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Economic Policy, School of Economics, University of Cape Coast, Cape Coast, Ghana; cDepartment of 
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ABSTRACT
This study uses machine learning techniques to identify the key 
drivers of financial development in Africa. To this end, four 
regularization techniques – the Standard lasso, Adaptive lasso, 
the minimum Schwarz Bayesian information criterion lasso, and 
the Elasticnet– are trained based on a dataset containing 86 
covariates of financial development for the period 1990 - 2019. 
The results show that variables such as cell phones, economic 
globalization, institutional effectiveness, and literacy are crucial 
for financial sector development in Africa. Evidence from the 
Partialing-out lasso instrumental variable regression reveals that 
while inflation and agricultural sector employment suppress 
financial sector development, cell phones and institutional 
effectiveness are remarkable in spurring financial sector devel
opment in Africa. Policy recommendations are provided in line 
with the rise in globalization, and technological progress in 
Africa.
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Introduction

The slump in global economic activity in the last two years is primarily due to 
the loss of routine engagements imposed implicitly by the emergence of the 
coronavirus disease (COVID-19). The concern of policymakers is not only on 
the welfare implications of the pandemic but how economic activity can be 
sustained even in future health and economic turmoil. Indeed, such 
a breakthrough will lessen the impact of future pandemics on jobs, welfare, 
and the resources of policymakers. Crucially, in the developing world, the high 
physical contact in transactions coupled with the relatively low financial 
inclusion means that the progress toward shared prosperity is likely to be 
derailed in the event of future economic or health uncertainties. Per the long- 
term growth aspirations of Africa as spelt out in the Africa Agenda 2063, the 
development of the continent’s financial system should be a key policy con
sideration. This stems from the argument that at the heart of robust and 
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equitable growth is a sound, efficient, dynamic, and innovative financial sector 
crucial for resource allocation, reduction in transaction cost, and creation of 
opportunities (Beck 2012; McKinnon 1973; Shaw 1973; World Bank 2019).

While a burgeoning financial sector can be growth-enhancing, Peprah et al. 
(2019), Law and Singh (2014) and Arcand, Berkes, and Panizza (2015) warn 
that, in the developing world, rapid expansion of the sector can cause a 
heating-up in the economy, dragging down growth in the process. In 
Particular, Peprah et al. (2019) put a 70% cap on the financial sector develop
ment–growth nexus in the case of Ghana while Law and Singh report 88% for 
a panel of 87 developed and developing economies. The foregoing arguments 
imply that realizing the lubricating effects of the financial sector while keeping 
it in check rests on the identification of key variables shaping the sector. The 
relevance of this is enshrined in the World Bank’s Reference Framework for 
Financial Inclusion Strategies1 ,which comprises a set of programs, knowledge, 
and tools aimed at broadening financial inclusion especially in the developing 
world (World Bank 2018).

Indeed, the literature on the drivers of financial sector development in 
Africa is growing. Among others, the literature shows that financial develop
ment is driven by institutions, particularly, those for financial sector regulation 
and supervision, the macroeconomy, bank-specific factors, and technology 
(see, e.g., Aluko and Ajayi 2018; Ibrahim and Sare 2018). Notwithstanding 
these contributions, conspicuous gaps in the financial development literature, 
especially, on Africa are that (1) proxies are used to capture financial 
development2 ,and (2) prior contributions are inconclusive as to which vari
ables are key for financial sector development in Africa (see, e.g., Almarzoqi, 
Naceur, and Kotak 2015; Aluko and Ajayi 2018; Arcand, Berkes, and Panizza 
2015; Jedidia, Boujelbène, and Helali 2014; Madsen, Islam, and Doucouliagos 
2018). Though the first issue has been addressed to some extent by Čihák et al. 
(2013) and Svirydzenka (2016), who, on recognizing that a country’s financial 
sector comprises a variety of financial institutions, markets and products, 
developed the Global Financial Development Database and Global Financial 
Development Index (FD Index),3 respectively, comprehensive empirical work
(s) responding to the latter is(are) hard to find.

A survey of the literature shows that studies attempting such a contribution 
are plagued with some methodological flaws due to (1) the application of 
techniques that lack regularization powers for inference even in large datasets, 
and (2) the preferential/subjective selection of covariates in regression pro
blems (see, e.g., Adu, Marbuah, and Mensah 2013; Aluko and Ajayi 2018; 
Ibrahim and Sare 2018; Nguyen, Su, and Doytch 2020). The concern with 
these empirical works is that even tenuous variables may be deemed relevant 
for driving financial development under some modeling assumptions, speci
fications, and data transformation. Addressing this challenge and thus inform
ing policy appropriately can be through the use of machine learning4 (artificial 
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intelligence) algorithms for regularization, prediction, and inference (see 
Tibshirani 1996; Zou 2006; Saura 2021). This forms the contribution of this 
paper where two objectives are introduced to extend the financial development 
literature on Africa. First, we train algorithms for the Standard lasso, Adaptive 
lasso, the minimum Schwarz Bayesian information criterion lasso (Minimum 
BIC lasso), and the Elasticnet to study patterns underlying a dataset on 42 
African countries to identify the main determinants of financial development. 
Second, to provide inferences robust to potential endogeneity concerns, model 
misspecification, and the underlying data complexity on the selected drivers of 
financial development, we apply the double-selection lasso linear regression 
(DSL), partialing-out lasso linear regression (POLR), and partialing-out lasso 
instrumental variable regression (POIVLR). The relevance of our contribution 
is that it can prove crucial in informing policy actions in Africa on the key 
variables to target if monetary policy propositions, resource allocation, and the 
overall effectiveness of the financial sector in fostering shared prosperity is to 
be achieved. It could also prove invaluable to various African governments in 
their bid to broadening access to formal financial services especially for the 
financially excluded as well as the efficient allocation of resources to transform 
the continent’s highly informal structure to a formal one. Additionally, the 
study could aid stakeholders interested in Africa’s financial sector develop
ment, plan, strategize, and possibly initiate necessary reforms to spur a sound, 
responsible, and innovative financial sector.

The rest of the paper is organized as follows. The next section presents an 
overview of Africa’s financial sector and a literature review on drivers of financial 
development. The methods and data underpinning the empirical analysis are 
also presented under the data and methodology section. Under the presentation 
and discussion of results section, our empirical findings are presented while the 
conclusion and policy recommendations are provided in the conclusion section.

Literature Survey

Financial Sector Development in Africa: Current and Historical Perspectives

In 2017, the World Bank reported that an astounding 1.7billion people were 
financially excluded, down from 3billion in 2014 (Demirgüç-Kunt et al. 2018). 
The report further indicates that at least 300 million adults in Africa do not 
have accounts with banks or any form of financial institution. Indeed, com
pared to regions such as Europe, and the Americas, the financial sector of 
Africa lags behind. In the 1960s–1990s, Africa’s financial sector was highly 
repressed or polarized for protectionist motives of various governments (e.g., 
in Ghana, Nigeria, and Guinea), resulting in inefficient resource allocation. It 
was until the last decade that financial openness and repression eased in the 
region. Albeit not surprising, it is worrying to note that no African country has 
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attained the average financial development threshold of 0.5 per IMF’s classi
fication as apparent in the upper panel of Figure. Further, information gleaned 
from the upper panel of Figure1 shows that, though the likes of South Africa, 
Mauritius. Seychelles, Botswana, and Nigeria have made significant strides in 
financial sector development, that of Cameroon, Comoros, Congo DR., 
Guineas-Bissau, Sierra Leone, and the Central African Republic remain sig
nificantly underdeveloped.

Also notable is the information garnered from the lower panel of Figure 1, 
which shows that, vis-à-vis financial institutions, Africa’s financial market is 
significantly underdeveloped. Also conspicuous is the striking within-country 
experiences in Figure 1 (lower panel), which reveal that countries such as 
South Africa, Nigeria, Mauritius, Botswana, Cote d’Ivoire, and Kenya have 
made significant progress in the development of their financial institutions. 
The overview of Africa’s financial sector development in Figure 1 underscores 
the need to strengthen the continent’s financial sector. Achieving this objective 
will, among others, rest chiefly on identifying variables crucial for financial 
sector development to aid decision-makers plan, reform, or re-strategize – one 
reason why this study is relevant.

Figure1. Average financial development (upper panel), and financial markets and institutions 
(lower panel) in Africa, 1980–2019, IMF Findex data.
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Theoretical and Empirical Literature Review

In this section, we present some theories and empirical evidence on the drivers 
of financial development.

Endowment Theory (Settler Mortality Hypothesis)
The endowment theory as put forward by Acemoglu, Johnson, and Robinson 
(2001) points to the relevance of institutions, resource endowment, and 
geography for financial sector development. The authors indicate that, in the 
1960s and 1970s, institutions were established to offer protection for private 
property; protection against government power of expropriation; and guaran
tee the transfer of resources from colonies to the colonizers with little or no 
investment (Acemoglu, Johnson, and Robinson 2001). Broadening the import 
of this theory, Beck, Demirgu ̈ ç-kunt, and Levine (2003) also argue that initial 
endowments are rather germane in explaining international differences in 
financial sector development than legal origins and that countries with poor 
geographical endowments are likely to have less developed financial sector.

Law and Finance Theory
La Porta et al. (1998) championed this theory with the fundamental proposi
tion that a country’s legal framework matters for financial sector development. 
The theory comes in two forms – a part that recognizes the relevance of robust 
legal systems in financial sector development (Beck, Demirgu ̈ ç-kunt, and 
Levine 2003), and another part that identifies legal traditions5 as the driving 
force behind cross-country differences in financial sector development. 
Empirical evidence for this theory is found in Djankov, McLiesh, and 
Shleifer (2007), who argue that civil law countries realize lesser bureaucracy, 
corruption, enhanced government credibility, and greater financial develop
ment. In the context of Africa, however, Fowowe (2014) does not find empiri
cal support for this theory.

Financial Liberalization Theory
This is the McKinnon–Shaw hypothesis theorizing the growth of a country’s 
financial sector following financial liberalization (McKinnon 1973; Shaw 1973). 
The theory indicates that both domestic savings and credit to the private sector 
increase if there is a moderately high and positive interest rate. They argue that 
financial repression results in market disequilibrium, consequently limiting 
allocative efficiency. The authors further suggest that in developing countries 
like Africa financial repression can lead to firms facing financing constraints due 
to limited access to external finance and credit controls. In line with this theory is 
empirical evidence by Baltagi, Demetriades, and Law (2009), who find that 
financial sector development grows even faster if financial liberalization is 
accompanied by greater trade and financial openness.
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Inflation and Finance Theory
This theory was put forward by Huybens and Smith (1999) with the funda
mental proposition that high inflation levels suppress financial development. 
Furthering this argument, Rousseau and Wachtel (2002) argue that macro
economic instability causes financial institutions to ration credit, reducing 
financial market activity and profitability in the process. The authors further 
indicate that high inflation can discourage long-term loans, resulting in 
inefficient allocation of resources. In related empirical work, Boyd, Levine, 
and Smith (2001) and Kim and Lin (2010) find evidence that the inflation– 
finance nexus is nonlinear and exists only up to a certain point.

Demand-Following (Growth-Led) Hypothesis
The demand-following hypothesis is the well-known argument by Robinson 
(1979) that growing economic activity leads to greater demand for financial 
services by the real sector, enhancing the utilization of financial products and 
services. Thus, increasing economic growth reflects rising living standards and 
the likely participation of the populace in the country’s financial sector. This 
theory has been enhanced significantly by empirical evidence from authors 
such as Akinlo and Egbetunde (2010), who argue that economic growth is 
crucial for driving both financial inclusion and financial development.

Empirical Literature Survey

The literature shows that variables such as inflation and public debt impede 
financial development (Ayadi et al. 2015; Elsherif 2015; Sanusi, Meyer and 
Ślusarczyk 2017; Aluko and Ibrahim 2020). Particularly, Ayadi et al. (2015) 
argue that growth in government debt deteriorates the growth of credit and 
crowds out private lending and investment. Boyd, Levine, and Smith (2001) 
also provide convincing evidence to conclude that high inflated economies are 
more likely to have banks and equity markets that are less robust and efficient. 
Specifically, in inflation targeting economies like Ghana, information asym
metry can bid inflation up, creating frictions in the credit market, leading to 
financial sector deterioration in the process (Padachi et al. 2008). Similar 
evidence is found in Bittencourt (2011), who examined the relationship 
between inflation and finance in Brazil from 1995 to 2002.

There is also the evidence that financial sector development thrives on 
conducive economic, financial, and institutional settings. Indeed, evidence 
gleaned from Khalfaoui (2015)and Shabbir et al. (2018)indicates that fiscal 
discipline, economic growth, and a transparent monetary regime are crucial 
for enhancing the access, depth, and efficiency of financial systems. In a related 
study by Beck and Levine (2005), regulatory quality in the form of prudential 
supervision has been identified to enhance financial development and stability. 
In line with this evidence is the finding by Naqvi et al. (2017) that geopolitical 
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fragilities peculiar of the developing world tend to hinder financial sector 
development. Similarly, authors such as Ayadi et al. (2015) and Cherif and 
Dreger (2016) report that legal institutions, good democratic governance, and 
adequate implementation of financial reforms are necessary for spurring 
financial sector development. Additionally, while authors such as Voghouei 
et al. (2011)and Khalfaoui (2015) point to the crucial implications of institu
tions, financial markets, legal tradition, and political economy as factors 
driving financial sector development, Raza et al. (2014), and Cherif and 
Dreger (2016) identify corruption and rule of law as fundamental ingredients 
for achieving a robust and burgeoning financial sector.

In a more recent study, Aluko and Ajayi (2018) find that variables such as 
population density, trade openness, and capital investment are significant 
drivers of financial development in Africa. Also, there is evidence that govern
ment expenditure boosts financial sector development either through compe
tition or infrastructural development (Naceur, Cherif, and Kandil 2014). 
Further, studies such as Peprah et al. (2019) and Aggarwal, Demirgu ̈ç-kunt, 
and Pería (2011) find that remittances increase the volume of bank deposits, 
financial intermediation, and financial sector development. Last but not the 
least, the literature shows that human capital matters for financial develop
ment (Kodila-Tedika and Asongu 2015).

Data and Methodology

Data

The dataset underpinning the analysis is entirely macro and spans 1980–2019 
for 42 African countries6. The variable of interest in this study is financial 
development and is drawn from the International Monetary Fund’s global 
Financial Development Index (Svirydzenka 2016). Data on its potential bank- 
specific, institutional/regulatory, and socioeconomic drivers as elaborated in 
Section 2 are also taken from the World Bank’s Global Financial Development 
Database (Čihák et al. 2013). Variables such as interest rate spread, lending 
rate, deposit rate, non-performing loans, Boone indicator, net interest margin, 
return on asset, and stock market capitalization are found in the dataset. Our 
welfare distribution variables such as the poverty headcount, poverty gap (US 
$1.90), Gini index, Palma ratio, and the Atkinson index are also taken from 
Global Consumption and Income Project (Lahoti, Jayadev, and Reddy 2016) 
and the World Development Indicators (World Bank 2020). Taking cues from 
Aluko and Ajayi (2018), we capture the potential relevance of the rise in global 
interconnectedness, driven chiefly by information technology (Ofori and 
Asongu 2021), for financial sector development in Africa. Our globalization 
variables such as economic globalization, social globalization, political globa
lization, financial globalization, and trade globalization are sourced from the 
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Konjunkturforschungsstelle (KOF) globalization index (Gygli et al. 2019). 
Additionally, institutional, structural, and macroeconomic variables such as 
agricultural sector employment, the ease of doing business, financial sector 
regulation, inflation, government expenditure, and unemployment are drawn 
from the World Bank’s World Development Indicators (World Bank 2020). 
The definitions of the variables are presented in Table A1 in the Appendices 
section.

Estimation Strategy

Taking cues from Saura, Ribeiro-Soriano, and Palacios-Marqués (2021), we 
elaborate the theoretical and empirical foundation of the study in this section. 
In the first part of this section, we pay attention to the relevance and specifica
tions of the variable selection techniques. The second part also deals with the 
specification of the inferential models . The first part is in response to growing 
debate among researchers as to whether it is appropriate to apply classical 
estimation techniques such as the ordinary least squares (OLS) for inference 
even in large datasets or resort to machine learning techniques for variable 
selection and inference. The argument for the former centers on the fact that 
with appropriate theories, researchers can choose the right covariates in 
regression problems or resort to systematic reviews to identify the salient 
determinants of the outcome variable (see, e.g., Ribeiro-Navarrete, Saura, 
and Palacios-Marqués 2021). However, this may not be feasible if there are 
more predictors than observations as the required matrix (X0X) becomes 
invertible. Even if it is feasible, the presence of several predictors, for example, 
86 in the case of this study, may cause overfitting of the model.

Overfitting is the inclusion of extra parameters that improve the in-sample 
fit but increases the out-of-sample prediction error. In the presence of over
fitting, even though the attendant estimates are not biased, they are less 
efficient7 (James et al. 2013). This is because as the variables/features become 
large, least squares assumptions of no multicollinearity, homoscedasticity, and 
exogeneity typically break down, causing the out-of-sample error to increase 
and thus making inference and predictions flawed (James et al. 2013). This 
partly explains the inconclusive results on variables deemed crucial for driv
ing/predicting financial development. Navigating this econometric blunder 
requires the use of reliable techniques for variable selection, inferences, and 
prediction.

Such techniques, as Tibshirani (1996) argue, are efficient regardless of the 
number of covariates, model specification, nonlinearity, and time. The rele
vance of machine learning techniques in reducing data complexity and aiding 
sound decision-making is seen in its application in policy-relevant areas such 
as financial risk analysis (Kou, Peng, and Wang 2014), health (Mateen et al. 
2020), transportation (Tizghadam et al. 2019), games and psychology 
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(Sandeep et al. 2020), bankruptcy prediction (Kou et al. 2021), and large-scale 
group decision-making (Chao et al. 2021). In this study, therefore, we train 
four alternative shrinkage models – the first three from the lasso family (i.e., 
the Standard lasso, the Minimum BIC lasso, and Adaptive lasso), and the 
Elasticnet to achieve the first objective.8 Regularization is done by utilizing the 
bias–variance trade-off, where a tuning parameter (i.e., the bias) is introduced 
to reduce the variance associated with large datasets and consequently yield 
sparse estimates. Next, we perform causal inference on the selected covariates 
in Objective 1 by running the lasso inferential models: the double-selection 
lasso linear regression (DSL), the partialing-out lasso linear regression 
(POLR), and the cross-fit partialing-out lasso instrumental-variables regres
sion (POIVLR) to address Objective 2.

Specification of Regularization Models
Specification of Standard Lasso and Minimum BIC Lasso Models. The Standard 
lasso variable selection technique was introduced by Tibshirani (1996) to 
address the poor prediction and inference arising due to discretional selection 
of covariates in large dataset problems. The key advantages of the Standard 
lasso over traditional regression techniques are that it can (i) enhance model 
interpretability by eliminating irrelevant predictors; (ii) enhance prediction 
accuracy, as the elimination of irrelevant predictors reduces model variance 
without asubstantial increase in the bias; and (3) be applied regardless of data 
dimensionality.

It is imperative to note that the Standard lasso technique yields sound 
regularization based on agiven tuning parameter (λ), which determines the 
extent of the shrinkage (Belloni and Chernozhukov 2013; Tibshirani 1996). In 
this study, we follow Tibshirani (1996) by specifying the Standard lasso 
objective function as apparent in Equation (1). This approach runs on the 
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�
�

�
�
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where yit is financial development in country i in year t, Xit is amatrix of 86 
potential key predictors of financial development. Effective regularization is 
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or ,1-norm. Therefore, if ,1 ¼ 0, then β̂slasso plunges into the least-square 
estimator9. Accordingly, if λ!1, then all the predictors are eliminated from 
our model.

For brevity, we point out that the specification of the Minimum BIC lasso 
follows that of the Standard lasso as elaborated above with the same penalty 
(,1). It is worth noting, however, that unlike the Standard lasso, variable 
selection under the Minimum BIC is based on the model with the least 
Schwarz Bayesian information criterion (BIC) (Schwarz 1978). Despite the 
regularization powers of the Standard lasso and Minimum BIC lasso techni
ques, two key drawbacks have been identified. First, both techniques can be 
inconsistent as features grow rapidly, andsecond, the techniques are unable to 
perform hypothesis tests and confidence intervals.

Specification of Adaptive Lasso Model. The Adaptive lasso technique was 
introduced by Zou (2006) to address the first regularization shortfall of the 
Standard lasso and Minimum BIC lasso techniques. Thus, the key contribu
tion of the Adaptive lasso is that it aids sound variable selection even when 
data attributes grow faster than the number of observations. This is done by 
adding another property called the ‘oracle property’ (zj) to the ,1-norm. In this 
study, we apply the Adaptive lasso technique as an alternative to the Standard 
lasso and Minimum BIC lasso to address Objective 1. To this end, we follow 
Zou (2006) by minimizing the objective function in Equation (3) to obtain 
(β̂Alasso) as specified in Equation (4): 

QL ¼
1
N

XN

i¼1
ωif yit; β0 þ Xitβ0
� �

þ λ
Xp

j¼1
kj βj

�
�
�

�
�
� (3) 

β̂Alasso ¼ min SSEþ λ
Xρ

j¼1
zj βj

�
�
�

�
�
�

( )

(4) 

where yit is financial development in country i in year t, Xit is a vector of the 
86 covariates of financial development, and β0 are the attendant parameters.

Specification of Elasticnet Model. The Elasticnet technique draws on the 
strengths of the Standard lasso and Ridge regression for effective variable 
selection. The technique is thus built to apply the ,1 and ,2 penalization 
norms in variable selection. The strength of the Elasticnet is that in 
highly correlated covariates, it can produce sparse and consistent reg
ularization than the lasso family algorithms (Zou and Hastie 2005). Also, 
with the application of the ,1 and ,2 penalization norms, the Elasticnet 
becomes flexible in variable selection. The Elasticnet estimator mini
mizes the objective function: 
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where yit, Xi, and β0 in Equation (5) are as defined in Equation (4), and α is 
an additional Elasticnet penalty parameter,10 which takes on values only in 
[0,1]. This implies that sparsity occurs only when 0 < α < 1 and λ > 0. It is 
important to point out that in some special cases, the Elasticnet plunges into 
either the Standard lasso estimator (i.e., when λ = 1) or the Ridge estimator 
(i.e., when λ = 0).

Choice of Tuning Parameter
A key concern in regularization is the choice of the tuning parameter (λ), 
which controls the degree of shrinkage. Accordingly, a good value of λ is 
essential for the overall performance of regularization techniques and the 
attendant prediction results (Schneider and Wagner 2012). For instance, if λ 
becomes too large, regularization becomes too strong and this can shrink 
relevant variables to zero. Additionally, if λ is set under aresearcher’s discre
tion, it can yield ‘target sparsity11’ (Hastie, Tibshirani, and Wainwright 2019). 
Therefore, information criteria such as the cross-validation (CV), Bayesian 
information criterion (BIC), and Akaike information criterion (AIC) are 
usually relied upon to select appropriate λ (Tibshirani and Taylor 2012). For 
instance, the BIC and AIC are sometimes preferred to CV as they are faster to 
compute and are less volatile in small samples (Zou, Hastie, and Tibshirani 
2007). In this study, we rely on both the BIC and CV12 in determining λ.

Specification of Lasso Inferential Models
To provide estimates and confidence intervals on the selected drivers of 
financial development13 , we apply the lasso inferential techniques. In specifics, 
we run the DSL, the POLR, and the POIVLR using the selected covariates in 
Objective 1 as the variables of interest, and all the redundant (weak) covariates 
as controls (see Chernozhukov, Hansen, and Spindler 2015b). It is worth 
noting that the lasso inferential techniques consider these controls as irrele
vant and therefore, their inferential statistics are not reported (see, Belloni, 
Chernozhukov, and Wei 2016).

However, the number of relevant controls selected and the instruments 
used in cases where there is endogeneity are reported as part of the general 
regression statistics (Chernozhukov, Hansen, and Spindler 2015a). Further, 
unlike the variables of interest, which the researcher has no flexibility of 
adding to or excluding from the model, one can determine the number of 
controls in the model14 . The strength of these models is that they are built to 
produce unbiased and efficient estimates irrespective of data dimensionality, 
model misspecification, endogeneity and multicollinearity.
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Double-Selection Lasso Linear Model. In line with Objective 2 of this study, we 
follow Belloni, Chernozhukov, and Wei (2016) and Belloni et al. (2014) by 
specifying the DSL linear model as 

E½Yjd; x� ¼ ψα0 þ ϕβ0 (6) 

where yis financial development, which is modeled to depend on ψ, con
taining Jcovariates of interest (i.e., the Elasticnet or lasso selected key drivers of 
financial development) and ϕ, which contains p controls (i.e., the redundant 
predictors of financial development). As indicated in Section 3.2.3, the DSL 
estimator produces estimates on J while relaxing the estimates for p.

Partialing-Out Lasso Linear Regression. Vis-à-vis the DSL, an added advantage 
of the POLR is that it enhances the efficacy of estimation as the model becomes 
too complex. Following Belloni etal. (2012) and Chernozhukov, Hansen, and 
Spindler (2015a; 2015b), we specify the POLR estimator as 

E½Yjd; x� ¼ dα0 þ Xβ0 (7) 

where y is financial development, d is a vector containing the J predictors of 
interest (i.e., the non-zero selected covariates of financial development), and X 
contains the p controls (i.e., the weak predictors of financial development). 
Like the DSL, the POLR yields inferential statistics only on the J covariates 
while relaxing that of the p controls.

Partialing-Out Lasso Instrumental-Variables Regression. We employ the 
POIVLR to address potential endogeneity concerns in this study. In particular, 
endogeneity is apparent taking cues from the supply-leading and demand- 
following hypotheses where financial development and economic growth are 
considered simultaneous. To address this, we follow Chernozhukov, Hansen, 
and Spindler (2015a) by specifying our POIVLR model as 

y ¼ Ψα0d þ Φα0f þ Xβ0 þ ε (8) 

where y is financial development, Ψ comprises Jd endogenous covariates of 
interest, f contains the Jf exogenous covariates of interest, and X contains px 

controls. Allowing for potential endogeneity primarily due to the simultaneity 
between financial development and economic growth, pz outside instrumental 
variables15 denoted by z that are correlated with d but not with ε are intro
duced. Theoretically, the controls and instrument can grow with the sample 
size; however, β and non-zero coefficients in z must be sparse.
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Data Engineering and Partitioning Procedure

Figure A1 shows that 98.8% of the observations are present in our dataset. 
Mindful of astrongly balanced panel for training algorithms, the K-nearest 
neighbor (KNN) data engineering technique is applied, particularly, for vari
ables such as the policy and institutional indicators16, insurance premium, 
stock market volatility, and infrastructure quality (see the results in FIgure A2 
in the Appendices section). The KNN is based on the principle that develop
ments in adataset generally exist in close proximity with other cases that have 
similar properties (Van Hulse and Khoshgoftaar 2014). The KNN is mostly 
used when one has no prior knowledge about the distribution of the data. The 
KNN then selects closest neighbors according to adistance metric and esti
mates missing data with the corresponding mean or mode. The mean rule is 
used to predict missing numerical features while that of missing categorical 
features is addressed using the mode rule (Pan et al. 2015). In this study, 
therefore, the mean rule is used based on the Minskowski distance as specified 
in Equation (9): 

d i; jð Þ ¼ ð xi1 � xj1
�
�

�
�q þ xi2 � xj2

�
�

�
�q þ . . .þ xiρ � xjρ

�
�

�
�qÞ

1=q (9) 

where q is the called the Minkowski coefficient. The Minskowski distance 
reduces to the Manhattan distances if q ¼ 1 and as the Euclidean distance if 
q ¼ 2. Finally, we split the dataset into two parts– the training (70%) and 
testing (30%) samples– by applying the stratified data partitioning method, 
taking into account the skewed distribution of financial development as 
apparent in Figure 2.

Figure 2. Data partitioning plot, Training (Black) and Test (Red)
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Presentation and Discussion of Results

Exploratory Data Analysis

For brevity, the exploratory data analysis is limited to the data partitioning 
results17 , the distribution of financial development, and the summary statis
tics. Information gleaned from the summary statistics in Table A2 18 shows an 
average financial development figure of 0.128 in the training set as compared 
to 0.121 in the testing set. Also, the average remittance inflow into Africa is 
4.75% in the training set as compared to 4.02% in the testing set. Additionally, 
the data shows amean institutional effectiveness score of 2.967 in the training 
set compared to 2.938 in the testing set, both shy of the average 3.0. Further, 
the data shows an average income per capita of US$3730.3 and US$3938.6 in 
the training and testing sets, respectively.

Data Partitioning and Distribution of Financial Development Results
Figure 2 shows the 70-30 split of the dataset. It is clear from Figure 2 that 
financial development follows similar distribution in both the training and 
testing samples.

The distribution of financial development in Figure 2 as emphasized in 
Figure 3 (left) is left-skewed. Since skewed distributions can have adverse 
implications for regularization, financial development is normalized by taking 
alogarithmic transformation of the series. Figure 3 (right) shows that financial 
development is more symmetric and less heavy-tailed after the normalization.

Figure 3. Distribution of financial development at level (left) and its log-transformation (right).
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Regularization Results on Drivers of Financial Development in Africa

In this section, results on the first objective are presented. It is evident from 
Figure 4, Figure 5, Figure 6, and Figure 7 that the lasso and Elasticnet 
algorithms select different tuning parameters but asimilar number of covari
ates (i.e., non-zero coefficients) as drivers of financial development. 
Interestingly, we find that the Standard lasso (λ ¼ 0:07Þ, Adaptive lasso 
(λ ¼ 0:0019Þ, and Elasticnet (λ ¼ 0:07andα ¼ 1Þ algorithms select the same 
number of covariates (17) as drivers of financial development in Africa. Amore 
parsimonious regularization is, however, found in the Minimum BIC lasso 
model, which selects 10 variables out of the 86 covariates. These key covariates 
are literacy, cell phones, economic growth, economic globalization, employ
ment, inflation, government expenditure, Z-score, bank overhead cost, and 
institutional effectiveness [see Table A3 and Figure 5 (right)]. For brevity, we 
present the cross-validation and coefficient path plots to show how the cov
ariates enter/leave the four models.

Inferential Results on Drivers of Financial Development in Africa

Using the 10 key predictors of financial development as the variables of 
interest, we apply the DSL, POLR, and POIVLR estimation techniques to 
address Objective 2 of the study. The attendant estimates are presented in 
Table 1. We point out that we rely on the estimates in column 3 due to its 

Figure 4. Cross-validation plot (left) and coefficient path plot (right) for Standard lasso.
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Figure 5. Cross-validation plot (left) and coefficient path plot (right) for Minimum BIC lasso.

Figure 6. Cross-validation plot (left) and coefficient path plot (right) for Adaptive lasso.

APPLIED ARTIFICIAL INTELLIGENCE 2139



Figure 7. Cross-validation plot (left) and coefficient path plot (right) for Elasticnet.

Table 1. Lasso estimates on the key drivers of financial development in Africa.
Variables (1) DSL lasso (2) POLR lasso (3) POIVLR lasso

Institutional effectiveness 0.047*** 0.046*** 0.082***
(0.007) (0.007) (0.013)

Economic globalization 0.007*** 0.007*** 0.009***
(0.001) (0.001) (0.002)

Cell phones 0.007*** 0.007*** 0.027***
(0.002) (0.002) (0.005)

GDP per capita 0.001 0.001 0.033***
(0.001) (0.001) (0.006)

Government expenditure 0.009*** 0.009*** 0.017**
(0.001) (0.001) (0.008)

Employment (agriculture) −0.002*** −0.002*** −0.001
(0.000) (0.000) (0.001)

Overhead cost −0.015*** −0.015*** −0.022***
(0.005) (0.005) (0.006)

Inflation −0.005*** −0.005*** −0.003
(0.001) (0.001) (0.002)

Z-score 0.011*** 0.011*** 0.018***
(0.001) (0.001) (0.003)

Literacy 0.008*** 0.008*** 0.027***
(0.001) (0.001) (0.004)

Observations 1,628 1,628 1,628
Wald X2 statistic 407.14 395 166.75
Wald P-value 0.000 0.00 0.00

CPIA, country and institutional policy assessment score for the financial sector. 
Robust standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.
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added advantage of addressing the aforementioned endogeneity concern. 
Further, aside from the joint significance of the 10 predictors in explaining 
variations in financial development, the reliability of the results rests on the 
robustness of the POIVLR to heteroskedasticity and misspecification.

We find strong empirical evidence that literacy matters for financial sector 
development in Africa. The result shows that a1% increase in literacy is 
associated with a boost in financial development by 0.02%. The significance 
of literacy (human capital) for financial development follows the proposition 
that the educated are more likely to invest and/or consume financial products 
and services. Additionally, as Boopen etal. (2011), Kodila-Tedika and Asongu 
(2015), and Elsherif (2015) point out, the literates are most financially included 
and are more likely to comprehend financial sector reforms compared to their 
illiterate counterparts.

Also, we find that cell phones (ICT usage) is also statistically significant for 
promoting financial sector development19 in Africa. The rise in ICT diffusion 
has made cell phones aviable and youth-friendly channel for fostering finan
cial development, especially, for capturing the financially excluded into the 
financial sector and achieving acashless system. Indeed, empirical evidence in 
Asongu etal. (2019) and Asongu (2013) show that cell phone penetration offers 
cheaper means of achieving financial inclusion, the consumption of financial 
services and products, and financial sector development. This result also 
amplifies the finding on literacy as the educated are more likely to use mobile 
phones and internet banking services. Our result provides optimism regarding 
the empirical evidence by Jacolin, Keneck Massil, and Noah (2021) that mobile 
financial services reduce informality in the developing world.

Further, we find strong evidence that economic globalization20 is crucial for 
Africa’s financial sector development. The magnitude of the coefficient indi
cates that for every 1% improvement in economic globalization there is asurge 
in financial development by 0.009%. This finding corroborates that of Aluko 
and Ibrahim (2020) and Boopen et al. (2011), who provide empirical support 
that opening up Africa to trade, investment, and capital flows can boost 
financial development. The concern with economic globalization, however, 
as Aluko and Ajayi (2018), Mahawiya (2015) and Asongu (2012) argue is that 
it leaves the financial sector more susceptible to cybercrime, money launder
ing, Ponzi schemes, and global financial crisis spillover.

Also, we find strong empirical evidence that Africa’s financial sector grows 
by 0.017% for every 1% increase in government expenditure. Indeed, in the 
developing world, empirical contributions such as Filippidis and Katrakilidis 
(2014) and Aluko and Ibrahim (2019) indicate that government expenditure 
can boost financial sector performance if the expenditure results in amore 
lubricated economy. However, excessive government borrowing from the 
financial system, which is ubiquitous in Africa can result in the crowding- 
out of private investment or inefficient resource allocation (Cooray 2011; 
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Naceur, Cherif, and Kandil 2014). This means that government expenditure 
should enhance financial infrastructure, especially the development of pay
ment system platforms and services; support for financial innovation; and the 
enhancement of information flow on consumers21 . Our results also suggest 
that the highly informal nature of Africa (proxied by agricultural sector 
employment) hinders financial sector development. Our finding is in line 
with that of Elgin and Uras (2013). Indeed, in Africa, individuals employed22 

in the agricultural sector are less likely to consume financial services and 
products continuously due to unsustainable income growth. Particularly, the 
vulnerabilities in economic activities can be abarrier to financial inclusion and 
more especially the utilization of financial market services and products.

The results also show that financial strength/stability (Z-score), which has 
amarginal effect of 0.01%, and financial institutions’ overhead cost (β ¼ 0:02Þ
are also germane for financial sector development. The significance of the 
former signifies that building arobust system for reducing risk, improving 
intra-firm information flow while breeding competition in the financial system 
could prove crucial. The latter, as Beck and Levine (2005) and Marcelin and 
Mathur (2014) argue, also signifies the relevance of prudent macroeconomic 
management and financial system supervision/regulation, which can ulti
mately lead to areduction in accounting fees, advertising fees, insurance fees, 
cost of borrowing, legal fees, rent, supplies, taxes, and utilities. In line with this 
finding is the statistically significant effect of institutional effectiveness for 
financial development. The result is remarkable (0.08). Considering the under
developed nature of Africa’s financial system, this finding signifies the need for 
the revision of prudential standards as well as improvement in on-site and off- 
site supervision is worthwhile. Additionally, the result suggests that a sound 
legal and regulatory framework for financial consumer protection as Cherif 
and Dreger (2016) and Ayadi et al. (2015) argue could prove crucial for 
boosting consumer confidence in the financial system.

Conclusion

The study employs machine learning techniques for identifying the key drivers 
of financial development in 42 African countries. Using a dataset containing 
86 potential predictors of financial development for the period 1980–2019, we 
ran four machine learning regularization models – the standard lasso, the 
Minimum BIC lasso, the Adaptive lasso, and the Elasticnet – to show that 
literacy, cell phones, economic growth, economic globalization, employment 
(agriculture), inflation, government expenditure, Z-score, bank overhead cost, 
and institutional effectiveness are crucial for driving Africa’s financial sector 
development. Evidence from the lasso inferential estimation techniques also 
shows that, but for inflation and employment, all the selected covariates are 
statistically significant in driving Africa’s financial sector development. Our 
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findings show that machine learning techniques can be applied to reduce data 
complexity and aid sound decision-making. In particular, the approach solves 
the problem of selection bias and inconclusive results by eliminating 
researcher discretion in the selection of variables in large data regression 
problems.

For policy, we recommend that strategic government expenditure, prefer
ably one that supplements the private sector’s effort in human capital devel
opment, financial infrastructure, and economic growth, be enhanced to foster 
greater financial activity, inclusion, and development. Also, in line with the 
youthful nature of Africa’s population and the giant strides made by African 
countries in terms of technological progress, government intervention is 
required in reducing the cost of internet access while broadening telecommu
nication network access for the rural folks who are more likely to use mobile 
money services. Various governments should thus liaise with financial institu
tions, markets, and telecommunication service providers to make financial 
products and services accessible via mobile phones. Additionally, it is recom
mended that financial institutions and markets provide greater incentives, for 
example, through low charges or discounts for clients using cell phones for 
transactions. Finally, we recommend that regulation and supervision institu
tions be strengthened to enhance information flow, consumer protection, and 
confidence in the financial system considering the rise in the economic 
integration of Africa following the implementation of the Africa Continental 
Free Trade Area. This can be enhanced if international bodies such as the 
World Bank and African Development Bank support Africa’s monetary 
authorities to strengthen the secured transactions and collateral frameworks, 
and the insolvency regimes.

For the academic community, researchers can draw on our contribution to 
identify which variables matter for addressing poverty and inequality in 
Africa. This could prove crucial for making resources count considering the 
huge investment made by African governments and their development part
ners such as the World Bank and African Development Bank in their quest to 
alleviate poverty and income inequality. Additionally, considering the under
developed nature of the region’s financial market, researchers can follow our 
contribution to narrow the scope and inform policy as to which the key drivers 
of financial market development are. Also, following the implementation of 
the African Continental Free Trade Area agreement, other researchers can 
employ the techniques used in this study to inform policy as to which goods/ 
products the African countries should produce to diversify export.

A conspicuous drawback to this study is that we do not consider all African 
countries on grounds of data limitation. For future research, this study could 
be executed at the regional level, for instance, in the West African Monetary 
Zone, to guide policy actions.
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Notes

1. The RFFIS has been adopted by African countries such as Burundi, Ghana, Liberia, 
Nigeria, Tanzania, Cote, Sierra Leone, Niger, Mauritius, Mauritania, Swaziland, 
Madagascar, Zambia, and Zimbabwe.

2. For instance, variables such as the ratio of financial institutions’ assets to GDP, the ratio 
of liquid liabilities to GDP, and the ratio of deposits to GDP are often chosen as proxies/ 
indicators for financial sector development (see, e.g., Adu, Marbuah, and Mensah 2013; 
Barajas etal. 2013; Mtar and Belazreg 2021).

3. The FD index provides comprehensive information on the degree of access, depth, 
efficiency, and stability of the financial institutions and markets of acountry’s financial 
sector 3 (see, Svirydzenka 2016).

4. Machine learning has gained attention in recent years due to its ability to detect relevant 
patterns in big data for prediction and analysis.

5. La Porta etal. (1998) argue that common law countries provide stronger legal protection 
for investors than civil law countries.

6. Angola, Benin, Botswana, Burkina Faso, Burundi, Cabo Verde, Cameroon, Central 
African Republic, Chad, Comoros, Congo, D.R., Congo, Rep., Cote d’Ivoire, Ethiopia, 
Gabon, Gambia, The, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, 
Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, 
Nigeria, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, South 
Africa, Sudan, Tanzania, Togo, Uganda, Zambia.

7. Inefficiency due to model complexity, specification problems and/or overfitting. Further, 
the traditional least-squares estimator is not only less sparse but also more susceptible 
and sensitive to problems like multicollinearity and outliers.

8. Since the ordinary least-squares technique and Ridge regression cannot yield variable 
selection, their estimations are relaxed.

9. That is no variable is shrank to zero.
10. This adds to the regular λ penalty.
11. A situation where covariates are selected when aresearcher determines the value of λ.
12. In this study, we invoke the 10-fold cross-validation.
13. Traditional estimation techniques such as the OLS cannot be employed either as the new 

variability introduced in the dataset by the regularization techniques are not captured by 
such techniques.

14. We include 56 out of the remaining 106 covariates as control against the backdrop that 
several alternative measures of globalization, institutional quality, and welfare are used.

15. List of instruments in POIVLR: transparency score, trade score, public management 
score, macroeconomic management score, gender equality score, financial sector man
agement score, internet access (per million of the population), mobile cellular subscrip
tion (per 100 of the population), fixed telephone subscription (per 100 of the 
population), fixed broadband subscription (per 100 of the population).

16. These are data on net migration, and country policy and institutional scores for macro
economic management, public administration, and financial sector management.

17. That is the distribution of financial development in the training and testing sets.
18. See Appendices section.
19. The internet, can, in this case, be agood medium to offer the public a broad range of 

affordable and quality financial products, services.
20. Economic globalization comprises tariff, foreign direct investment, trade openness, and 

capital flows across borders.
21. Tightening the national identification system.

2144 I. K. OFORI ET AL.



22. Even the few who are financially included are more likely to default on loans plausible 
due to vulnerabilities in employment.
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Appendices

Table A1. Variable definition and data sources.
Variables Definition Source

unempl Unemployment, total (% of total labor force) WDI
rer Real effective exchange rate index (2010 = 100) WDI
povert hc Poverty headcount ratio at national poverty lines (% of population) WDI
Povertyhc_mid Poverty headcount ratio at $3.20 a day (2011 PPP) (% of population) WDI
Povertyhc_low Poverty headcount ratio at $1.90 a day (2011 PPP) (% of population) WDI
urbanization Annual population growth rate in urban centers (% population) WDI
popgrof Annual population growth rate in rural centers (% population) WDI
exr Nominal exchange rate, dollar-local currency rate WDI
noda Net official development assistance (%GNI) WDI
cellphone Active mobile phone subscription (mobile money enabled) WDI
logisticqua overal Logistics performance index: overall (1 = low to 5 = high) WDI
literacy adult Literacy rate, adult total (% of people ages 15 and above) WDI
labforce pr Labor force participation rate, total (% of total population ages 15–64) WDI
transport invest Investment in transport with private participation (current US$) WDI
inflation End-of-period inflation (%) WDI
hci Human Capital Index (HCI) (scale 0 = lowest; 1 = Highest) WDI
house spend Household final consumption expenditure (annual % growth) WDI
grossavings Adjusted annual gross savings (% of GNI) WDI
Firmsbank_invest Firms using banks to finance investments (%) GFDD
gfcf Gross fixed capital formation WDI
gov gdp Government consumption expenditure (%GDP) GFDD
internet Secure internet servers (per 1 million people) WDI
gpc GDP per capita, US$ 2017 (constant) WDI
gdpg GDP growth (annual %) WDI
fdi Foreign direct investment, net inflows (%GDP) WDI
telefon Telephone subscription per 1000 people GFDD
emp ind Employment in industry (% of total employment) WDI
emp agric Employment in agriculture (% of total employment) WDI
ease Ease of doing business index (1 = most business-friendly regulations) WDI
cpia publicmgt Public sector management and institutions cluster average (1 = low to 6 = high) CPIA
cpia macro Macroeconomic management rating (1 = low to 6 = high) CPIA
cpia finsector Financial sector management rating (1 = low to 6 = high) CPIA
debt Overall national debt (%GDP) WDI
moneyg Money supply growth (M2+) GFDD
kofgidj KOF. overall globalization index (de jure) KOF. 

Index
kofecgj KOF. economic globalization index (de jure) KOF. 

Index
koffindj KOF. financial globalization index (de jure) KOF. 

Index
palma Palma ratio, inequality indicator GCIP
theil Theil index, inequality indicator GCIP
gini Gini index, inequality indicator GCIP
bank5 5-bank asset concentration GFDD
formalAcc Account at a formal financial institution (% age 15+) GFDD
atm Automated Teller Machines per 100,000 adults GFDD
bankAcc Bank accounts per 1,000 adults GFDD
bankBran Bank branches per 100,000 adults GFDD
bankCaptAsset Bank capital to total assets (%) GFDD
bankConcent Bank concentration (%) GFDD
bankCostInc Bank cost to income ratio (%) GFDD
bankCreditDep Bank credit to bank deposits (%) GFDD
bankDep Bank deposits to GDP (%) GFDD
irs Bank lending-deposit spread calculated as difference between lending and 

deposit interest rates
GFDD

nim Bank net interest margin (%) GFDD
banknonIntInc Bank noninterest income to total income (%) GFDD
npl Bank non-performing loans to gross loans (%) GFDD

(Continued)
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Table A1. (Continued).
Variables Definition Source

bankOHcost Bank overhead costs to total assets (%) GFDD
bankRegCap Bank regulatory capital to risk-weighted assets (%) GFDD
roanet Bank return on assets (%, after tax) GFDD
roenet Bank return on equity (%, after tax) GFDD
zscore Bank Z-score, financial system stability GFDD
bankCrisis Banking crisis dummy (1 = banking crisis, 0 = none) GFDD
Boone Boone indicator (banking efficiency) GFDD
Cpi Inflation (consumer price index, 2005 = 100) GFDD
GovStateCredit Credit to government and state-owned enterprises to GDP (%) GFDD
DepBankAsset Deposit money bank assets to deposit money bank assets and central bank assets 

(%)
GFDD

DepBankAssetgdp Deposit money banks’ assets to GDP (%) GFDD
credit Private credit by deposit money banks and other financial institutions to GDP (%) GFDD
onlinepayment Electronic payments used to make payments (% age 15+) GFDD
finsystemDep Financial system deposits to GDP (%) GFDD
foreignBankAsset Foreign bank assets among total bank assets (%) GFDD
foreignBanks Foreign banks among total banks (%) GFDD
Hstats H-statistics, banking sector competition GFDD
insuranceAsset Insurance company assets to GDP (%) GFDD
lerner Lerner index, market power of financial institutions GFDD
insurancePrem Life insurance premium volume to GDP (%) GFDD
phonePayment Mobile phone for paying bills online GFDD
phoneMomo Mobile phone (mobile money capable) GFDD
nonBankFinsInsti Nonbank financial institutions’ assets to GDP (%) GFDD
nonInsurancePrem Non-life insurance premium volume to GDP (%) GFDD
remit Remittance inflows to GDP (%) GFDD
stockMktcap Stock market capitalization to GDP (%) GFDD
stockMktreturn Stock market return (%, year-on-year) GFDD
stockMktValue Stock market total value traded to GDP (%) GFDD
stockMktTurnover Stock market turnover ratio (%) GFDD
stockPxVol Stock price volatility index GFDD
FD Financial development index FD Index
infrastrqua Infrastructure quality score WDI

FD Index, Financial Development (International Monetary Fund); GFDD, Global Financial Development Database 
(World Bank); KOF Index, Konjunkturforschungsstelle (KOF) index; GCIP, Global Consumption and Income Project; 
CPIA, Country Policy and Institutional Assessment (World Bank); and WDI, World Development Indicators. 

Source: Author’s construct (2021).
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Table A3. Variable selection in regularization models

Source: Author’s construct (2021).

Figure A1. Overview of the dataset before data engineering. 
Source: Author’s construct (2021).
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Figure A2. Overview of the dataset after data engineering. 
Source: Author’s construct (2021).
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