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Abstract
The aim of this paper is to study the superstability for rifieed trigonometric functional
equation:
f(xy) - f(xa(y)) =2f(x)g(y). xyUG, (Eig)
and the stability of the Pexider type functional equation:
f(xy) - f(xa(y)) =29(x)h(y), x yOG, (Ef gn)

o

where G is any group, not necessarily abeliah,g and h are unknown complex value
functions ando is an involution of G. As a consequence we prove thaf ifsatisfies  the

inequality| f(xy)— f(xo(y))—-2f(x)f (y)| <0 forall X, yOG then f is bounded.
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1 Introduction

J. Baker, J. Lawrence and F. Zorzitto[Ij introduced that iff satisfies the stability inequality
E(D)-Ey(f)se.
then either f is bounded orE (f)=E,(f) . The stability of this type is called the

superstability.

In [234] D. Zeglami, A. Roukbi and S. Kabbaj proved the supbiliita of the Wilson's
functional equation
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f(xy) + f(xa(y)) =2f(x)a(y), xyOG, (W)

and the d’Alembert’s functional equation
f(xy)+ f(xa(y)) =21 (x) f(y), xyOG,

where G is any group and’ is an involution ofG . Namely, the following theorem holds true.

Theorem 1. Let 0 >0 be given. Assume that functiohsg : G — C satisfy the inequality

[f(xy) + f(xa(y)) -2f(x)g(y)|sd forall x,yOG.

Then
i) f,g are bounded or

ii) fisunbounded and satisfies the d'Alembert's long functional equation
9(xy) + g(xa(y)) + g(yx) + g(a(y)x) = 49(x)g(y) or
iii) g is unbounded and the pa(rf, g) satisfies the equatiof\WV) .

The superstability of the trigonometric functional equatiomceoned with the sine and the cosine
equations
f(x+y)-f(x-y)=2f (0 f(y), xy0G,
f(x+y) - f(x-y)=2f(x)g(y), xyUG,
f(x+y)-f(x-y)=29(x) f(y). xyUG,
f(x+y) - f(x-y)=29(x)h(y), xyOG,
where (G,+) is an abelian group, was investigated by Ki56] and Kim and Leq7].

The hyperbolic cosine function, hyperbolic sine function, hyplkc trigonometric function, and
some exponential functions also satisfy the above mentionetia@tgjahus they can be called by
the hyperbolic cosine sine, trigonometric, exponential funatiequations, respectively.

For example,
coshi + y) —cosh — y) = 2sinh(x) sinh(y),
sinh(x + y) —sinh(x — y) = 2cosh() sinh(y),
sinh®(x+ y) —sinh?(x - y) = sinh(2x) sinh2y),
e - =2€e*sinh(y),
ay - a‘y

ca*”’ —ca*Y =2ca*

The aim of this paper is to investigate the superstalitithplem for the mixed trigonometric
functional equations

f(xy) - f(xa(y)) =2f () f(y), xyUG, (M
f(xy) - f(xa(y)) =2f(x)a(y), xyOG, (T o)
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f(xy) - f(xa(y)) =29(x) f(y), xyOG, (Ty.)
f(xy) = f(xa(y)) =2g(x)h(y), xyUG, (T gn)

where G is any group, not necessarily abelian, the unknown functibpg,h are to be
determined andJ is an involution ofG, i. e. g(g(x)) = x and g(xy) = a(y)a(x) for all
X, YOG . The interested reader should refefte- 20] for a thorough account on the subject of

stability of functional equations and {21] for solutions of the functional equatic(Fl'f ,g,h) in

the case tha€s is an abelian group.

In this paper, leG be any groupg is an involution ofG, C the field of complex numbers
and O is a nonnegative real constant. We may assume fthaind g are complex valued

functions onG and we denote byf the function defined byf (X):= f (x™), for all xOG.

2. Super stability of the Equation (T, ;)

We start with solutions of the functional equatigh) .
Lemma 1. The solution of the functional equation

f(xy) - f(xa(y)) =2f () f(y), xy0G, (M)
on any groupG is the zero functioff =0.

Proof. Putting y=€ in (T) we get f(e)=0 . Setting x=€ in (T) we have
f(a(y)) = f(y) forall yOG.From(T) and the equality

f(xa(y)) - f(xy)=2f(x) f(a(y)), xyOG,

f(X)(f(o(y)+ f(y)=0, forall x,yOG,

we obtain that
from which we conclude thaf (g(y)) = —f (y) for all yOG . Consequently we have
f(o(y)) =—-f(y)= f(y)ie. f =0 isthe only solution ofT).

Lemma2. Letd >0 be given. Assume that functiohsg :G — C satisfy the inequality
[f(xy) = f(xa(y)) -2 (x)g(y)|< I, forall x,yOG (2.2)
such thatf # 0. If g is unbounded then so fs.
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Proof. Assume thatg is unbounded function satisfying the inequality (2.1).fIf£ 0 is
bounded, letM :su¢f| and chooseallG such that f(a) #0 then we get from the

inequality (2.1) that|g(x)| < (2M +9) for all XJG, i.e. g is bounded too which

2f(a)
contradicts our assumption.

In Theorem 2, the superstability of the equat(a'r;’g) will be investigated.

Theorem 2. Let 0 > 0 be given. Assume that functiohsg : G — C satisfy the inequality

|f(xy) = f(xa(y)) -2f (9 g(y)| < I, (22)
forall x,yOG . Then
i) f,g arebounded or
ii) f is unbounded ang) satisfies the functional equation

9(xy) = g(xa(y)) - g(yx) + g(a(y)x) =0, (23)
or
iii) g is unbounded and the pa(ff, g) satisfies the equation(T; ). if f #0,theng

satisfies the equation (2.3).
Proof. Assume thatf , g satisfy inequality (2.2). First we consider the casefolinbounded.
Forall X,y,zG we have
21 (2 9(xy) — g(xa(y)) -~ 9(yx) + g(a(y)x)|
=21 (29(xy) +2f (29)g(xa(y)) - 2f (2 9(yx) - 2f (2)g(a(y)X)
<[- f(zxy + f (zo(y)a(x)) + 2f (2 g(xy)
+|f (20(y) - f(zyo(x) - 2 (D g(xa(V))|
+|f(zy3 - f(zo(x)a(y)) - 2f (2)9(yX)|
+= f(za(y)¥) + f (zo(X)y) + 2 (2)g(a(y)X)|
+[f (zxy) - f(20(y)) - 2f (29 9(y)|
+= 2y} + T (zyo(x) + 2 (20 9(X)
+|f (zo(y)x) - T (zo(y)o(x)) - 2f (za(y) 9(X)
+- f(zo(Qy) + f (za(Na(y)) + 2f (zo(x)g(y)|
+29(y)| f (29 - f(zo(¥)) - 2f (2)9(X)
+29(X)|- f(2y) + f (za(y)) +2f (2 9(y)-
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By virtue of inequality (2.2), we have

21 (2 g(xy) - g(xa(y)) —g(y®) +g(a(y)x)| <83 +2(g(x)| +|a(y))d.  (24)
If we fix X, Y, the right hand side of the above inequality is boundediimof z . Since f is
unbounded, from(2.4) , we conclude that

9(xy) - g(xa(y)) - g(y9 +g(a(y)¥) =0,
which ends the proof in this case.
If g is unbounded, then fdr = O the pair(f, g) is a trivial solution of the equatiofil; ;).

Now assume thaff # 0. For all X,y, z[OG we have
29(2)| f (xy) - f (xa(y)) -2 () g(y)

=[29(2) f (xy) —29(2) f (xa(¥)) - 49(2) f () 9(y)|
<|- f(xyd + f (xyo(2)) + 2f (xy)9(2)
+|f (xa(y)2) - f (xa(y)o(2)) - 2f (xa(y))9(2)|
+|f (xy2d - f (xa(2)a(y)) - 2f (X)g(y2)
+|- f(xyo(2)) + f (xzo(y)) + 2f () 9(yo(2))|
+|f (xa(2)y) - f (xa(y)2) - 2f (x)9(o(2)y)
+[- f(xzy + f (xa(y)a(2)) + 2f () g(zy)|
+[- f (xa(2)y) + f (xa(2)a(y)) + 2 (xa(2))g(y)|
+| f (xzy) - f(xzo(y)) - 2f (x2 g(y)
+2f ({a(y2) - 9(yo(2)) - 9(zy) + 9(a(2) )}
+2g(y)| f (x2 - f (xa(2)) - 2f (X 9(2)|.

In virtue of inequalities(2.2) we obtain
29(2)| f (xy) = T (xa(y)) = 2f (x)9(Y)
<85+23/9(y)|+ 2 (¥)]a(yd - 9(yo(2) - 9(zy) + 9(a(2)y)] -

By using Lemma 2 we see th@t is unbounded implies necessarily thitis unbounded hence
according to theorem 2 iy is a solution of the equation (2.3). So we conclude that

29(2)|f (xy) = f (xa(y)) - 2 (x)g(y)|< 85+ 2d|g(y)|. (25)

Again the right hand side of2.5) as a function ofz is bounded for all fixedk, y. Since g is
unbounded, from(2.5) , we see that the pa(if ,g) satisfies the equatiofil; ;) and it is easy
to get that if f # 0, then g satisfies (2.3) which finished the proof of the theorem 2.
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As an immediate consequence of Theorem 2, we have the ifgfjaesult which has been the
subject of[ 7] in the case wher& is an abelian group.

Corollary 1. Let 0 >0 be given. Assume that the functibri G — C satisfies the inequality

|f(xy) = f (xa(y)) -2f (9 T (y)|< 0, (26)
forall X,yG. Then f is bounded

Proof. Define f = g inthe case (iii) of Theorem 2 we get that eitHeris bounded or

f(xy) = f(xa(y) =2f(x) f(y), xyOG.

The rest of the proof follows from Lemma 1.

3. Application: Stability of the Equation (T, )

Lemma 3. Let 0 >0 be given. Assume that functiofs g and h:G - C satisfy the
inequality

[F () = f (xa(y)) = 29(0h(y) < 5. (3.)
forall X, yUG. Then
i) If g is unbounded thefn = —h..
i) If h(e) =1then
l90y) ~ 9(xa(y)) ~2g(9h(y)| < & and |g(xy) +g(xa(y)) ~2g(x)h(y)|< 5
where |’~1(X) =w, xOG .

Proof. Assume thatg is an unbounded function satisfying (3.1). From the inequalities

|f(xy) = f (xa(y)) -29(x)h(y)|< &

and

[T (xa(y)) = f(xy) -2g(x)h(a(y))| < o

we get that

[29(3)h(a(y)) +h(y) < 20
for all X, y[JG . Hence we obtain tha(y) = —h(y) for all y G becauseg is unbounded.
(ii) Assume thath(€) =1. Putting y = € in the inequality (3.1). It is easy to show that

Ig(X)ISg, x0G, (32)

i.e. g is bounded. For alk, y[1G we have
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h(y) + h(a(y))

> =|a(xy) = g(xa(y)) = g()h(y) = g()h(a(y))|

9(xy) ~g(xa(y)) ~29(x)
<511 00) = (xa(y) ~2909n(y)

1
+§\ f (xa(y)) - T (xy) ~2g()h(a(y))
+|a0xy)| +[a(xa(y).
In virtue of inequalities(3.1) and (3.2) , we obtain
<2.+9.9,9_55
2 2 2 2

a(xy) - g(xa(y)) - 29(x)
And similarly we have

g(xy) + g(xa(y)) - 29(x) \ f (xy) = f (xa(y) = 2g(x)h(y)|

+§\ f (xa(y)) - f (xy) =2g()h(a(y))|

+la(xy)| +|g(xa(y)
<20,
forall x,yUG .

In Theorem 3, the stability of the equati¢h; ;). under the conditioh(€) # O, will be
investigated on an arbitrary group.

Theorem 3. Let O >0 be given. Assume that functiofisg and h: G — C with h(e) 0
satisfy the inequality

|f(xy) = f (xa(y)) - 29(x)h(y)| < 3,
for all X, y[JG. Then either the functiog-;—h is bounded or the paifg, h) satisfies the

equation
h(y) +h(a(y)) 33)
h(e) ’ '

h+h
forall X,y UG . Consequently, ifg # O then the functiongy and

a(xy) = g(x)

are bounded.

Proof. Assume thatf , g and h satisfy the inequality (3.1) witt(€) # O then g is bounded.
Dividing the two sides of the inequality (3.1) sy = h(€) we find that
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- = ~ J
00) = Fxa(y) ~2600h ()< 7, for all x yOG,
where 1‘~ = i and I‘~l = E . We see thaﬁ(e) =1. By using Lemma 3 (ii) we obtain that
a a
h(y)+h(c o
9) - g(xo(y) - 2g(9 " (y))I <20 % Y06
and

‘g(xy)+g(xa(y»—2@1(x>M < Zﬁ, x,y0G.

Using, respectively Theorem 2 and Theorem 1, we cont¢had éf is unbounded then

the pair (g, h) satisfies the equations

g(xy) - g(xa(y)) = g(x)w (34)
and
a(xy) + g(xa(y)) = g(x)w (35)

by adding (3.4) and (3.5) we get that the (i h) satisfies (3.3).
Now, assume thatg # 0. Putting Y = € in the inequality (3.1). It is easy to show that

la(x)h(e)| < g xOG,

h+h
i.e. g is bounded becaude(e) # 0. The equality (3.3) implies that the functienz— is also
bounded.

The following corollary is a particular case of Theorém

Corollary 2. Let 0 >0 be given. Assume that functiofisg :G — C with f(€) # 0 satisfy
the inequality

|f(xy) — f (xa(y)) -29(0) f () < 3,

-_f+f
for all X, y[OG . Then either the functiof =

is bounded or the pai( f, g) satisfies

the equation

fy)+ fa(y)
f(e)

a(xy) = g(x)

’
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are bounded.

f+
for all X,y G. Consequently, ifg # O then the functiong and

4, Remark

The results of this paper also can be extendedetability ofthe considered equations
controlled even by variable bounds.
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