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A Multi-objective Particle Swarm Optimization Based on 
Pareto Archive for Integrated Production and Distribution 
Planning in A Green Supply Chain
S.M.T. Fatemi Ghomi a, B. Karimi a, J. Behnamian b, and J. Firoozbakhta

aDepartment of Industrial Engineering, Amirkabir University of Technology, Tehran, Iran; bDepartment of 
Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

ABSTRACT
This paper presents a bi-objective model for integrated production 
and distribution planning in a multi-period multi-product green 
supply chain. This paper considers many near-real-world factors, 
such as: normal and overtime production shifts, limited storage 
capacity of the finished product and raw materials, different vehicle 
types, direct and indirect shipping along with considering different 
production methods that influence the production costs and sale 
prices, simultaneously. Mixed integer programming model is pro-
posed in which the profit maximization and the CO2 emission 
minimization are formulated. A particle swarm optimization algo-
rithm based on Pareto archive that utilizes the genetic algorithm 
operators is proposed to solve the model.
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Introduction

Traditionally, it was believed that different components of the supply chain 
can be planned independently and in separate directions; however, this point 
of view leads to the reduction of profit of the system as a whole (Barbarosoğlu 
and Özgür 1999). Whereas, nowadays the integration of the production and 
distribution activities can provide competitive advantages by influencing the 
profitability of the supply chain (Fahimnia et al. 2013).

In green supply chain, the ‘green’ concept refers to considering the effects 
and relation of the supply chain management and the environment (Srivastava 
2007). Also, with respect to global warming which is a direct result of human 
activities since the industrial revolution, the emission of greenhouse gases 
must be considered in coordinated activities of supply chains. The most 
important greenhouse gas produced by human activities is CO2, such that 
between years 1970–2004 increased by 80%, due to the increase in fossil fuels 
consumption (Sadrnia et al. 2013).

With respect to the importance of integrating production and distribution 
planning (p-d planning) and considering environmental factors, in this study, 
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a new bi-objective model for the integrated p-d planning problem that simul-
taneously maximizes profit and minimizes CO2 emission, in a four-echelon, 
multi-period, and multi-product supply chain is presented. Raw materials are 
sent from the suppliers to the factories and the finished products are shipped 
to the customers either directly or by the means of distribution centers. 
Furthermore, numerous near-real-world assumptions are taken into account. 
In addition to revenue from the sale of the finished products, some cost factors 
including raw material procurement cost, production cost, raw material, and 
finished products holding cost, transportation, and shortage costs are consid-
ered in the model. This mid-term planning model helps the supply chain to 
look beyond the profit aspect and the right choice of type and number of 
appropriate vehicles with respect to their amount of greenhouse gas emission, 
reduces the amount of CO2 emission.

The remaining paper is organized as follows. Section 2 reviews the related 
literature. Section 3 gives the general problem definition and the proposed 
mathematical model. The multi-objective Pareto archive-based particle swarm 
optimization (PSO) algorithm (named as pa-PSO) is explained in section 4. 
Section 5 deals with the comparison between pa-PSO and NSGA-II algorithm 
on the sample problems and case study. Finally, section 6 concludes the paper 
and suggests some area for future research.

Literature Review

Integrated p-d planning in the area of supply chain management has attracted 
many attentions in recent years. Sarmiento and Nagi (1999) and Fahimnia 
et al. (2013)reviewed the p-d planning papers. Srivastava (2007)and Dekker, 
Bloemhof, and Mallidis (2012) presented review papers on green supply chain 
management.

In this section, for the abbreviation, the more related multi-objective mod-
els of the integrated p-d planning in the supply chain and green supply chain 
are reviewed. Sadrnia et al. (2013) presented a model for a single period 
automobile supply chain with two objectives of cost and CO2 emission mini-
mization and solved the model by the multi-objective gravitational search 
algorithm. Their model does not account for the shortage costs, normal time 
and overtime production and direct shipping. Guillén-Gosálbez and 
Grossmann (2009) studied a stochastic planning model in a liquid products 
three-echelon supply chain with the objectives of cost and environmental 
damage minimization. To solve the model, they decomposed the problem 
into two sub-problems. Guillén-Gosálbez and Grossmann (2010)developed 
the former works and utilized the ε-constraint and a new branch and bound 
method. Both articles, do not consider different types of vehicles, direct 
shipping and shortage decisions. Memari, Rahim, and Ahmad (2015)pre-
sented a model in three-echelon green supply chain. They seek to minimize 
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their costs and CO2 emission through just-in-time shipping. A multi-objective 
genetic algorithm (GA) and the goal programming approach are used to solve 
the model. Different types of vehicles, direct shipping, several suppliers, and 
related decisions are not taken into account. Sarrafha et al. (2015)presented 
a model for a supply chain with the objectives of cost and average tardiness 
minimization and solved it with an optimization approach based on the 
biogeography, multi-objective simulates annealing and NSGA-II algorithms. 
Moncayo-Martínez and Zhang (2011) presented a model for a three-echelon 
supply chain that minimizes the cost and lead time. They solved their model by 
an ant colony optimization algorithm. Mastrocinque et al. (2013)solved the 
model of Moncayo-Martínez and Zhang (2011) with Bees algorithm. 
Mirzapour Al-E-Hashem et al. (2011) developed a model for a two-echelon 
supply chain and considered the cost and demand fluctuation as the stochastic 
variables. The objectives are minimization of the cost and its variance along 
with the maximization of the staff productivity. Mirzapour Al-E-Hashem, 
Malekly, and Aryanezhad (2011) presented a three-echelon supply chain 
model that considers demand uncertainty. The objectives are minimization 
of the cost and maximum shortage of all periods. Liu and Papageorgiou (2013) 
studied a model with three objectives in a two-echelon global supply chain for 
the process industry.Gholamian, Mahdavi, and Tavakkoli-Moghaddam (2016) 
modeled a three-echelon supply chain as a non-linear fuzzy four-objective 
model under uncertainty. Pasandideh, Niaki, and Asadi (2015b) developed 
a model minimizing the cost and maximizing the average number of sent 
products. Also Pasandideh, Niaki, and Asadi (2015a) presented another opti-
mization model for a three-echelon supply chain that minimizes the expected 
and variance of total cost and solved the model with NSGA-II algorithm.

According to the gap of literature review, this paper presents a multi- 
product and multi-period four-echelon integrated p-d planning model con-
sidering several suppliers, factories, customers, distribution centers, transpor-
tation routes and vehicles, and environmental factors not studied yet.

Problem Definition

Decorative stones are a group of stones that are cut into specific sizes. In 
order to produce plaque stone (used in construction sites), rock stones 
(blocks) are cut into pre-specified thicknesses and then burnished such that 
the surface becomes totally reflective and smooth. In stone processing 
industry, many different factors such as color, design, and streak which 
the raw material might contain make the production and distribution 
activities difficult. Paying attention to these issues, proposing an appropriate 
model for the integrated p-d planning of a stone supply chain that con-
siders most of the real-world factors, helps the industry to plan better and 
more accurate.
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Assumptions

● There are a number of type-1 and type-2 raw material suppliers, stone- 
cutting factories, distribution centers, and customers.

● Transporting the products from factories to the customers can be made by 
direct and indirect shipments.

● Various products (plaque stones) are produced in factories in normal and 
overtime shifts.

● There are two production methods. The first method refers to the pro-
duction using common cutting machines with a lower price level and 
production cost than the second method in which the high precision 
cutting machines are utilized.

● Production capacity is limited.
● The limited capacity exists in the supplying the raw material by the 

suppliers, storing type-1 raw material in the plant, storing finished pro-
ducts in the factory and distribution centers.

● The initial inventory for the first period is considered to be zero.
● Different types of vehicles (e.g. trucks, trailers, train . . .) exist in all 

distribution routes.
● Shortage is considered as lost sales.
● Minimum demand in the planning horizon should be satisfied.

Figure 1 shows an overview of the studied supply chain.

Indices

h: Type-1 raw material suppliers
s: Type-2 raw material suppliers
i: Factories
j: Distribution centers (DCs)
c: Customers

Figure 1. An overview of the studied supply chain.

136 S. M. T. FATEMI GHOMI ET AL.



p:Products
t: Time periods
o: Production shift; equals to 1 when production occurs in normal time and 

when production occurs in overtime
r: Production method; equals to 1 when normal method is used, and 2 when 

high precision method is used
l: Type-1 raw material
u: Type-2 raw material
TK: Vehicles between type-1 raw material suppliers and factories
TS: Vehicles between type-2 raw material suppliers and factories
TD: Vehicles between DCs and customers
TC: Vehicles between factories and customers, and between factories 

and DCs.

Parameters

dpct: Demand of product pfrom customer c in period t
pprc: Sale price of product pproduced by method r for customer c
caklht: Supply capacity of raw material l from supplier h in period t
casust: Supply capacity of raw material u from supplier s in period t
caforit: Production capacity of method r in production shift o by factory i in 

period t
cahkit: Storage capacity of type-1 raw material in factory i in periodt
cahf it: Storage capacity of finished products in factory i in period t
cahdjt: Storage capacity of finished products in DC j in period t
cf porit: Unit production cost of product p in shift o by method r in factory i 

in period t
ckl: Unit procurement cost of raw material l
csu: Unit procurement cost of raw material u
chkl: Unit holding cost of raw material l
chf pi: Unit holding cost of product p in factory i
chdpj: Unit holding cost of product p in DC j
ctkTK

hi : Transportation cost from supplier h to factory i with one vehicle TK
ctsTSsi : Transportation cost from supplier s to factory i with one vehicle TS
ctfTCij Transportation cost from factory i to DC j with one vehicle TC
ctdTDjc : Transportation cost from DC j to customer c with one vehicleTD
ctcTCic : Transportation cost from factory i to customer c with one vehicle TC
wp: Weight of product p
α1p: Amount of raw material l needed to produce product p
βupr: Amount of raw material u needed to produce product pby method r
πpct: Lost sales cost of product pfor customer c in period t
zj: Minimum percent of the demand to be satisfied by DC j, zj 2 ½0; 1�
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vkTK: Maximum permitted load of vehicle TK
vsTS: Maximum permitted load of vehicle TS
vdTD: Maximum permitted load of vehicle TD
vcTC: Maximum permitted load of vehicle TC
diskTKhi : Distance between supplier h and factory i with vehicle TK
disssi: Distance between supplier s and factory i
disfij: Distance between factory i and DC j
disdjc: Distance between DC j and customer c
discic: Distance between factory i and customer c
gkco2TK: Emitted CO2 per distance unit by vehicle TK
gsco2TS: Emitted CO2 per distance unit by vehicle TS
gdco2TD: Emitted CO2 per distance unit by vehicle TD
gcco2TC: Emitted CO2 per distance unit by vehicle TC
dmin: Minimum fraction demand in the planning horizon that needs to be 

satisfied

Variables
xporit: Number of product p produced in shift o by method r in factory i in 
period t

ykTK
lhit: Amount of raw material l shipped from supplier h to factory i by 

vehicle TK in period t
ysTS

usit: Amount of raw material u shipped from supplier s to factory i by 
vehicle TS in period t

yf TC
prijt: Number of product p produced by method r shipped from factory i to 

DC j by vehicle TC in period t
ydTD

prjct: Number of product pproduced by method r shipped from DC j to 
customer c by vehicle TD in period t

ycTC
prict: Number of product pproduced by method r shipped from factory i to 

customer c by vehicle TC in period t
nkTK

hit : Number of vehicle TK used in period t from supplier h to factory i
nsTS

sit : Number of vehicle TS used in period t from supplier s to factory i
nf TC

ijt : Number of vehicle TC used in period t from factory i to DC j
ndTD

jct : Number of vehicle TD used in period t from DCj to customer c
ncTC

ict Number of vehicle TC used in period t from factory i to customer c
iklit: Raw material l inventory in factory i at the end of period t
isuit: Raw material u inventory in factory i at the end of period t
ifprit: Inventory of product p produced by method r in factory i at the end of 

period t
idprjt: Inventory of product p produced by method r in DC j at the end of 

period t
Bpct: Lost sale of product p from customer c in period t
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Objective Functions

P ¼
X

p;r;j;c;t;TD
ðydTD

prjctÞ:pprcþ
X

p;r;i;c;t;TC
ðycTC

prictÞ:pprc 1 

PC ¼
X

p;o;r;i;t
xporit:cfporit 2 

TC ¼
X

h;i;t;TK
nkTK

hit :ctk
TK
hi þ

X

s;i;t;TS
nsTS

sit :cts
TS
si þ

X

i;j;t;TC
nf TC

ijt :ctf
TS
ij

þ
X

j;c;t;TD
ndTD

jct :ctd
TD
jc þ

X

i;c;t;TC
ncTC

ict :ctc
TC
ic

3 

HC ¼
X

l;i;t
iklit:chkl þ

X

p;r;i;t
ifprit:chfpi þ

X

p;r;j;t
idprjt:chdpj 4 

BC ¼
X

p;c;t
Bpct:πpct 5 

RC ¼
X

l;h;i;t;TK
ykTK

lhit:ckl þ
X

u;s;i;t;TS
ysTS

usit:csu 6 

max f1 ¼ P � ðPCþ TC þHCþ BCþ RCÞ 7 

max f2 ¼
X

h;i;t;TK
nkTK

hit :gkco2
TK:diskTKhi þ

X

s;i;t;TS
nsTS

sit :gsco2
TS:disssi

þ
X

i;j;t;TC
nf TC

ijt :gcco2
TC:disfij þ

X

j;c;t;TD
ndTD

jct :gdco2
TD:disdjc

þ
X

i;c;t;TC
ncTC

ict :gcco2
TC:discic

8 

The first objective function represented by Equation (7) maximizes the total 
profit. It is obtained by subtracting revenue denoted by Equation (1) from the 
sum of production, transportation, holding, shortage, and raw material procure-
ment costs, represented in Equations (2)-(6), respectively. The second objective 
function represented by Equation (8) minimizes the total CO2 emission.

Constraints

X

p
xporit � caforit "o; r; i; t 9 
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X

i;TK
ykTK

lhit � caklht "l; h; t 10 

umi;TSysTS
usit � casust "u; s; t 11 

iklit ¼ ikliðt� 1Þ þ
X

h;TK
ykTK

lhit �
X

p;o;r
xporit:αlp "l; i; t 12 

isuit ¼ isuiðt� 1Þ þ
X

s;TS
ysTS

usit �
X

p;o;r
xporit:βupr "u; i; t 13 

ifprit ¼ ifpriðt� 1Þ þ
X

o
xporit �

X

j;TC
yf TC

prijt �
X

c;TC
ycTC

prict "p; r; i; t 14 

idprjt ¼ idprjðt� 1Þ þ
X

i;TC
yf TC

prijt �
X

c;TD
ydTD

prjct "p; r; j; t 15 

Bpct ¼ dpct �
X

i;r;TC
ycTC

prict �
X

j;r;TD
ydTD

prjct "p; c; t 16 

X

p;r;c;t;TD
ydTD

prjct � zj:
X

p;c;t
dpct "j 17 

X

l
iklit � cahkit "i; t 18 

X

p;r
ifprit � cahfit "i; t 19 

X

p;r
idprjt � cahdjt "j; t 20 

ðnkTK
hit � 1Þ:vkTK �

X

l
ykTK

lhit � nkTK
hit :vk

TK "h; i; t;TK 21 

ðnsTS
sit � 1Þ:vsTS �

X

u
ysTS

usit � nsTS
sit :vs

TS "s; i; t;TS 22 

ðnf TC
ijt � 1Þ:vcTC �

X

p;r
yf TC

prijt:wp � nf TC
ijt :vc

TC "i; j; t;TC 23 
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ðndTD
jct � 1Þ:vdTD �

X

p;r
ydTD

prjct:wp � ndTD
jct :vd

TD "j; c; t;TD 24 

ðncTC
ict � 1Þ:vcTC �

X

p;r
ycTC

prict:wp � ncTC
ict :vc

TC "i; c; t;TC 25 

X

p;r;i;c;t;TC
ycTC

prict þ
X

p;r;j;c;t;TD
ydTD

prjct � dmin:
X

p;c;t
dpct 26 

ifpri0 ¼ 0; ikli0 ¼ 0; idprj0 ¼ 0; isui0 ¼ 0 "p; r; l; u; i; j 27 

xporit; yf TC
prijt; ycTC

prict; ydTD
prjct; ifprit; idprjt; nkTK

hit ; nsTS
sit ; nf TC

ijt ; ndTD
jct ;

ncTC
ict ;Bpct integer

28 

iklit; ykTK
lhit; isuit; ysTS

usit � 0 29 

Equation (9) expresses the production capacity constraint. Equations (10) 
and (11) demonstrate the raw material supply constraint. Relations (12)-(15) 
are inventory balance equations. Equation (16) computes the shortage through 
the difference between demand and the amount shipped to the customer. 
Equation (17) explains that a minimum value of demand should be satisfied 
by each DC. Equations (18)-(20) express the holding capacity constraints. 
Inequalities (21)-(25) guarantee the required number of vehicles of each type 
for shipment of products with that type. Equation (26) shows that at least a 
2dmin fraction of total demand within the planning horizon must be satisfied. 
Equation(27) specifies that the initial inventories at the beginning of the 
planning horizon are zero. Equations (28) and (29) show the type of variables.

Solution Method

This section introduces the proposed pa-PSO and NSGA-II, and ɛ-constraints 
method for validation.

Pa-PSO Algorithm

PSO algorithm is a population-based algorithm. Detailed structure of the 
designed pa-PSO used in this paper is given in subsections 4.1.1 to 4.1.5 
Figure 2 shows the pseudo-code of the proposed pa-PSO.

Initial Solution Generation Procedure
For solution representation, a number of matrices relevant to the model 
outputs are used. Since the quality of the final solution obtained from 
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evolutionary metaheuristics is directly dependent on the quality of the initial 
solution, in this article, first, N feasible solutions are generated. Then, the 
neighborhood of the initial population is produced by a multi-start parallel 
neighborhood search (named as PNS). The output of this structure is then 
considered as the initial solutions population. PNS consists of three neighbor-
hood search structures applied simultaneously on the input solution. The 
three structures are as follows:

First Neighborhood Search Structure. In this structure, t1 and t2 are chosen 
randomly from ½1;T� (T is the number of planning periods). Then, the values 
of xporitin periods t1 and t2 are replaced with each other and the feasibility of 
the new variable values is checked. After the new matrixxporit is generated, 
other solution matrices are randomly constructed such that the feasibility 
condition is met.

Second Neighborhood Search Structure. Similar to the first structure, this 
structure applies the changes on xporit. The only difference is that the amount 
produced in normal time is replaced with that produced in overtime.

Third Neighborhood Search Structure. This structure replaces the production 
values from the first and the second method in xporit.

The multi-start PNS structure is as follows:
Step 0- start
Step 1- set the counter number to 0
Step 2- apply the first neighborhood search on the (s) input solution and 

name its output as s1
Step 3- apply the second neighborhood search on the input solution and 

name its output as s2
Step 4- apply the third neighborhood search on the input solution and name 

its output as s3
Step 5- select the best solution among s1, s2, s3 and s, and consider it as the 

new input solution. In this step, the best solution is the one with the highest 
quality and diversity.

Step 6- add a unit to the counter
Step 7- if the counter number reached a pre-specified limit go to step 8, 

otherwise, go to step 2
Step 8- end.

Improvement Procedure
The designed improvement procedure in this paper is applied to the solutions 
and improves them as much as possible. This procedure is based on the variable 
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neighborhood search (VNS) in which the three mentioned neighborhood search 
structures are combined. Figure 3 shows the Pseudo-code of the VNS procedure.

Updating the Particles
At this stage, in order to update the particles, the genetic algorithm operators 
are utilized (Tavakkoli-Moghaddam, Azarkish, and Sadeghnejad-Barkousaraie 
(2011)) represented in the following equation. 

xtþ1
i ¼ ðxt

i � pt
iÞ þ ðx

t
i � pt

gÞ þ xt
i 30 

In Equation (30), xtþ1
i is the i th particle in ðt þ 1Þth iteration, xt

i is the 2ith 
particle in t th iteration, pt

i is the best solution that the i th particle was ever able 
to find, pt

g is the best solution ever found by the algorithm, and xt
i is 

a neighborhood of xt
i obtained by applying a mutation operator. “-”is the single 

point crossover and “+” is the operators selection sign. In fact, in order to 
obtain the i th solution in ðt þ 1Þth iteration, five solutions are generated: two 
from the crossover between xt

i and pt
i , two from the crossover between xt

i andpt
g , 

and one from applying the mutation operator on xt
i . In the end, the solution 

with the highest quality and diversity is selected as xtþ1
i . Actually, pt

i and pt
g are 

guides to achieve the next iteration solutions. The mutation operator used in 
Equation (30) to update the particles, is VNS which is explained previously.

Updating pt
i Andpt

g

For each particle i, if a better neighborhood than pt
i is found, it is replaced with 

pt
i , otherwise, the neighborhood remains the same. On the other hand, if the 

best solution ever found is better than pt
g , it is replaced with pt

g , otherwise, pt
g 

remains the same as before.

Updating the Pareto Archive
In the proposed algorithm, a set of solutions is considered to be the Pareto 
archive in which the non-dominated solutions generated by the algorithm are 
stored. At the end of the each iteration, all the existing solutions in the Pareto 
archive along with the generated solutions in the iteration are gathered in 
a pool of solutions and then compared against each other. The selected non- 
dominated solutions are considered as the updated Pareto archive. Also in 
each iteration, the existing solutions of the current iteration along with the 
generated solutions by the algorithm are combined in a pool of solutions and 
after calculating the crowding distance and rating them, N solutions with the 
highest quality and diversity are selected as the next iteration population, 
based on Deb’s law (Deb et al. 2002).
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NSGA-II Algorithm

To test the efficiency of the proposed pa-PSO, the results are compared with 
these of NSGA-II. The process of generating an initial solution in NSGA-II 
consists of generating N random feasible solutions. For the parent selection, 
the binary tournament procedure is used with non-dominated relationships 
(Deb et al. 2002). The mutation and crossover operators used in NSGA-II are 
the same used in the proposed pa-PSO so that both algorithms are compared 
in similar conditions.

ε-constraint Method

In ε-constraint method, one of the objective functions is considered as the 
(main) objective function and optimized, while the remaining objectives are 
considered as constraints. In this paper the main objective is profit maximiza-
tion (Mavrotas 2009).

Computational Results

This section first validates the model. Then, the pa-PSO is applied for 
a number of sample problems and stone-cutting case study. The results gained 
from proposed pa-PSO are compared with those of NSGA-II based on a set of 
criteria. All of the problems are implemented on an Intel Core i2, Duo RAM, 2 
GB computer.

Validation

In order to solve this problem in small size instances, first, it is coded in GAMS 
20 software. Then, the ε-constraint method is applied to two sample problems. 
Also, these two samples are handled by the proposed pa-PSO in MATLAB 
2009 software. Table 1 gives the characteristics of these two sample problems.

Solving the first sample problem in GAMS based on the ɛ-constraint 
method, the optimal solutions were obtained shown in Table 2. Also the 
solution of the proposed pa-PSO for the first sample is shown in Table 3. 
Solutions 3–9 from GAMS dominate the solution of proposed pa-PSO. But 
with regard to the definition of the non-dominancy equations, solutions 1, 2, 
10, 11 and the proposed pa-PSO solution are non-dominated when compared 
with each other. Thus, it can be claimed that the proposed pa-PSO is able to 

Table 1. Two problem instances for model validation.
Problem number u l TC TD TS TK p t c j i h s

1 2 2 4 5 2 2 2 2 2 2 2 2 2
2 2 2 4 5 2 2 2 4 5 2 2 2 2
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find the near-optimal solutions for the proposed model. This sample problem 
is also solved in the NSGA-II algorithm and its results are exactly the same as 
these from the proposed pa-PSO.

As for the second sample problem, the GAMS yielded a feasible solution 
with a relative gap of 6.71% within 3 hours. The software was not able to return 
the optimal value of the problem after a long time. Thus, in order to solve 
larger size problems and case study, metaheuristic algorithms are utilized. 
Also, in the second sample problem, the relative gap between the first objective 
function value from the proposed pa-PSO and the GAMS results was 1.4481% 
which is a positive value. This positivity proves validation of the proposed pa- 
PSO.

Comparison Metrics

In order to evaluate the quality and diversity of the multi-objective metaheur-
istic algorithms, various criteria exist for consideration. To do so, this paper 
considers three metrics.

Quality Metric
In quality metric, all Pareto optimal solutions from both methods are rated 
and the ratios between non-dominated solutions are determined.

Spacing Metric
Spacing metric tests the uniformity of the spread of the obtained Pareto 
optimal solutions. This metric is defined as Equation (31) where dishows the 

Table 2. Solutions of ɛ-constraint with GAMS 
for the first sample.

Solutions f1 f2

1 4682.351 2735.078
2 4663.351 2602.621
3 4647.351 2485.076
4 4628.351 2352.619
5 4608.351 2214.46
6 4589.351 2082.002
7 4570.351 1949.545
8 4528.351 1860.11
9 4509.351 1727.653
10 4009.727 1596.596
11 3308.38 1518.006

Table 3. Solution of the proposed pa-PSO 
for the first sample.

f1 f2

Values 4507.107 2589.304
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Euclidean distance between non-dominated consecutive solutions and dmean is 
the mean of these distances: 

s ¼
PN� 1

i¼1 dmean � dij j

ðN � 1Þ � dmean
(31) 

Diversity Metric
Diversity metric is used to determine the spread of non-dominated solutions 
found on the Pareto optimal frontier. It is defined as Equation (32), where 

xi
t � yi

t
�
�

�
�shows the Euclidean distance betweenxi

t andyi
tthat are consecutive 

non-dominated solutions. 

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1
maxð xi

t � yi
tk kÞ

r

(32) 

Parameter Tuning

The MINITAB software is used to tune both of the algorithm’s parameters. 
Population size, number of iterations of PNS for the pa-PSO, population size, 
mutation and crossover rate for the NSGA-II algorithm are the tuned para-
meters. For the parameter tuning, we used Taguchimethod and for pa-PSOthree 
levels 70, 150, and 200 for population size and three levels 5, 10, and 15 for the 
number of PNS iterations are taken. Also, in NSGA-II algorithm, three levels for 
the mutation and crossover rates are considered which are (0.1, 0.8), (0.2, 0.7), 
and (0.1, 0.7), respectively. The levels of the population size are the same as in the 
pa-PSO parameter tuning levels. The population size for the proposed pa-PSO is 
decided to be 200 and the number of PNS iterations to be 5. Also, for the NSGA- 
II algorithm, it is decided to set the population size equal to 150 and the 
mutation and crossover rates to be 0.1 and 0.8, respectively.

Numerical Analysis

A number of sample problems categorized into two groups of large-size and 
small-size problems are designed. Tables 4 and 5 give the related information 
about these samples.

The performance of the proposed pa-PSO and NSGA-II is analyzed for both 
of the large and small size problems. The results are shown in Table 6.

Table 6 shows that the proposed pa-PSO has a higher ability to generate 
better solutions than the NSGA-II algorithm. Also it produces a more diverse 
set of solutions than the NSGA-II algorithm. In the other words, it is more 
capable than the NSGA-II in exploring and finding the feasible solution 
region. However, the solutions of the NSGA-II are more uniform than the pa- 
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PSO. Furthermore, Figure 4 shows the solution time for both algorithms that 
indicates the elapsed time of the pa-PSO is more than that of the NSGA-II 
algorithm.

The case study with general information shown in Table 7 is also solved 
with both of the algorithms. The results are shown in Table 8.

Table 4. Small size problems.
Problem number u l TC TD TS TK p t c j i h s

3 5 5 5 5 5 5 1 7 7 7 3 2 2
4 5 5 5 5 5 5 2 7 7 7 3 2 2
5 5 5 5 5 5 5 3 7 7 7 3 2 2
6 5 5 5 5 5 5 1 8 10 8 6 2 2
7 5 5 5 5 5 5 2 8 10 8 6 2 2
8 5 5 5 5 5 5 3 8 10 8 6 2 2
9 5 5 5 5 5 5 1 9 15 9 7 2 2
10 5 5 5 5 5 5 2 9 15 9 7 2 2
11 5 5 5 5 5 5 3 9 15 9 7 2 2

Table 5. Large size problems.
Problem no. u l TC TD TS TK p t c j i h s

12 10 10 10 10 10 10 1 10 30 20 10 5 2
13 10 10 10 10 10 10 2 10 30 20 10 5 2
14 10 10 10 10 10 10 3 10 30 20 10 5 2
15 10 10 10 10 10 10 1 11 70 40 15 5 2
16 10 10 10 10 10 10 2 11 70 40 15 5 2
17 10 10 10 10 10 10 3 11 70 40 15 5 2
18 10 10 10 10 10 10 1 12 90 45 15 5 2
19 10 10 10 10 10 10 2 12 90 45 15 5 2
20 10 10 10 10 10 10 3 12 90 45 15 5 2

Table 6. The results of the proposed pa-PSO and NSGA-II algorithm.
Problem  
Number NSGA-II pa- PSO

Diversity metric Spacing metric Quality metric Diversity metric Spacing metric Quality metric

3 333.01 0.6601 14.629 633.2 0.8694 85.371
4 415.5 0.8649 0.989 790.6 1.003 99.011
5 777.1 0.99 0 919.5 0.7634 100
6 879.3 0.4562 0 1092.3 0.9911 100
7 906.6 0.7941 20.48 1213.7 1.3482 79.52
8 992.4 0.7054 10.215 1609.4 0.889 89.785
9 1232.9 0.90480 2194.6 1.22 100
10 1176.2 0.44 0 2427.3 0.99 100
11 1720.6 0.59 0 3568.4 1.09 100
12 1302.6 0.73 30.87 1599.5 0.88 69.13
13 1399.4 0.45 22.35 1694.8 0.69 77.65
14 1549.2 0.93 0 2834.7 1.23 100
15 1666.5 0.74 5.24 11009 0.98 94.76
16 2709.3 0.44 15.51 11517 0.99 84.49
17 2858.6 0.91 0 11900 1.65 100
18 11029 0.58 0 22210 0.76 100
19 110424 0.77 16.97 26342 0.94 83.03
20 110950 0.64 0 30077 1.34 100
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As Table 8 indicates, the pa-PSO and the NSGA-II algorithm returned 
15 and 12 non-dominated solutions, respectively.

After several runs of algorithms, the metrics values in Table 9 prove 
that the pa-PSO performs better than the NSGA-II algorithm in finding 
higher quality and more diverse solutions. However, the solutions 
reported from the NSGA-II are more uniform. Figure 5 depicts the 
Pareto optimal frontier of both algorithms.

Table 7. General information for the case study problem.
Indices u l TC TD TS TK p t c j i h s

Values 3 14 4 5 2 3 41 12 21 2 2 10 2

Figure 4. Computational times of two algorithms for 10 test problems.

Table 8. Objective functions values of non-dominated solutions 
from two algorithms.

pa-PSO NSGA-II

f1 f2 f1 f2
1174525 624633.3 1164585 792463.3
1174562.3 624662.4 1164829.8 792534.4
1174603.6 624673.5 1165388.2 792596.7
1174644.7 624690.3 1165987.6 792702
1174684.2 624719.9 1166271.7 792811.1
1174715.3 624736.9 1166647.8 792883.5
1174754.1 624763.1 1167240.6 792940.4
1174786.2 624781.9 1167775.8 793009.9
1174828 624808 1168363 793128.5
1174868.9 624826.2 1168705.4 793170.1
1174908.5 624838.6 1169107.8 793248.9
1174947.3 624856.2 1169552.6 793328.6
1174988.9 624876 - -
1175024 624888 - -
1175052.6 624906.7 - -
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Conclusion

Integrating production and distribution activities in supply chains and 
considering the environmental factors was felt to be important to be 
studied. Hence, in this paper a multi-objective mixed integer linear pro-
gramming model was developed in a four-echelon multi-product multi- 
period supply chain in stone-cutting industry. The problem studied con-
sidered different types of vehicles and accounted for the CO2 emission. The 
objectives of the proposed model are maximizing the profit and minimiz-
ing the CO2 emission. First, for the purpose of validating the model, the 
GAMS software was utilized. Then, a multi-objective PSO based on the 
Pareto archive was proposed. To prove the efficiency of the proposed 
algorithm, a set of sample problems along with a case study was solved 
and the results were compared with these of NSGA-II. These results 
revealed that the proposed pa-PSO performs better in generating high 
quality and more diverse solutions. Because of the more thorough search 
of the feasible solution region, the pa-PSO takes a longer time than the 
NSGA-II algorithm. However, the NSGA-II returns more uniform solu-
tions. For further research, other appropriate objectives such as failure 
minimization and service level maximization can be recommended. Also, 
considering more than four echelons for the supply chain- if required, 
applying the fuzzy goal programming approach to optimize the objectives, 
and solving the model with other metaheuristic algorithms are of great 
value.

Table 9. The metric values for the proposed PSO and the NSGA-II algorithms.
Pa-PSO NSGA-II

Diversity metric Spacing metric Quality metric Diversity metric Spacing metric Quality metric
metric

100 0.715 1490.3 0 0.307 1186.2

Figure 5. Pareto front of case study with two algorithms.
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