0.05 0.05 0.1 0.25 —
Deconstruction Random Canonical Random Random —

PV 85.8± 0.72 82.1± 4.2 75.0± 8.8 29.4± 40 100
PPT 90.3± 0.76 90.7± 3.0 84.9± 5.7 0.5± 0.71 100
PVPT 84.7± 0.5 81.0± 6.0 73.7± 10 0.0± 0.0 100
PUa 98.4± 0.36 98.0± 0.64 95.4± 2.1 86.0± 12 100
Vav 12.0± 0.1 12.2± 0.2 11.0± 0.5 12.7± 0.3 12.818
Eav 2.07± 0.02 2.04± 0.05 2.07± 0.09 1.87± 0.03 2.159
loss 2.25± 0.06 2.17± 0.04 3.17± 0.08 4.16± 0.02 —
a n_samples= 2000.
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H.2. Weight decay in GDB-13 1K
The results of adding weight decay to the best models trained on the GDB-13 1K subset are presented in
tables H13–H15 below. In general, adding weight decay improves the PU structures generated while slightly
decreasing the PV.

Table H13.Weight decay search in the MNN and EMNmodels for the GDB-13 1K subset (using random deconstruction). Average of
three runs for each set of hyperparameters; the error is the standard deviation. Hyperparameters are the same as those of table G6 except
for weight_decay.

MNN MNN EMN EMN Target

epochs 400 400 400 400 —
weight_decay 0.001 0.005 0.001 0.005 —

PV 91.2± 1.8 79.5± 0.46 90.2± 0.76 72.4± 0.21 100
PPT 90.9± 2.7 80.3± 2.7 95.9± 0.81 84.9± 2.7 100
PVPT 89.6± 1.1 78.5± 1.3 88.9± 1.5 71.7± 0.23 100
PUa 91.7± 1.1 97.2± 0.57 71.9± 1.3 96.9± 0.0 100
Vav 12.5± 0.03 11.9± 0.07 12.6± 0.04 12.1± 0.01 12.818
Eav 2.16± 0.005 2.12± 0.007 2.15± 0.001 2.17± 0.009 2.159
loss 0.263± 0.02 1.23± 0.03 0.173± 0.003 0.493± 0.03
a n_samples= 2000.

Table H14.Weight decay search in the GGNN and AttGGNNmodels for the GDB-13 1K subset (using random deconstruction).
Average of three runs for each set of hyperparameters; the error is the standard deviation. Hyperparameters are the same as those of
table G6 except for weight_decay.

GGNN GGNN AttGGNN AttGGNN Target

epochs 400 400 400 400 —
weight_decay 0.001 0.005 0.001 0.005 —

PV 92.1± 0.31 80.0± 2.2 82.2± 1.4 66.4± 2.5 100
PPT 96.0± 1.0 83.9± 3.0 87.3± 1.5 72.3± 4.7 100
PVPT 92.0± 1.1 76.9± 1.6 81.1± 1.9 57.6± 2.0 100
PUa 79.0± 2.3 94.3± 1.8 79.5± 3.0 94.2± 1.8 100
Vav 12.6± 0.04 11.8± 0.2 12.3± 0.1 11.4± 0.3 12.818
Eav 2.15± 0.006 2.17± 0.01 2.14± 0.004 2.12± 0.003 2.159
loss 0.195± 0.009 0.518± 0.05 0.26± 0.01 0.722± 0.09 —
a n_samples= 2000.

Table H15.Weight decay search in the S2V and AttS2V models for the GDB-13 1K subset (using random deconstruction). Average of
three runs for each set of hyperparameters; the error is the standard deviation. Hyperparameters are the same as those of table G6 except
for weight_decay.

S2V S2V AttS2V AttS2V Target

epochs 400 400 400 400 —
weight_decay 0.001 0.005 0.001 0.005 —

PV 92.4± 1.0 80.9± 0.76 80.5± 4.7 66.8± 4.6 100
PPT 95.5± 1.1 81.7± 2.9 85.3± 3.1 72.9± 3.0 100
PVPT 91.3± 2.4 79.3± 2.8 79.3± 2.4 59.0± 4.0 100
PUa 75.2± 1.2 90.9± 3.0 74.1± 9.9 91.3± 5.6 100
Vav 12.6± 0.05 11.4± 0.3 11.3± 1e+00 11.3± 0.8 12.818
Eav 2.16± 0.005 2.19± 0.01 2.11± 0.04 2.16± 0.02 2.159
loss 0.184± 0.004 0.483± 0.05 0.252± 0.02 0.568± 0.02 —
a n_samples= 2000.
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H.3. Canonical deconstruction in GDB-13 1K
The effect that using a canonical deconstructing path in preprocessing the GDB-13 1K data had on training
is presented in tables H16 and H17 below, with and without weight decay. It was generally observed that
using a canonical deconstruction path lead to better performance than using a random deconstruction
path.

Table H16. Results using canonical deconstruction for the GDB-13 1K subset. Average of three runs for each set of hyperparameters; the
error is the standard deviation. Hyperparameters are the same as those of table G6 except for the canonical deconstruction path.

MNN GGNN AttGGNN S2V AttS2V EMN Target

epochs 400 400 400 400 400 400 —

PV 95.9± 0.26 94.4± 1.7 90.0± 1.2 93.9± 1.3 82.6± 0.61 95.1± 0.25 100
PPT 95.3± 0.83 97.3± 0.76 89.2± 1.3 96.2± 0.35 86.3± 5.6 97.3± 0.12 100
PVPT 95.5± 0.64 95.7± 1.7 90.7± 1.4 94.5± 1.9 80.1± 1.7 94.7± 1.3 100
PUa 72.4± 1.2 62.0± 0.67 66.9± 2.4 71.2± 4.0 72.0± 2.9 56.0± 0.38 100
Vav 12.6± 0.02 12.7± 0.02 12.4± 0.04 12.7± 0.01 12.3± 0.2 12.7± 0.03 12.818
Eav 2.15± 0.004 2.15± 0.002 2.14± 0.004 2.16± 0.005 2.15± 0.005 2.15± 0.003 2.159
loss 0.183± 0.002 0.16± 0.003 0.222± 0.002 0.18± 0.01 0.224± 0.004 0.148± 0.004 0.0
a n_samples= 2000.

Table H17. Results using canonical deconstruction for the GDB-13 1K subset and weight decay. Average of three runs for each set of
hyperparameters; the error is the standard deviation. Hyperparameters are the same as those of table G6 except for the canonical
deconstruction path and weight decay.

MNN GGNN AttGGNN S2V AttS2V EMN Target

epochs 400 400 400 400 400 400 —
weight_decay 0.001 0.001 0.001 0.001 0.001 0.001 —

PV 93.4± 1.8 92.3± 0.96 85.1± 0.17 92.4± 1.8 80.3± 3.9 91.7± 0.29 100
PPT 91.5± 0.76 95.5± 1.1 87.1± 1.6 93.8± 2.7 84.9± 3.5 96.2± 0.2 100
PVPT 93.4± 1.4 92.0± 3.3 81.7± 1.7 93.1± 0.98 77.8± 5.2 91.3± 1.2 100
PUa 87.0± 1.9 76.6± 1.0 81.2± 0.49 76.2± 5.8 74.4± 2.1 69.5± 3.9 100
Vav 12.5± 0.01 12.6± 0.01 12.3± 0.03 12.6± 0.06 12.1± 0.4 12.6± 0.05 12.818
Eav 2.14± 0.004 2.15± 0.005 2.14± 0.006 2.15± 0.006 2.13± 0.03 2.15± 0.003 2.159
loss 0.246± 0.007 0.191± 0.006 0.257± 0.004 0.196± 0.02 0.243± 0.008 0.172± 0.007 0.0
a n_samples= 2000.

Appendix I. Examples of molecules

Examples of molecules generated using the rGGNN, cGGNN, and aGGNNmodels, trained on the MOSES
dataset, are illustrated in figures I2–I4. For each model, the 80 structures shown were randomly selected from
a set of 30 000 generated structures. The number 80 was chosen simply because 80 molecules fit nicely on a
single page using an 8× 10 grid. Each set of structures illustrated provides just a tiny glimpse into the
chemical space sampled by that model. For reference, examples of molecules randomly selected from the
MOSES training set are shown in figure I5.

31



Mach. Learn.: Sci. Technol. 2 (2021) 025023 R Mercado et al

Figure I2. Example of structures generated using the rGGNNmodel trained on MOSES after 40 epochs.
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Figure I3. Example of structures generated using the cGGNNmodel trained on MOSES after 40 epochs.
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Figure I4. Example of structures generated using the aGGNNmodel trained on MOSES after 40 epochs.
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Figure I5. Example of structures randomly selected from the MOSES training set.
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