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A Hybrid Greedy Sine Cosine Algorithm with Differential 
Evolution for Global Optimization and Cylindricity Error 
Evaluation
Qijun Li a,b, Huifeng Ninga, Jun Gonga, Xiao Lia, and Baolin Dai a

aSchool of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, China; 
bSchool of Electromechanics and Automobile Engineering, Tianshui Nomal University, Tianshui, China

ABSTRACT
Sine-cosine algorithm (SCA) has found a widespread application 
in various engineering optimization problems. However, SCA 
suffers from premature convergence and insufficient exploitation. 
Cylindricity error evaluation is a typical engineering optimization 
problem related to the quality of cylindrical parts. A hybrid greedy 
sine-cosine algorithm with differential evolution (HGSCADE) is 
developed in this paper to solve optimization problems and 
evaluate cylindricity error. HGSCADE integrates the SCA with the 
opposition-based population initialization, the greedy search, the 
differential evolution (DE), the success history-based parameter 
adaptation, and the Levy flight-based local search. HGSCADE is 
tested on the CEC2014 benchmark functions and is employed in 
cylindricity error evaluation. The results show the superiority of 
HGSCADE to other state-of-the-art algorithms for the benchmark 
functions and cylindricity error evaluation.
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Introduction

Optimization refers to reaching the optimal objective value of a certain 
problem under-related constraints. Optimization problems exist in different 
areas of engineering or science. Meta-heuristic algorithms (MAs) have been 
developed to solve complex optimization problems that possess the properties 
of discontinuity, nondifferentiability, nonconvexity, nonlinearity, and multi
modality (Yang 2008). Generally, MAs take the optimization problem as a 
black box and search for the solution based on stochastic rules. By transferring 
and exchanging information among search agents, the positions of the search 
agents are constantly updated to a promising region with the optimal solution.

No Free Lunch (NFL) theorem (Wolpert and Macready 1997) states that it is 
impossible to solve all optimization problems by a specific algorithm, i.e., an 
algorithm is applicable to a given optimization problem that may not be applic
able to another one with distinct characteristics. Therefore, MAs need to be 
further studied to deal with different optimization problems. The research 
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directions of MAs can be categorized as initiating new algorithms, improving 
existing algorithms and combining different algorithms. Some of the well-known 
MAs are genetic algorithms (GAs) (Srinivas and Patnaik 1994), particle swarm 
optimization (PSO) (Kennedy and Eberhart 1995), differential evolution (DE) 
(Storn and Price 1997), ant colony optimization (ACO) (Dorigo and Di Caro 
1999), harmony search (HS) (Geem, Kim, and Loganathan 2001), bacterial fora
ging optimization (BFO) (Passino 2002), artificial bee colony (ABC) (Karaboga 
and Basturk 2007), biogeography-based optimization (BBO) (Simon 2008), grav
itational search algorithm (GSA) (Rashedi, Nezamabadi-pour, and Saryazdi 
2009), gray wolf optimizer (GWO) (Mirjalili, Mirjalili, and Lewis 2014), ant lion 
optimizer (ALO) (Mirjalili 2015), whale optimization algorithm (WOA) (Mirjalili 
and Lewis 2016), sine-cosine algorithm (SCA) (Mirjalili 2016), salp swarm algo
rithm (SSA) (Mirjalili et al. 2017).

As a crucial index to evaluate the machining accuracy and form error of 
cylindrical parts, cylindricity error is closely related to the product quality and 
performance. The minimum zone cylindricity (MZC) error evaluation method 
is consistent with the international standards, but a general algorithm that 
corresponds to MZC has not been developed. Essentially, cylindricity error 
evaluation can be regarded as a single objective real-parameter numerical 
optimization problem. Therefore, MAs has been applied for cylindricity error 
evaluation under the MZC principle, such as GA (Lai et al. 2000), PSO (Wen et 
al. 2010), HS (Yang et al. 2018), etc. It is very important to improve the 
convergence speed and accuracy of MAs in cylindricity error evaluation.

SCA, proposed by Mirjalili (2016), is a population-based optimization algo
rithm for solving optimization problems. SCA presents a good performance in 
some cases (Das, Bhattacharya, and Chakraborty 2018; Li, Fang, and Liu 2018; 
Mirjalili 2016), but it suffers from premature convergence and insufficient exploi
tation. Therefore, SCA variants were developed and applied for different optimi
zation problems like feature selection (Sindhu et al. 2017), object tracking 
(Nenavath and Jatoth 2018; Nenavath, Kumar Jatoth, and Das 2018), pairwise 
local sequence alignment (Issa et al. 2018), optimal power flow (Attia, El Sehiemy, 
and Hasanien 2018), engineering design (Abd Elaziz, Oliva, and Xiong 2017; 
Chegini, Bagheri, and Najafi 2018; Gupta and Deep 2019; Rizk-Allah 2018), etc.

In this study, a novel algorithm called hybrid greedy sine-cosine algorithm with 
differential evolution (HGSCADE) is proposed for solving benchmark problems 
and evaluating cylindricity error. In HGSCADE, the opposition-based learning 
(OBL) is applied in population initialization, and the greedy search is employed to 
prevent excluding good solutions. Meanwhile, the DE is incorporated into SCA to 
improve the exploitation ability and maintain the population diversity, and a 
success history-based parameter adaptation is introduced to overcome invalid 
search. Then, a Levy flight-based local search is used to escape from local optima. 
HGSCADE is compared with standard SCA, other state-of-the-art MAs, and SCA 
variants over the CEC2014 benchmark functions. Finally, the proposed 
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HGSCADE algorithm is used for cylindricity error evaluation as a real engineer
ing case. The test and experiment results testify to the superiority and effectiveness 
of the proposed algorithm.

The remainder of this paper is organized as follows: the brief introduction 
of SCA is present in Section 2. The proposed HGSCADE algorithm is 
described in Section 3. The test results and comparisons are presented in 
Section 4. The application of HGSCADE for cylindricity error evaluation is 
introduced in Section 5. Eventually, conclusions are drawn in Section 6.

Sine-Cosine Algorithm

Similar to other MAs, the standard SCA starts with random candidate agents. 
Then, the agents are updated by sine and cosine functions to create new ones. 

Xtþ1
i;j ¼

Xt
i;j þ r1 � sinðr2Þ � r3Xt

gb;j � Xt
i;j

�
�
�

�
�
�; r4 < 0:5

Xt
i;j þ r1 � cosðr2Þ � r3Xt

gb;j � Xt
i;j

�
�
�

�
�
�; r4 � 0:5

8
<

:
(1) 

where Xt
i;j is the position of the i-th agent in j-th dimension at t-th iteration, r1/ 

r2/r3 are random numbers, Xt
gb;j is the best position obtained so far in j-th 

dimension, r4 is a random number in [0, 1], and || denotes the absolute value.
The variable r1 is adjusted with the number of iterations by Equation (2): 

r1 ¼ a � ða� tÞ=T (2) 

where a is a constant, t is the t-th iteration and T represents the upper limit of 
iterations.

The Proposed Algorithm

In this section, the proposed HGSCADE algorithm is introduced in detail. 
Although the standard SCA has found a widespread application in various 
engineering optimization problems, it suffers from premature convergence 
and insufficient exploitation. To overcome the drawbacks of SCA, we integrate 
five strategies into SCA as follows:

Opposition-based Population Initialization

Random population initialization generates some useless agents due to the 
absence of systemic knowledge. Therefore, the OBL is employed to form the 
initial population. The opposite value of a real number x ∈ [l, u] (l, u ∈ R) is 
specified as (Tizhoosh 2005): 

�x ¼ lþ u � x (3) 
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where l and u are the lower limit and upper limit of x, respectively.
Firstly, a population X0¼fX0

i¼ ½x0
i;1; x0

i;2; . . . ; x0
i;d�g

N
i¼1 is generated from the 

uniform distribution. Secondly, the opposite vector �X0
i ði ¼ 1; 2; . . . ;NÞ for 

each agent is calculated by Equation (3). Thirdly, the objective values of the 
populations X0 and �X0 are computed, and the best N agents are selected from 
X0 [ �X0, as the initial population.

Greedy Search

In the earlier search stage of SCA (r1 > 1), the optimal position might be 
skipped over. Therefore, the greedy search is employed to update the position 
of each agent, i.e. 

Xtþ1
i ¼

Xtþ1
i ; fitðXtþ1

i Þ< fitðXt
iÞ

Xt
i ; otherwise

�

; i ¼ 1; 2; . . . ;N (4) 

where Xt
i and Xtþ1

i are the parent position and new position of i-th agent, 
respectively.

Combined with Differential Evolution

The standard SCA uses the knowledge of a best-so-far agents to produce new 
members, which may result in insufficient population diversity and premature 
convergence. Hence, DE is incorporated into SCA in a parallel way. The 
component of position oversteps the boundary is set to be the mean of the 
overstepped boundary and the corresponding component of the parent posi
tion. For each iteration, the agent i will be updated by the SCA method if randi 
< pui, where randi is a random number in [0, 1] and pui ∈ [0, 1] is the 
updating rate. Otherwise, the agent i will be updated by the DE method as 
follows:

Firstly, a donor/mutant vector V t
i is produced by the parent vectorsfXig

N
i¼1. 

V t
i¼

Xt
R1
þFi � ðXt

R2
� Xt

R3
Þ; randm < pm

Xt
iþFi � ðXt

pt � Xt
iÞ þ Fi � ðXt

R2
� Xt

R3
Þ; randm � pm

�

(5) 

where indexes R1, R2, and R3 represent integers stochastically generated from 
[1, N], and R1�R2�R3�i. Fi is the scaling factor uniformly distributed in [0, 
1]. Xt

ptis the position of the one picked out from the top N × pt (pt ∈ (0, 1)) 
agents in the population at t-th iteration stochastically (the agents in the 
population are sorted according to their fitness values), randm represents a 
random number in [0, 1], pm ¼ 1 � t=T.

Secondly, a trial vector U t
i is generated by crossing V t

i with Xt
i . 
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Ut
i;j¼

Vt
i;j; rij < cr or j ¼ j0

Xt
i;j; otherwise

�

; j ¼ 1; 2; . . . ; d (6) 

where rij is a random number uniformly distributed in [0, 1], j0 is a random 
integer generated from [1, d], cr ∈ [0, 1] denotes the crossover rate.

Finally, the survivor is selected from the better one between U t
i and Xt

i . 

Xtþ1
i ¼

U t
i ; fitðU t

iÞ< fitðXt
iÞ

Xt
i ; otherwise

�

; i ¼ 1; 2; . . . ;N (7) 

Success History-Based Parameter Adaptation

To reduce invalid search, HGSCADE regulates the critical parameters adap
tively by the mechanism developed in (Tanabe and Fukunaga 2013). As shown 
in Table 1, the historical information for three memory parameters Mpu, MF , 
and Mcr is stored with H entries. At each iteration, pui, Fi , and cri for each 
agent i are generated as follows: 

pui
Fi
cri

2

4

3

5 ¼

randniðMpu;ri ; 0:1Þ
randciðMF;ri ; 0:1Þ
randniðMcr;ri ; 0:1Þ

2

4

3

5 (8) 

where index ri is randomly selected from [1, H], randni(μ, σ) and randci(μ, σ) 
denote two values generated from Gaussian distribution and Cauchy distribution, 
respectively. In the case that the generated value of pui or cri is out of [0, 1], set it to 
the closest limit value. For Fi, truncate it to be 1 if Fi ≥ 1 or regenerate it if Fi < 1.

At each iteration, the values of pui, Fi , and cri that successfully generate a 
superior offspring are recorded as Spu, SF , and Scr. If and only if superior 
offspring are generated, the values of Mpu, MF , and Mcr are updated as follows: 

Mpu;k
MF;k
Mcr;k

2

4

3

5 ¼

meanWAðSpuÞ

meanWLðSFÞ

meanWAðScrÞ

2

4

3

5 (9) 

where index k (1 ≤ k ≤ H) indicates the entry to be updated. k is initialized to 1 
at the first iteration and is incremental with iteration. When k > H, reset k = 1. 
meanWA(Spu) and meanWA(Scr) are the weighted mean. meanWL(SF) is the 
weighted Lehmer mean. 

Table 1. The historical memory.
Index 1 2 . . . H–1 H

Mpu Mpu,1 Mpu,2 . . . Mpu,H−1 Mpu,H

MF MF,1 MF,2 . . . MF,H−1 MF,H

Mcr Mcr,1 Mcr,2 . . . Mcr,H−1 Mcr,H
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meanWAðSpuÞ

meanWAðScrÞ

meanWLðSFÞ

2

4

3

5 ¼

P Spuj j
i¼1 ωi � Spu;i

P Scrj j
j¼1 ωj � Scr;j

P Scrj j
j¼1 ωj � ðSF;jÞ

2
� �. P Scrj j

j¼1 ωj � SF;j

� �

2

6
6
4

3

7
7
5 (10) 

where ωi ¼ Δfi

�
P Spuj j

i¼1 Δfi, ωj¼Δfj

.P Scrj j
j¼1 Δfj, Δfi¼ f tþ1

i ðXiÞ � f t
i ðXiÞ

�
�

�
�, Δfj¼

f t
j ðU jÞ � f t

j ðXjÞ

�
�
�

�
�
�.

Local Search Based on Levy Flight

SCA may stagnate if the best agent is caught in local optima. Therefore, a Levy 
flight disturbance (Jensi and Jiji 2016) is applied to the best agent in the 
current population: 

XcbLevy ¼ Xcb þ step� randomðsizeðXcbÞÞ (11) 

where step = Levy(β) ⊕ Xcb, the symbol ⊕ denotes entry-wise multiplication. 
Levy(β) is derived from Equation (12): 

LevyðβÞ ¼ scale� u
.

vj j1=β
� �

(12) 

where scale is a factor to control the step size of Levy flight, β ∈ [0, 2] is Levy 
index, u and v are derived from Gaussian distributions, i.e. 

u,Nð0; σ2
uÞ; v,Nð0; σ2

vÞ (13) 

σu ¼
Γð1þ βÞ sinðπβ=2Þ

Γ ð1þ βÞ=2½ �β2ðβ� 1Þ=2

� �1=β

; σv¼ 1 (14) 

where Γ is the standard gamma function.
Then, compute the opposite vector �X� for XcbLevy, and substitute Xcb with 

the best one chosen from Xcb;XcbLevy; �X�
� �

.

Overall Implementation

The overall implementation steps of HGSCADE are described in Algorithm 1. 
HGSCADE involves three stages: Firstly, the OBL is employed to form the 
initial population, and the initial values of parameters are given. Secondly, 
each agent in the population is updated by the greedy search SCA method or 
DE method according to the updating rate, and the success history-based 
mechanism is used for critical parameter adaptation. Thirdly, the Levy 
flight-based local search is applied to the current best agent, and the search 
continues until the termination condition is reached.
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Algorithm 1 The HGSCADE
1. Randomly generate a population X of N agents.
2. Compute the opposite population �X by Equation (3).
3. Evaluate the fitness of X and �X by calculating the corresponding objec

tive function values.
4. Select the best N agents from X [ �X
5. Initialize the values of parameters a, Mpu, MF, Mcr, pt, H, β, scale
6. k = 1, t = 0
7. While (t < T) do
8. Update the global best position Xgb
9. Randomly select an index ri from [1, H]
10. Generate pu, F and cr by Equation (8)
11. For (i = 1: N) do
12. Generate a random number randi in [0, 1]
13. If (randi < pui) then
14. Update the position of the i-th agent by Equations (1) and (4)
15. Else
16. Randomly select an agent Xpt from the top N × pt (pt ∈ (0, 1)) 

members in the population.
17. Update the position of the i-th agent by Equations (5), (6) and (7)
18. End if
19. End for
20. Evaluate the fitness of each agent by calculating the corresponding 

objective function value.
21. Update Mpu, MF, Mcr using Equation (9)
22. k = k + 1
23. If (k > H) then
24. k = 1
25. End if
26. Perform Levy flight disturbance for the current best position Xcb by 

Equation (11)
27. Compute the opposite position �X� for XcbLevy
28. Update the current best position Xcb
29. Update r1, r2, r3 , r4
30. t = t + 1
31. End While
32. Return The global best position Xgb

Results and Discussion

In this section, the performance of HGSCADE is evaluated on the CEC2014 
benchmark functions. This test series contains 30 functions that can be categorized 
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as unimodal functions (H1–H3), simple multimodal functions (H4–H16), hybrid 
functions (H17–H22), and composition functions (H23–H30) (Liang, Qu, and 
Suganthan 2013). The population size N is set as 50 and the maximum number of 
function evaluations is fixed as 104 × D (D denotes the dimension of problem) for 
all the given problems. Fifty-one independent algorithm runs are executed for each 
problem. Moreover, the best value (the difference between the obtained best 
solution and the true optimal solution) for each run will be truncated to 0 if it is 
smaller than 10–8. The statistical measures as mean and standard deviation (Std.) 
are reported, and the best is highlighted in bold.

Compared Algorithms

To verify the effectiveness and competitiveness of the proposed algorithm, it is compared 
with the standard SCA, other state-of-the-art MAs, and the variants of SCA:

● SCA: a population-based optimization algorithm which updates the 
population by sine and cosine functions (Mirjalili 2016b).

● DE: a powerful and straightforward evolutionary algorithm which was 
primarily designed for real-parameter optimization problems (Storn and 
Price 1997).

● ABC: a swarm-based optimization algorithm which simulates the intelli
gent foraging behavior of a honeybee swarm (Karaboga and Basturk 
2007).

● GWO: a swarm intelligence algorithm which mimics the social behavior 
of gray wolves in chasing and hunting the prey (Mirjalili, Mirjalili, and 
Lewis 2014).

● WOA: a meta-heuristic algorithm which is inspired by the bubble-net 
hunting strategy of humpback whales (Mirjalili and Lewis 2016).

● SSA: a bio-heuristic algorithm which is inspired by the swarming beha
vior of salps when navigating and foraging in oceans (Mirjalili et al. 2017).

● HSCAPSO: a hybrid algorithm which adds memory-enabled behavior of 
PSO to SCA approach, and hybridizes SCA with PSO in iteration level 
(Nenavath, Kumar Jatoth, and Das 2018).

● HSCADE: a hybrid algorithm which incorporates DE operators into SCA in 
iteration level, and performs a greedy search (Nenavath and Jatoth 2018).

● PSOSCALF: a hybrid algorithm which combines PSO with the position 
updating equations of SCA and Levy flight (Rizk-Allah 2018).

● m-SCA: a hybrid algorithm which adds a self-adaptive component to SCA, 
and incorporates opposite perturbation into SCA (Gupta and Deep 2019).

The parameters settings for existing algorithms are extracted from the original 
reference. The parameter settings for the proposed HGSCADE algorithm are 
the combination of suggested parameter settings from SCA (a, r2, r3, r4) 
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(Mirjalili 2016), SHADE (Mpu, MF, Mcr, pt, H) (Tanabe and Fukunaga 2013), 
and PSOLF (β, scale) (Jensi and Jiji 2016). The parameter values for all 
algorithms are set in Table 2.

Test Results

The CEC2014 benchmark functions are considered with the dimension of 
D = 30 and D = 50. Due to space constraints, only the test results for D = 30 are 
reported in Table 3.

As seen in Table 3, HGSCADE provides the best results in terms of the 
mean for all unimodal functions (H1–H3). By introducing a greedy search, 
DE, and Levy flight-based local search, the population can exploit the nearby 
area of every individual best position. Therefore, the exploitation ability of 
HGSCADE is enhanced.

For simple multimodal functions, HGSCADE provides the best results in terms 
of mean on functions H4–H6, H8–H12, H15, and H16, ABC on functions H8, 
H13, and H14, and DE on functions H7 and H8. By inheriting the randomness of 

Table 2. The parameters of algorithms and their values.
Algorithms Parameters Values

SCA r2, r3, a, r4 2π*rand, 2*rand, 2, rand
DE F, cr [0.2, 0.8], 0.2
ABC φ, limit [−1,1], 20
GWO r1, r2, a rand, rand, 2 − 2*t/T
WOA a, a2, l, b, p 2 − 2* t/T, −1 − t/T, (a2 − 1)*rand + 1, 1, rand
SSA c2, c3 rand, rand
HSCAPSO r2, r3, a, r4, ω, c1, c2, vmax 2π*rand, 2*rand, 2, rand, 0.9 to 0.4, 2, 2, 4
HSCADE r2, r3, a, r4, F, cr 2π*rand, 2*rand, 2, rand, [0.2, 0.8], 0.2
PSOSCALF r2, r3, a, r4, ωmax, ωmin 2π*rand, 2*rand, 2, rand, 0.9, 0.4

c1max, c1min, c2max, c2min, 0.5, 2.5, 0.5, 2.5
K, limit, β, scale 10,10, 1.5, 0.01

m-SCA r2, r3, a, r4, SR, JR 2π*rand, 2*rand, 2, rand, rand, 0.1
HGSCADE r2, r3, a, r4 2π*rand, 2*rand, 2, rand,

Mpu, MF, Mcr, pt, H, β, scale 0.5, 0.5, 0.5, 20, 10, 1.5, 0.01

Table 3. Wilcoxon signed rank test between HGSCADE and other algorithms for the CEC2014 
functions with D = 30 at a 5% level of significance.

Methods

Cylindricity error (mm)

Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

SCA 0.2032 0.5754 0.0330 0.0168 0.8600
DE 0.0083 0.0196 0.0320 0.0164 0.0158
ABC 0.0239 0.1385 0.1376 0.1570 0.1432
GWO 0.0032 0.1252 0.0321 0.0164 0.2288
WOA 0.1847 0.4239 0.0350 0.0179 1.8552
SSA 0.002788 0.0195 0.03184 0.0164 0.0154
HSCAPSO 10.5857 9.4527 21.9388 15.1798 21.0804
HSCADE 0.0968 0.4573 0.0325 0.0166 0.6378
PSOSCALF 0.002788 0.0196 0.0320 0.0164 0.0146
m-SCA 0.0671 0.1167 0.0321 0.0165 0.3051
HGSCADE 0.002788 0.0194 0.03183 0.0164 0.0143
LSM 0.037162 0.0234 0.0366 0.0195 0.0168
Published results 0.002788 0.01938 0.0319 0.0167 0.0143

APPLIED ARTIFICIAL INTELLIGENCE 179



SCA and Levy flight disturbance, the population can explore the whole search 
space. Therefore, the exploration ability of HGSCADE is enhanced.

HGSCADE provides the best results in terms of the mean for all hybrid 
functions (H17–H22). For composition functions, HGSCADE provides the 
best results in terms of mean on functions H23, H25, H26, H29, and H30, DE 
on functions H23, H26–28, ABC on functions H23 and H26, and SSA on 
function H26. For function H24, SCA, GWO, and m-SCA give the same best 
results in terms of the mean. By the success history-based adaptation of 
parameter pui, each agent is automatically updated by the SCA method or 
DE method to balance the trade-off between exploration and exploitation.

In addition, it can be observed that HGSCADE is the best algorithm in 
terms of overall standard deviation, i.e., HGSCADE has the highest stability. 
The opposition-based population initialization, greedy search, and success 
history-based parameter adaptation improve the stability of HGSCADE.

Statistical Analysis

Considering the effect of each run, a non-parametric statistical test called 
Wilcoxon signed rank test is implemented at a significance level of 5%. The 
calculated p-value determines to accept or reject the null hypothesis. The grade 
symbols +, ≈ and – signify that HGSCADE is superior, similar, and inferior to 
a compared algorithm, respectively. The character string N/A signifies that the 
two samples are identical and the Wilcoxon signed rank test is invalid. 
Accordingly, the Wilcoxon signed rank test results are presented in Table 4. 
The grades are summarized in the last row of the table.

From Table 4, HGSCADE performs better than HSCAPSO, HSCADE, and 
PSOSCALF in all the CEC2014 benchmark functions for D = 30. In 29, 22, 26, 
29, 28, 26, and 28 out of 30 CEC2014 benchmark functions for D = 30, 
HGSCADE performs better than SCA, DE, ABC, GWO, WOA, SSA, and m- 
SCA, respectively. It verifies the test results that HGSCADE is the best algo
rithm in comparison with other algorithms.

Convergence Analysis

Considering that there are too many functions, four functions (H3, H13, H20, and 
H30) from different categories are selected to exemplify the convergence behavior. 
The median of the obtained best values is displayed on the vertical axis in logarith
mic scale, while the number of function evaluations is displayed on the horizontal 
axis. The convergence curves for the selected functions are shown in Figures 1–2.

It can be observed that HGSCADE has a faster convergence speed to produce an 
accurate solution than that of compared algorithms except for H13. It indicates 
that HGSCADE has the ability to create a balance between exploration and 
exploitation. The opposition-based population initialization provides initial solu
tions with favorable distribution, and the greedy search prevents excluding good 
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solutions; thus, the convergence speed is accelerated. The DE enhances the exploi
tation ability and maintains the population diversity, the Levy flight-based local 
search avoids local optima, and the success history-based parameter adaptation 
strengthens the stability; thus, the solution accuracy is improved.

Complexity Analysis

The complexity of HGSCADE (represented by notation O) can be calculated 
as O (HGSCADE) = O (positions initializing by OBL) + O (positions updating 
by greedy SCA) + O (positions updating by DE) + O (global best position 
updating) + O (current best position updating by local search), i.e. 

OðHGSCADEÞ ¼ O½N þ T � ðN � Dþ 2N þ 2Þ� (15) 

where N is the population size, D is the dimension of the problem and T is 
the maximum number of iterations. Similarly, the complexity of SCA is 
OðSCAÞ ¼ O½T � ðN � Dþ NÞ�. The opposition-based population initializa
tion, the greedy search, and the Levy flight-based local search increase the compu
tational complexity of the proposed algorithm.

Figure 1. The convergence curves of all algorithms for certain CEC2014 functions (H3, H13, H20, 
and H30) with D = 30.
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HGSCADE for Cylindricity Error Evaluation

Mathematical Model of Cylindricity Error

As shown in Figure 3, the cylindricity error f is defined as the minimum radius 
difference between two coaxial theoretical cylinders which envelop the actual 
contour of a cylindrical part. It is assumed that the measured points in the 
Cartesian coordinate system are pi(xi, yi, zi) (i = 1, 2, . . . , n), where xi, yi, zi are 
coordinate values, and n is the number of measured points. Supposing that the 
fixed point of L is (x0, y0, z0) and the directional vector of L is [a, b, c]. Then, 
the parametric equation of L can be defined as: 

x � x0

a
¼

y � y0

b
¼

z � z0

c
(16) 

The distance from point pi to axis L can be calculated by: 

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ B2 þ C2Þ=ða2 þ b2 þ c2Þ

p
(17) 

where A = (yi – y0) × c – (zi – z0) × b, B = (zi – z0) × a – (xi–x0) × c, C = (xi–x0) × 
b – (yi – y0) × a.

Figure 2. The convergence curves of all algorithms for certain CEC2014 functions (H3, H13, H20, 
and H30) with D = 50.
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Finally, the cylindricity error is defined as: 

f ðx0; y0; z0; a; b; cÞ ¼ minðmaxðrÞ � minðrÞÞ (18) 

Data Sets

Five original-measured data sets from corresponding literature are used to experi
ment. These data sets are named as Data set 1 (24 samples cited from Lai et al. 
2000), Data set 2 (32 samples cited from Yang et al. 2018), Data set 3 (80 samples 
cited from Lei et al. 2011), Data set 4 (24 samples cited from; Li et al. 2009), and 
Data set 5 (60 samples cited from Zhao, Wen, and Xu 2015), respectively.

Experiments and Analysis

HGSCADE is used for cylindricity error evaluation and compared with 
other algorithms. For all algorithms, the population size is fixed to 30, the 
search space of variables (x0, y0, z0) is set as the data range, and the search 
space of variables (a, b, c) is set from – 1 to 1. The search will be terminated 
when the number of evaluations reaches 10000. The evaluation results (the 
mean of 30 independent evaluation values for each data set) of HGSCADE 
and other comparison algorithms are listed in Table 5. The convergence 
curves of HGSCADE and other comparison algorithms are shown in 
Figure 4.

As can be observed from Table 5, the cylindricity error evaluation results of 
HGSCADE are much better than that of SCA, ABC, WOA, HSCAPSO, HSCADE, 

Figure 3. Schematic of cylindricity error.
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and LSC for all the data sets. Although SSA and PSOSCALF provide the same 
results as HGSCADE for Data set 1 and Data set 4, DE and GWO provide the same 
results as HGSCADE for Data set 4, they cannot give the best results for all the data 
sets. Moreover, the results of HGSCADE are well in agreement with the published 
results (equally for Data set 1, Data set 4 and Data set 5, slightly worse for Data set 2, 
slightly better for Data set 3). It can be observed from Figure 4 that the evaluation 
speed of HGSCADE is not the fastest, but HGSCADE can give the best evaluation 
results with relative efficiency. HGSCADE keeps a very good balance between 
exploration and exploitation in cylindricity error evaluation, so satisfactory results 

Figure 4. The convergence curves of all algorithms for cylindricity error evaluation.
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are obtained. The availability of HGSCADE for cylindricity error evaluation is 
verified by the experiment.

Conclusions

In this study, a novel HGSCADE algorithm is proposed for solving optimiza
tion problems and evaluating cylindricity error. The proposed algorithm 
combines SCA with five strategies: (1) Opposition-based learning (2) Greedy 
search (3) Differential evolution (4) Success history-based parameter adapta
tion (5) Local search based on Levy flight. HGSCADE is compared with the 
standard SCA, other state-of-the-art MAs, and the variants of SCA on the 
CEC2014 benchmark functions. The comparison and analysis of the test 
results prove that the performance of HGSCADE is better than that of other 
compared algorithms. In addition, the proposed algorithm is applied for 
cylindricity error evaluation of five measured cylindrical parts and is verified 
to be an effective mean to evaluate cylindricity error.

However, the test results of HGSCADE for several CEC2014 functions are 
worse than that of certain-compared algorithms (SSA for H5, H7, and H8; DE 
for H23, H24, and H27; ABC for H14; SCA, GWO, WOA, and m-SCA for 
H24). This suggests that HGSCADE accords with the NFL theorem. The 
future work will be concentrated in two directions: (1) Attempting to apply 
HGSCADE in solving other engineering optimization problems (2) Extending 
the study of SCA for solving more complex problems.

Disclosure Statement

The authors declare that they have no conflict of interest.

Funding

This work was supported by the National Natural Science Foundation of China under Grant 
[51565033]; and the Natural Science Foundation of Gansu Province under Grant [18JR3RA142].

ORCID

Qijun Li http://orcid.org/0000-0001-7836-5462
Baolin Dai http://orcid.org/0000-0003-4332-135X

References

Abd Elaziz, M., D. Oliva, and S. W. Xiong. 2017. An improved opposition-based sine cosine 
algorithm for global optimization. Expert Systems with Applications 90:484–500. doi:10.1016/j. 
eswa.2017.07.043.

APPLIED ARTIFICIAL INTELLIGENCE 189

https://doi.org/10.1016/j.eswa.2017.07.043
https://doi.org/10.1016/j.eswa.2017.07.043


Attia, A. F., R. A. El Sehiemy, and H. M. Hasanien. 2018. Optimal power flow solution in power 
systems using a novel sine-cosine algorithm. International Journal of Electrical Power & 
Energy Systems 99:331–43.

Chegini, S. N., A. Bagheri, and F. Najafi. 2018. PSOSCALF: A new hybrid PSO based on sine 
cosine algorithm and Levy flight for solving optimization problems. Applied Soft Computing 
73:697–726.

Das, S., A. Bhattacharya, and A. K. Chakraborty. 2018. Solution of short-term hydrothermal 
scheduling using sine cosine algorithm. Soft Computing 22:6409–27.

Dorigo, M., and G. Di Caro. 1999. Ant colony optimization: A new meta-heuristic. Proceedings 
of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 
Washington, DC, USA, 1470–77. IEEE.

Geem, Z. W., J. H. Kim, and G. V. Loganathan. 2001. A new heuristic optimization algorithm: 
Harmony search. Simulation 76 (2):60–68.

Gupta, S., and K. Deep. 2019. A hybrid self-adaptive sine cosine algorithm with opposition 
based learning. Expert Systems with Applications 119:210–30.

Issa, M., A. E. Hassanien, D. Oliva, A. Helmi, I. Ziedan, and A. Alzohairy. 2018. ASCA-PSO: 
Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise 
local sequence alignment. Expert Systems with Applications 99:56–70.

Jensi, R., and G. W. Jiji. 2016. An enhanced particle swarm optimization with levy flight for 
global optimization. Applied Soft Computing 43:248–61.

Karaboga, D., and B. Basturk. 2007. A powerful and efficient algorithm for numerical function 
optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization 39:459–71.

Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization. Proceedings of ICNN’95 - 
International Conference on Neural Networks, Perth, WA, Australia, 1942–48. IEEE.

Lai, H. Y., W. Y. Jywe, C. K. Chen, and C. H. Liu. 2000. Precision modeling of form errors for 
cylindricity evaluation using genetic algorithms. Precision Engineering 24 (4):310–19.

Lei, X. Q., H. W. Song, Y. J. Xue, J. S. Li, J. Zhou, and M. D. Duan. 2011. Method for cylindricity error 
evaluation using geometry optimization searching algorithm. Measurement 44 (9):1556–63.

Li, J. S., X. Q. Lei, Y. J. Xue, and M. D. Duan. 2009. Evaluation algorithm of cylindricity error 
based on coordinate transformation. China Mechanical Engineering 20 (16):1983–87.

Li, S., H. J. Fang, and X. Y. Liu. 2018. Parameter optimization of support vector regression 
based on sine cosine algorithm. Expert Systems with Applications 91:63–77.

Liang, J. J., B. Y. Qu, and P. N. Suganthan. 2013. Problem definitions and evaluation criteria for 
the CEC 2014 special session and competition on single objective real-parameter numerical 
optimization. Singapore: Zhengzhou University, Zhengzhou, China and Nanyang 
Technological University.

Mirjalili, S. 2015. The ant lion optimizer. Advances in Engineering Software 83:80–98.
Mirjalili, S. 2016. SCA: A sine cosine algorithm for solving optimization problems. Knowledge- 

Based Systems 96:120–33.
Mirjalili, S., A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili. 2017. Salp 

swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in 
Engineering Software 114:163–91.

Mirjalili, S., and A. Lewis. 2016. The whale optimization algorithm. Advances in Engineering 
Software 95:51–67.

Mirjalili, S., S. M. Mirjalili, and A. Lewis. 2014. Grey wolf optimizer. Advances in Engineering 
Software 69:46–61.

Nenavath, H., and R. K. Jatoth. 2018. Hybridizing sine cosine algorithm with differential 
evolution for global optimization and object tracking. Applied Soft Computing 62:1019–43.

190 Q. LI ET AL.



Nenavath, H., D. R. Kumar Jatoth, and D. S. Das. 2018. A synergy of the sine-cosine algorithm 
and particle swarm optimizer for improved global optimization and object tracking. Swarm 
and Evolutionary Computation 43:1–30.

Passino, K. M. 2002. Biomimicry of bacterial foraging for distributed optimization and control. 
IEEE Control Systems Magazine 22 (3):52–67.

Rashedi, E., H. Nezamabadi-pour, and S. Saryazdi. 2009. GSA: A gravitational search algo
rithm. Information Sciences 179 (13):2232–48.

Rizk-Allah, R. M. 2018. Hybridizing sine cosine algorithm with multi-orthogonal search strategy for 
engineering design problems. Journal of Computational Design and Engineering 5 (2):249–73.

Simon, D. 2008. Biogeography-based optimization. IEEE Transactions on Evolutionary 
Computation 12 (6):702–13.

Sindhu, R., R. Ngadiran, Y. M. Yacob, N. A. H. Zahri, and M. Hariharan. 2017. Sine-cosine 
algorithm for feature selection with elitism strategy and new updating mechanism. Neural 
Computing and Applications 28:2947–58.

Srinivas, M., and L. M. Patnaik. 1994. Genetic algorithms: A survey. Computer 27 (6):17–26.
Storn, R., and K. Price. 1997. Differential evolution – A simple and efficient heuristic for global 

optimization over continuous spaces. Journal of Global Optimization 11:341–59.
Tanabe, R., and A. Fukunaga. 2013. Success-history based parameter adaptation for differential 

evolution. Proceedings of 2013 IEEE Congress on Evolutionary Computation, Cancún, 
México, 71–78. IEEE.

Tizhoosh, H. R. 2005. Opposition-based learning: A new scheme for machine intelligence. 
Proceedings of International Conference on Computational Intelligence for Modelling, Control 
and Automation and International Conference on Intelligent Agents, Web Technologies and 
Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 695–701. IEEE.

Wen, X. L., J. C. Huang, D. H. Sheng, and F. L. Wang. 2010. Conicity and cylindricity error 
evaluation using particle swarm optimization. Precision Engineering 34 (2):338–44.

Wolpert, D. H., and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE 
Transactions on Evolutionary Computation 1 (1):67–82.

Yang, X. S. 2008. Introduction to mathematical optimization: From linear programming to 
metaheuristics. Cambridge: Cambridge International Science Publishing.

Yang, Y., M. Li, C. Wang, and Q. Y. Wei. 2018. Cylindricity error evaluation based on an 
improved harmony search algorithm. Scientific Programming 2:1–13.

Zhao, Y. B., X. L. Wen, and Y. X. Xu. 2015. Cylindricity error inspection and evaluation based 
on CMM and QPA. China Mechanical Engineering 26 (18):2432–36.

APPLIED ARTIFICIAL INTELLIGENCE 191


	Abstract
	Introduction
	Sine-Cosine Algorithm
	The Proposed Algorithm
	Opposition-based Population Initialization
	Greedy Search
	Combined with Differential Evolution
	Success History-Based Parameter Adaptation
	Local Search Based on Levy Flight
	Overall Implementation

	Results and Discussion
	Compared Algorithms
	Test Results
	Statistical Analysis
	Convergence Analysis
	Complexity Analysis

	HGSCADE for Cylindricity Error Evaluation
	Mathematical Model of Cylindricity Error
	Data Sets
	Experiments and Analysis

	Conclusions
	Disclosure Statement
	Funding
	ORCID
	References

