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ABSTRACT
This work presents a Convolutional Neural Network (CNN) called 
YOLO for detecting failures in components of power lines along 
a railway. The task is a significant challenge because the CNN 
has to recognize the object and then classify it in real-time. 
Moreover, some extra difficulties are presented in the task, 
such as similarity in terms of color, the intersection of compo
nents, the component size, and climate conditions. The failure 
scenarios have been simulated in a laboratory containing all the 
structures found in real-world power lines along railways. The 
laboratory allowed us to build the image dataset containing 708 
images with annotations that have been used for training the 
neural network. Three versions of the Yolo V3 were compared 
against the state-of-the-art convolutional neural network called 
Tiny Yolo. Results have shown that Yolo V3 version 2 adequately 
detects the objects and faults, reaching a precision of 98%, 
a recall of 95%, and a MAP of 96:58%.

ARTICLE HISTORY 
Received 7 April 2021  
Revised 14 October 2021  
Accepted 20 October 2021  

Introduction

An electric system is a complex structure that provides consumers with power, 
such as houses, industries, and railways, in the context of this work. Inside an 
electrical distribution network, we can find different components, such as 
arresters, transforms, cross arms, etc. These components are located in the 
power posts and are subject to faults caused by regular operation, climatic 
conditions, or vandalism. In this context, Figure1 shows the distribution of the 
railway events (failures) related to power components in 2020 that totalized 
1975 episodes. As we can see, the number of occurrences is high and cannot be 
neglected because it can represent a high cost to the company that maintains 
the power line.

To minimize the effect of faults on consumers, it is essential to have 
a contingency plan or avoid failure before it happens. The second option is 
definitively the best because the consumer does not suffer from a lack of power 
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and, consequently, with the service’s unexpected interruption. In extreme 
cases, the supplier can notify the consumers about a scheduled power supply 
interruption, reducing their effect. Anyhow, the failure to supply power can 
cause financial loss to the consumer even if there is a previous notification.

A common way of avoiding failures is the visual inspection of the distribu
tion network components. Due to the high number of posts in the networks 
and the high number of elements, the network inspections are subject to 
human failure, which can be caused by many factors such as fatigue, inatten
tion, or visual inaccuracy. Therefore, automating this work is a promising 
solution against those faults, being this approach largely used to identify 
visible defects, such as cracks, burns, and cable problems.

Automatic inspections generally can be done by using, for instance, videos 
recorded by drones. The main drawback of using drones is to modify the 
image’s quality due to external factors such as distance, balance, excessive 
vibration, or low lighting. Also, in automatic inspections, identifying each of 
the required objects is difficult because of their size (Liu et al. 2016), the 
distance between the object and the observer, and sometimes there exist 
intersections between them (Redmon et al. 2016), as depicted in Figure 2. 

Figure1. Electrical distribution components – related events in 2020.

Figure 2. Electric network distribution components.
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For instance, the posts on the right side of the image are big objects, while the 
other components are much smaller and harder to identify. Therefore, the 
automatic identification process is challenging, requiring a robust solution to 
achieve better results than the regular one.

Figure 3. Utility structure with wooden pole.

Figure 4. Power transformer structure.

Figure 5. Section divider structure knife switch.
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Moreover, detecting objects and/or faults is a trending subject in which 
deep learning has received attention from both the academy and industry. On 
the other hand, even though those works are efficient in detecting failures, they 
only identify defects in a particular power line device one at a time. Even 
though they sometimes can classify multiple failures, they focus on only one 
component. In other words, the neural networks are trained to perform the 
failure identification of only one kind of component. Therefore, we aim to 
contribute to the area in two aspects. The first one is to propose using 
a Convolutional Neural Network (CNN) through transfer learning (Torrey 
and Shavlik 2009) to identify the proper objects and at the same time classify 
three different defects on those components in real-time situations, even those 
presenting an intersection between them or very close to each other. Thus, we 

Figure 6. Deflection structure from 7º to 45º.

Figure 7. Example 1 of intersection.
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also aim to fill the gap of detecting defects in only one component. The second 
one is to build a database that can be used for training neural networks or any 
image-based machine learning algorithms and make it publicly available.

Figure 8. Example 2 of intersection.

Figure 9. Example 3 of intersection.
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In this context, this paper is divided as follows: Section 2 shows some related 
works, and we emphasize the contributions of this work. Section 3 presents the 
energy lab and its components, describing why this environment is suitable for 
simulating fails; Section 4 introduces the used architecture, showing the YOLO 
pipeline, which is essential to understand why this architecture is so efficient; 
Section 5 shows in detail the computer experiments and used parameters; and 
finally, in Section 6 we show the conclusions and future work.

Related Works

In fact, some researches have been conducted to minimize the effort in 
detecting faults automatically. For instance, Tao et al. (2020) proposed 
a CNN cascade architecture in which the first network detects the insulators 
and the second one detects the missing caps, getting a precision of 91% and a 
recall of 96% using a standard insulator dataset. Huang et al. (2020) investi
gated a multi-class Convolutional Neural Network (CNN) to detect five 
defects on insulators in a dataset containing 200 images of each class. 
Unfortunately, Huang’s work did not show any traditional machine learning 
metric, using only the speed of detection and the correct rate, which were 
29 seconds and 82.4, respectively.

In Qin, Zhou, and Mi (2019), the authors investigated the usage of a CNN to 
detect the health condition in power transformers and the location of the fault 
considering six types of faults. To detect the health condition, they used 
a CNN called LeNet-5, then they designed their CNN architecture to identify 

Figure 10. Example 4 of intersection.
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the location of failure. LeNet-5 got an accuracy of 99.3% in determining the 
transformer health condition, and the proposed architecture reached an accu
racy of 97.02% against 93.74 of LeNet-5.

In Qu et al. (2018)’s work, the authors proposed a CNN network to detect 
flaws in multilevel converters. The CNN got an accuracy of 96.11% with 5% of 
noise, reaching an accuracy of 80.34% with 30% of noise. The CNN with no 
noise reached an accuracy of 98.16% and was compared against SVM (RBF and 
Linear) and an ANN that reached 75.17%, 86.6%, and 93.67%, respectively.

Gao et al. (2017) designed a CNN to recognize an insulator and then 
extract it from a scenario. First, they used a Fast R-CNN to identify the 
areas that potentially have an insulator. Then, the insulator is separated 
from the image, and the fault explosion is detected. The work detailed the 
CNNs based on VGG16; however, the authors do not present any perfor
mance metrics or compare their approach against other methods. The 
dataset is composed of 3000 images for training and only 100 images for 
testing.

Simple line-to-ground faults are detected in Du et al. (2018)’s work. The 
authors designed a CNN and compared the results with a regular artificial 
neural network. The CNN and ANN reached an accuracy of 96% and 93%, 
respectively. Liu, Zhu, and Wu (2020) implemented a simple CNN for 
detecting faults in Double Circuit Transmission Lines (DCTL) using three 
case studies with 7283, 1029, and 5145 images, obtaining an accuracy of 
98.27%, 98.25%, and 98.10% on each case, respectively. Furthermore, last 
but not least, Mitiche et al. (2020) applied a 1-D CNN to detect faults in 
power lines caused by electromagnetic interference getting an accuracy of 
99.4% in the proposed method, then comparing its result against RV-CNN, 
CV-CNN, and SVM, obtaining 86.94%, 95.37%, and 87.8%, respectively.

Specifically, our proposal investigates the use of a CNN architecture called 
YOLO V3 (You Only Look Once) (Redmon and Farhadi 2018), which runs 
over an NVIDIA GPU using a newly created dataset to get good accuracy in 
identifying the correct electrical component and then the most common 
defects in those network components. The dataset was built with images 
from an energy laboratory presented in the next section, a structure built for 
training purposes. Thus, the ambient contains many elements in the state of 
zero energy. The facility is localized in a neighboring region, which allowed us 
to manipulate the components and simulate defects, consequently creating 
a dataset to train our CNN. These images offered a great diversity of objects as 
well as lots of intersections between them.

Further, unlike the referred research that usually identifies failures in only 
one component, our proposal focuses on two components (cables and iso
lators) and detect three kinds of failures: (i) cable out of isolator, (ii) Cable out 
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of spacer, and (iii) isolator with no ring. Furthermore, unlike some presented 
research that combines different approaches to identify the object and detect 
the failure, we use only YOLO V3 in both tasks.

The Energy Laboratory

The energy lab is designed and built to provide maintenance training in the 
power distribution network components. The environment contains diverse 
structures that we can find along a railway, as depicted in Figure 3–6. As we 
can see, most lab components are coupled in posts with approximately 1.5 m, 
which was initially projected to give a hands-on experience to the employees 
who participate in some company training. Additionally, this short distance 
from the ground allowed us to take pictures to build the dataset at different 
distances and angles.

As previously mentioned, one of the challenges in identifying objects and 
their defects is caused by the small size of components. Also, their intersec
tions in images represent an extra difficulty, as depicted in Figure 7–10. In 
other words, the simple detection of one component is more difficult because 
of its neighbor’s elements that can be installed in the same or near posts. 
Because of that, we kept in mind that pictures used to build the dataset must 
preserve these challenges to avoid creating a dataset that does not represent 
reality, leading our CNN to poor performance.

A critical point to focus on is that, as previously mentioned, all the lab 
components are in a state of zero energy or no power. This condition allowed 
us to manipulate all objects, such as isolators, cross arms, and cables, which 
also allowed the simulation of many types of visible defects. In this work, as 
previously stated, we focus on two components (isolators and electricity 
cables) and three common failures: (i) cable out of isolators; (ii) cable out of 
spacer; and (iii) isolators with no ring.

Further, it is essential to remark that these three common defects are the 
most common faults we can find along with our power distribution network 
along the railway. Furthermore, the components are manually moved under 
an electrical engineer railway expert’s supervision to represent real situations 
found along the company’s railway. Hence, we were able to capture images to 
build the dataset as realistic as possible.

An important point to keep in mind is that when using a CNN to perform 
object detection, each training instance is devised by two components, the 
image itself and a file containing the annotations representing the objects to be 
detected. The annotation files must contain all the necessary information to 
make it possible to identify each object class and its position in the image. As 
each algorithm works with a custom format, in YOLO V3, the default format is 
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given by: c x y w h, in which c is the object class, x and y are the center 
coordinates, and w and h are the values of width and weight of the object to 
be detected, respectively.

The tool that we used to create the annotations relative to the defects of 
our dataset is the BBOX-Label-Tool (Qiu 2019). The annotations or labels 
created by this tool are defined by: xmin xmax ymin ymax class name. Thus, it is 
necessary to use Equation (1) to perform a conversion to get the appropriate 
format. 

x ¼ xminþxmax
2 � 1

w
y ¼ yminþymax

2 � 1
h

w ¼ ðxmax � xminÞ �
1
w

h ¼ ðymax � yminÞ �
1
h

0

B
B
B
B
@

(1) 

The procedure to get data ready to train the YOLO V3 is very straightfor
ward, as we can see in Figure 11. The images were labeled using the tool 
BBOX-Label-Tool, so we get the set of annotations for each image. The 
annotations were converted into the default format expected by the YOLO 
V3 using a Python script to perform the transformations using the previous 
Equation (1). Finally, at the end of these steps, the data preparation is 
complete.

Samples of these defects and their pictures will be presented in Section 5. 
The entire dataset is available in the address https://zenodo.org/record/ 
3972451#.X_36TuhKjIU.

The CNN Architecture: YOLO

Classic object detection methods use region proposal methods to discover 
possible target areas or bounding boxes in images (Girshick et al. 2014; 
Girshick 2015; Ren et al. 2015). Afterward, the duplicate detections are elimi
nated, and a classifier is used in each region to detect the possible objects. This 

Figure 11. Conversion procedure.
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set of procedures turns the process slow and impracticable to real-time detec
tion. On the other hand, modern methods work differently, modeling the 
entire processing as a regression problem as YOLO architecture does.

YOLO (Redmon et al. 2016) is a powerful Convolutional Network that 
works in a straight manner. Indeed, the entire process is modeled as a fast 
regression process devised by two traditional neural networks steps: training 
and test. In the training step, we provide input images and text annotations 
with labels of existent objects (coordinates of boxes). In the test stage, we enter 
only images to obtain predictions. In both cases, the outputs of the CNN are 
two: the detection of the objects (bounding boxes) and the image’s prediction.

The YOLO architecture has 24 convolutional layers and 2 fully connected 
layers, as depicted in Figure 12. That disposition allows the network’s first 
layers to be trained with familiar objects, and its features are used in the 
subsequent layers.

Figure 13 shows the basic procedures of the YOLO execution. The first step 
is to resize the image, so each image is divided into an N � N grid. Each cell of 
the grid is responsible for detecting objects whose center belongs to its area. 
Each grid cell predicts B bounding boxes and confidence scores for those boxes 
(Redmon et al. 2016). The confidence score is defined by Equation (2), and the 

Figure 12. Yolo architecture.

Figure 13. Yolo pipeline.
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Figure 14. Cable out of isolator.

Figure 15. Cable out of spacer.
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class-specific score is given by Equation (3), in which IoU is the Intersection 
Over Union metric (Nowozin 2014). The IoU metric is important to deal with 
the intersection between the objects. 

PrðObjectÞ � IoUtruth
pred (2) 

PrðClassijObjectÞ � PrðObjectÞ � IoUtruth
pred ¼

PrðClassiÞ � IoUtruth
pred (3) 

The output of the regression problem is given by an N � N � ðB� 5þ CÞ
tensor, in which N � N is the grid cell dimension, B represents how many 
bounding boxes each cell predicts, and C is the number of classes (types of 
objects to be identified) in our problem. The constant 5 in the equation refers 
to 5-tuple fx; y; w; h; sg, which means the central box coordinates, width, 
height, and confidence to each prediction, respectively.

The final step is a Non-max suppression (Neubeck and Van Gool 2006) to 
avoid multiple detections to the same object. This process gets more confident 
detections and deletes high IoU with the first ones in a greedy procedure.

Figure 16. Isolator with no ring.
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Computational Experiments

Setup

The CNN was implemented in C++ using the Darknet (Alexey 2020) frame
work. At the same time, all the tasks of the pre-processing step (image 
selection, labeling, renaming, resizing) were done with Python and C#. All 
tests were conducted in a computer with an NVIDIA GeForce© GTX 1050 
with 768 CUDA cores, 16 GB of VRAM, and a Pentium G4560 with 2 physical 
and 2 virtual cores.

The training process is done under the pre-trained YOLO (the network was 
trained using pre-trained weights from Imagenet architecture (Russakovsky 
et al. 2015)), i.e., the first 20 layers started the training process with values 
capable of representing common shapes, as edges and circles.

The Database

The dataset is devised by pictures taken from different angles and distances, 
summing up to 708 images stored in our dataset. From this set, 600 images 
were used in the training step, while 108 were used to test the CNN. Every 
picture of the dataset was also linked with an annotation file, which maintains 
the defective component’s coordinates in the corresponding image.

The division of defects in our dataset is presented in Table 1, while Table 2 
shows the distribution in our test set. It is also important to focus on the fact 
that our pictures are taken from an environment with various structures that 
simulate a real one. Thus, each photo that contains a defective component also 
includes various other typical pieces of equipment.

Table 1. Distribution of dataset.
Category Quantity

Cable out of isolators 355
Cable out of spacer 180
Isolators with no ring 172
No defects 93

Table 2. Distribution of test dataset.
Category Quantity

Cable out of isolators 42
Cable out of spacer 23
Isolators with no ring 43
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Results

The identification of the three most common defects was assigned as the 
YOLO task in this work. The chosen failures can be identified visually and 
can find these occurrences through the entire railway network. As previously 
mentioned, our CNN detects three main faults: cable out of isolator, cable out 
of spacer, and isolator with no Ring.

In this context, for a better understanding, examples of these defects are 
presented in Figures 14–16. It is essential to note the task’s difficulty, con
sidering that the difference between defective and regular components is very 
soft, hard to detect for untrained eyes or stressed employees. The color 
similarity between components and background also defies the learning pro
cess and can be impossible to perform for color-blind people. Moreover, the 
small size of some components represents an additional difficulty.

Table 3 presents the parameters of the YOLO training process. All in all, the 
training step was interrupted after 6000 epochs, the update of internals filters 
values was executed every 64 iterations, and the GPU processes 
batch=subdivisions ¼ 1 images per time. The parameters Steps and Scales 
mean that the learning rate was multiplied by 0:1 after 4800 and 5400 itera
tions to smooth the learning process at the end of the training step. The other 
parameters, such as epochs and dataset split mode, are guided by Redmon and 
Farhadi (2018).

Figure 17 presents the training step as iterations go on. The blue line 
represents the mean square error (Wang and Bovik 2009), and the red one is 
the mean of the Average Precision (mAP) (Wang et al. 2013). As we can see in 
the referred figure, the convergence occurs in iteration 4200 approximately. 
Then, considering the mAP, we can observe that the YOLO reaches stability 
within the interval ½3600; 4500�. Furthermore, the small values of the mAP 
from iteration 5400 forward can also indicate that the YOLO network 
converges.

To validate the model quality, the trained YOLO must be tested in new data, 
i.e., we used the 108 images that were not used in the training phase. We use 
three model versions with weighted values of 2000 (Version1), 4000 
(Version2), and 6000 (Version3) iterations. This technique was used to 
avoid over-fitting and get the state where YOLO gets the best mAP values.

Table 3. YOLO params.
Parameter Value

Max Batches 6000
Batch 64
Subdivisions 64
Steps [4800,5400]
Scales [0:1,0:1]
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We also compare YOLO with a simpler CNN called Tiny Yolo V3 (Yu and 
Bouganis 2020), a state-of-the-art architecture in the field of object detection. 
The Tiny Yolo comprises 6 tuples of convolution and max-pooling layers, six 
more convolution layers, and a final fully connected layer to predict the 
bounding box and confidence scores. Table 4 details the results of each model.

Analyzing all versions’ results, we can verify that Version 2 gets better 
performance presenting a precision of 96%, while the Tiny model presents 
the worst numbers. Version 2 also obtained better values regarding precision, 
recall, IoU, and mAP, implying that YOLO’s transfer learning configuration is 
the best way to identify the proper objects and, consequently, the three 
targeted faults.

Figure 17. Iterations VS error.
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Concerning the trained Yolo performance, the model can detect and classify 
at a rate of 45 FPS, which is more than enough for using the model for 
replacing the human inspection subject to human issues such as visual accu
racy and fatigue, among others.

Discussion

There is significant effort being applied on problems on which we have to get 
valuable information from images, such as Object Detection (Papageorgiou 
and Poggio 2000) and Object Segmentation (Li et al. 2014). Considering that 
the Object Detection field is getting such attention, it is important to mention 
why modifying or improving an existent CNN model is relevant. The main 
point is that we always have specific problems with functional and non- 
functional requirements in the real world. This is an essential point about 
applied research.

Specifically, a power distribution network has several specific components 
in this work, such as isolators, electrical transformers, electrical cross arms, 
and spacers. So, a functional requirement is training a CNN capable of 
detecting such objects, which requires some research about the network 
architecture, which we could achieve with our strategy of applying the tests 
with CNN’s trained with different parameters. Another critical point is that 
pre-trained networks are not ready to detect objects from specific fields, so the 
steps of data preparation and CNN training are essential in real-world pro
blems to obtain a good performance.

In terms of evolution, our CNN model dealt with two components and 
three kinds of failures, compared with previous works that dealt with only one 
type of defective equipment, as in Tao et al. (2020), Lei and Sui (2019), and 
Qin, Zhou, and Mi (2019). Another more significant point is a nonfunctional 
requirement, which is achieved with the use of the Darknet framework, which 

Table 4. YOLO results: precision, recall, IoU, and mAP.
- Version 1 Version 2 Version 3 Tiny Yolo

True Positives 95 103 100 80
False Positives 4 2 5 8
False Negatives 13 5 8 28
Precision 96% 98% 95% 91%
Recall 88% 95% 93% 74%
AP cable out spacer 89.45% 100% 90.12% 86.40%
AP cable out isolator 90.91% 90.91% 89.36% 90.68%
AP isolator without ring 97.31% 98.84% 90.68% 70.65%
Mean IoU 71.49% 76.03% 75.29% 66.87%
mAP 92.56% 96.58% 90.05% 82.57%
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makes our CNN faster, reaching a mean time of 64 ms to apply a detection in a 
single image, decreasing the time concerning the previous works like Tao et al. 
(2020), and best mAP values compared to Chen, Li, and Li (2020).

In most railroads, we have various other types of equipment (Signaling, 
Telecommunications, Automation, etc.) that use the power network as the 
main power supply. Thus, detecting those used in this work was a challenge. 
Also, in productive railroads (Costa et al. 2019), alternatives may exist to 
provide power in case of electricity failures, such as generators and batteries. 
In the best scenario, in which the railroad has all these elements, the operations 
will be working over severe constraints because alternative power supplies 
have their limits, such as fuel-based generators level and battery capacity. So, 
any process that helps in any manner to avoid failures on the main power 
supply can be critical to the reliability of the railway operations.

About the limitations of our investigation, it is vital to keep in mind that all 
the training steps must be redone if another type of failure needs to be 
identified. Another important consideration is that our dataset was built to 
simulate the current inspection activities. If some procedure is modified to 
imply several changes on inspection pictures, this can cause a significant 
worsening in the performance of our model.

Conclusion and Future Works

In this work, a CNN called YOLO was used to detect defects on power 
distribution network components across a railway. The model was implemen
ted and trained using a n NVIDIA GeForce© GTX 1050 with 768 CUDA 
cores. The trained model was tested using three different versions, in which 
version 2 presented the best results.

The model was trained using a dataset generated in the energy laboratory, 
which allowed us to simulate defects in interest faults. The best model (ver
sion 2) reached a precision of 98% and an mAP of 96:58% in the test step. 
These are promising results, considering that:

● Most of the components have a small dimension in comparison with the 
total area of the image;

● The images of components in a power distribution network usually 
present a short distance of other components;

● The difference between a defective and a regular component is very 
smooth;

● The inspection images have to deal with noise because of the image 
background.
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All in all, the YOLO architecture showed a good relationship between 
detection velocity and precision, considering that the architecture can make 
detections and classification at 45 fps when running in a GPU and got 96:58%

of mAP on the test phase.
Future work consists of testing modifications in the current architecture 

using meta-heuristics, training the YOLO model using more fault categories, 
and testing the network in embedded platforms such as NVIDIA Jetson Nano 
boards.
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