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We investigate the effect of noncommutativity and quantum corrections to the temperature and entropy of a BTZ black hole based
on a Lorentzian distribution with the generalized uncertainty principle (GUP). To determine the Hawking radiation in the
tunneling formalism, we apply the Hamilton-Jacobi method by using the Wentzel-Kramers-Brillouin (WKB) approach. In the
present study, we have obtained logarithmic corrections to entropy due to the effect of noncommutativity and GUP. We also
address the issue concerning stability of the noncommutative BTZ black hole by investigating its modified specific heat capacity.

1. Introduction

The study of three-dimensional gravity has been extensively
explored in the literature [1]. It has become an excellent lab-
oratory for a better understanding of the fundamentals of
classical and quantum gravity and also to explore some ideas
behind the AdS/CFT correspondence [2]. This special atten-
tion in three-dimensional gravity has been mainly due to the
discovery of the black hole solution in 2 + 1 dimensions [3].
In addition, generalizations of the Bañados-Teitelboim-
Zanelli (BTZ) black hole solution have also been constructed
considering coupling with a dilaton/scalar field [4–6]. In
recent years, the implementation of noncommutativity in
black hole physics has been extensively explored (for a review
see [7]). In [8], the authors have introduced a noncommuta-
tive Schwarzschild black hole solution in four dimensions. As
shown in [8], one way to incorporate noncommutativity into
general relativity is to modify the source of matter. Thus,
noncommutativity is introduced by replacing the point-like
source term with a Gaussian distribution—or otherwise by
a Lorentzian distribution [9]. In addition, noncommutativity
in a BTZ black hole has also been introduced in [10–14]. In
[15], the gravitational Aharonov-Bohm effect due to a BTZ

black hole in a noncommutative background has been ana-
lyzed. The process of massless scalar wave scattering by a
noncommutative black hole via a Lorentzian smeared mass
distribution has been explored in [16]. The thermodynamic
properties of BTZ black holes in noncommutative spaces
have been studied in [17–20].

It is well known that string theories, loop quantum
gravity, and noncommutative geometry presents important
elements for the construction of a compatible theory of quan-
tum gravity. Furthermore, these theories have a common fea-
ture, which is the appearance of a minimum length on the
order of the Planck scale. This therefore leads to a modifica-
tion of the Heisenberg uncertainty principle, which is called
the generalized uncertainty principle (GUP) [21–23]. In
recent years, several works have been devoted to investigating
the effect of GUP on computing the Hawking radiation from
black holes in 2 + 1 dimensions. In this sense, the Hamilton-
Jacobi method via the WKB approach to calculate the imag-
inary part of the action is an effective way of investigating the
Hawking radiation as a process of tunneling particles from a
black hole [24–30]. In [31], the effect of GUP on the Hawking
radiation from the BTZ black hole has been investigated
using the modified Dirac equation. The Hawking radiation

Hindawi
Advances in High Energy Physics
Volume 2021, Article ID 6633684, 11 pages
https://doi.org/10.1155/2021/6633684

https://orcid.org/0000-0003-4625-7322
https://orcid.org/0000-0001-9465-6868
https://orcid.org/0000-0003-1718-6385
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6633684


has been analyzed in [32], by considering the Martinez-
Zanelli black hole in 2 + 1 dimensions [5] and using the Dirac
equation modified by the GUP. By applying the quantum
tunneling formalism, the Hawking radiation from a new type
of black hole in 2 + 1 dimensions has also been studied in
[33], and in [34], the Hawking radiation of a charged rotating
BTZ black hole with GUP was explored. Moreover, in
[35, 36], the entropy of the BTZ black hole with GUP has
been determined, and in [37], by adopting a new principle
of extended uncertainty, its effect on the thermodynamics
of the black hole has been examined.

The purpose of this paper is to investigate the effect of
noncommutative and quantum corrections coming from
GUP for the calculation of the temperature and entropy of
a BTZ black hole based on a Lorentzian distribution, by con-
sidering the tunneling formalism framework through the
Hamilton-Jacobi method. Thus, the Hawking radiation will
be computed using the WKB approach. Therefore, we show
that the entropy of the BTZ black hole presents logarithmic
corrections due to both of the aforementioned effects.

The paper is organized as follows. In Section 2, we con-
sider noncommutative corrections for the BTZ black hole
metric implemented via the Lorentzian mass distribution.
We also have applied the Hamilton-Jacobi approach to deter-
mine noncommutative corrections for the Hawking temper-
ature and entropy. In Section 3, we consider GUP to compute
quantum corrections to the Hawking temperature and
entropy and also briefly comment on the correction of the
specific heat capacity at a constant volume. In Section 4, we
make our final considerations.

2. Noncommutative Corrections to the BTZ
Black Holes

Here, we introduce the noncomutativity by considering a
Lorentzian mass distribution, given by [8, 9, 14, 16]:

ρθ rð Þ = M
ffiffiffi
θ

p

2π r2 + θð Þ3/2
, ð1Þ

where θ is the noncommutative parameter with dimension of
length2 and M is the total mass diffused throughout the
region of linear size

ffiffiffi
θ

p
. In this case, the smeared mass distri-

bution function becomes [14]

Mθ =
ðr
0
ρθ rð Þ2πrdr =M 1 −

ffiffiffi
θ

p
ffiffiffiffiffiffiffiffiffiffiffi
r2 + θ

p
 !

=M −
M

ffiffiffi
θ

p

r
+ O θ3/2
� �

:

ð2Þ

By considering the above modified mass, the metric of
the noncommutative BTZ black hole is given by

ds2 = −F rð Þdt2 +F rð Þ−1dr2 + r2 dϕ −
J
2r2 dt

� �2
, ð3Þ

where

F rð Þ = −Mθ +
r2

l2
+ J2

4r2 = −M + M
ffiffiffi
θ

p

r
+ r2

l2
+ J2

4r2 : ð4Þ

Note that the metric obtained by a noncommutative cor-
rection is different from the metric in [1]. A term,M

ffiffiffi
θ

p
/r, of

the Schwarzschild type is generated due to the noncommuta-
tive correction. Our metric shows similarities with the metric
obtained in [4, 5] and also with one of the classes of solutions
found in [6] with a dilaton/scalar field.

We shall now analyze the nonrotating case ðJ = 0Þ, so the
metric (3) becomes

ds2 = −f rð Þdt2 + f rð Þ−1dr2 + r2dϕ2, ð5Þ

where

f rð Þ = −M + M
ffiffiffi
θ

p

r
+ r2

l2
: ð6Þ

The horizons are found by solving

f rð Þ = −M + M
ffiffiffi
θ

p

r
+ r2

l2
= 0, ð7Þ

which is equivalent to solving a cubic equation

r3 −Ml2r +Ml2
ffiffiffi
θ

p
= 0: ð8Þ

The roots of this cubic equation are given by [38]:

r = 2
ffiffiffiffiffiffiffiffi
l2M
3

r
sin 1

3 sin−1 3
2

ffiffiffiffiffiffiffiffi
3θ
l2M

r !
+ ε

2π
3

" #
, ε ∈ 0,±1f g:

ð9Þ

The three roots for ε = 1, 0, −1, up to the first order in
ffiffiffi
θ

p
,

are given, respectively, by

~rh = rh −
ffiffiffi
θ

p

2 +⋯,

rc =
ffiffiffi
θ

p
+⋯,

rv = −rh −
ffiffiffi
θ

p

2 +⋯,

ð10Þ

where rh =
ffiffiffiffiffiffiffiffi
l2M

p
, ~rh is the event horizon, rc the cosmo-

logical horizon, and rv the virtual (unphysical) horizon.
From equation (7), we obtain the mass of the noncom-
mutative black hole, up to the first order in

ffiffiffi
θ

p
, that is

given by

M = ~r2h
l2

+ ~rh
ffiffiffi
θ

p

l2
+⋯: ð11Þ
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In order to compute the Hawking temperature, we use
the Klein-Gordon equation for a scalar field Φ in the curved
space given by

1ffiffiffiffiffiffi−gp ∂μ
ffiffiffiffiffiffi
−g

p
gμν∂νð Þ − m2

ℏ2

� �
Φ = 0, ð12Þ

where m is the mass of a scalar particle. In the sequel, we
apply the WKB approximation

Φ = exp i
ℏ
I t, r, xi
	 
� �

, ð13Þ

such that we obtain

gμν∂μI∂νI +m2 = 0: ð14Þ

By applying the metric (5) in the above equation, we have

−
1

f rð Þ ∂tIð Þ2 + f rð Þ ∂rIð Þ2 + 1
r2

∂ϕI
	 
2 +m2 = 0: ð15Þ

Now, we can write the solution of equation (15) as
follows:

I = −Et +W rð Þ + Jϕϕ, ð16Þ

where

∂tI = −E,

∂rI =
dW rð Þ
dr

,

∂ϕI = Jϕ,

ð17Þ

with Jϕ being a constant. By substituting (16) into equation
(15) and solving for WðrÞ, the classical action is written as
follows:

I = −Et+
ð
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − f rð Þ J2ϕ/r2

� �
+m2

� �r
f rð Þ + Jϕϕ: ð18Þ

Next, in the regime near the event horizon of the
noncommutative BTZ black hole, r⟶~rh, we can write
f ðrÞ ≈ κðr −~rhÞ, and so the spatial part of the action
function reads

W rð Þ = 1
κ

ð
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − κ r −~rhð Þ J2ϕ/r2

� �
+m2

� �r
r −~rhð Þ = 2πi

κ
E,

ð19Þ

where κ is the surface gravity of the noncommutative BTZ
black hole given by

κ = f ′ ~rhð Þ = 2~rh
l2

−
M

ffiffiffi
θ

p

~r2h
: ð20Þ

The next step is to determine the probability of tunneling
for a particle with energy E, and for this, we use the following
expression:

Γ ≃ exp −2 Im Ið Þ½ � = exp −
4πE
κ

� �
: ð21Þ

In order to calculate the Hawking temperature of the
noncommutative BTZ black hole, we can compare equation
(21) with the Boltzmann factorexp ð−E/~THÞ , so we can find

~TH = κ

4π = ~rh
2πl2

−
M

ffiffiffi
θ

p

4π~r2h
: ð22Þ

Moreover, the above result can be rewritten in terms of

rh =
ffiffiffiffiffiffiffiffi
l2M

p
as follows:

~TH = rh −
ffiffiffi
θ

p
/2

2πl2
−
M

ffiffiffi
θ

p

4πr2h
= Th −

ffiffiffi
θ

p

4πl2
−
M

ffiffiffi
θ

p

4πr2h
: ð23Þ

Therefore, the result above shows that the Hawking
temperature is modified due to the presence of the noncom-
mutative parameter θ. Note that when we take θ = 0, we
recover the temperature of the commutative BTZ black hole,
which is Th = rh/ð2πl2Þ .

At this point, we are prepared to go further. Let us now
consider the noncommutative BTZ black hole in the rotating
regime ðJ ≠ 0Þ. Now the line element of equation (3) can be
written in the form

ds2 = −F rð Þdt2 +F rð Þ−1dr2 + r2dφ2, ð24Þ

where

F rð Þ = −M + M
ffiffiffi
θ

p

r
+ r2

l2
+ J2

4r2 ,

dφ = dϕ −
J
2r2 dt:

ð25Þ

Thus, to find the horizons, we have to solve

F rð Þ = −M + M
ffiffiffi
θ

p

r
+ r2

l2
+ J2

4r2 = 0, ð26Þ

which is equivalent to solving a quartic equation

r4 − l2Mr2 + l2 J2

4 + l2M
ffiffiffi
θ

p
r = 0: ð27Þ
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We can now rewrite this equation as follows [38]:

r2 − r2+
	 


r2 − r2−
	 


+ l2M
ffiffiffi
θ

p
r = 0, ð28Þ

that for θ = 0, we have

r2± =
l2M
2 1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J

Ml

� �2
s2

4
3
5, ð29Þ

where r+ is the outer event horizon and r− is the inner event
horizon of the commutative BTZ black hole. Now, rearran-
ging equation (28) in the form

r2 = r2± −
r2h

ffiffiffi
θ

p
r

r2 − r2∓
, ð30Þ

where rh =
ffiffiffiffiffiffiffiffi
l2M

p
, we can solve it perturbatively. So, in the

first approximation we get the event horizon:

~r2+ ≈ r2+ +
r2h

ffiffiffi
θ

p
r+

r2− − r2+
, ð31Þ

or by keeping terms up to the first order in
ffiffiffi
θ

p
, we obtain

~r+ = r+ +
r2h

ffiffiffi
θ

p

2 r2− − r2+ð Þ+⋯, ð32Þ

for the outer horizon. For the internal horizon, we have

~r2− ≈ r2− −
r2h

ffiffiffi
θ

p
r−

r2− − r2+
, ð33Þ

so that for ~r−, we find

~r− = r− −
r2h

ffiffiffi
θ

p

2 r2− − r2+ð Þ+⋯: ð34Þ

In order to determine the Hawking temperature for
the case of the rotating black hole, we can follow the same
steps as presented above, and so for the tunneling probability
we have

Γ = exp −
4πE
�κ

� �
, ð35Þ

where the surface gravity is given by

�κ =F ′ ~r+ð Þ = 2~r+
l2

1 − l2 J2

4~r4+

 !
−
M

ffiffiffi
θ

p

~r2+
: ð36Þ

Again, by comparing Γ with the Boltzmann factor
exp ð−E/T HÞ, we obtain the Hawking temperature of the
noncommutative rotating BTZ black hole:

T H = �κ

4π = F ′ ~r+ð Þ
4π = 2~r+

4πl2
1 − l2 J2

4~r4+

 !
−
M

ffiffiffi
θ

p

4π~r2+
: ð37Þ

For θ = 0, we recover the result for the Hawking tem-
perature of the rotating BTZ black hole which is given by

T h =
r+
2πl2

1 − l2 J2

4r4+

 !
: ð38Þ

From equation (26), we obtain the mass of the noncom-
mutative black hole, up to the first order in

ffiffiffi
θ

p
, that is

given by

M = ~r2+
l2

+ J2

4~r2+
+ ~r+

ffiffiffi
θ

p

l2
+

ffiffiffi
θ

p
J2

4~r3+
+⋯: ð39Þ

In order to analyze the entropy, we consider the follow-
ing equation:

S =
ð 1
T H

∂M
∂~r+

d~r+, ð40Þ

where

∂M
∂~r+

= 2~r+
l2

1 − l2 J2

4~r4+

 !
+

ffiffiffi
θ

p

l2
1 − 3l2 J2

4~r4+

 !
+⋯: ð41Þ

The next step is to perform an expansion in T −1
H up to

the first order in
ffiffiffi
θ

p
, so we can find

T −1
H = 4π 2~r+

l2
1 − l2 J2

4~r4+

 !" #−1
1 + r2h

ffiffiffi
θ

p

2~r3+
1 − l2 J2

4~r4+

 !−1( )
+⋯:

ð42Þ

Now, by replacing (41) and (42) in (40), we obtain

Ŝ = 4π
ð

1 + r2h
ffiffiffi
θ

p

2~r3+
+

ffiffiffi
θ

p

2~r+
1 − 3l2 J2

4~r4+

 !" #
1 + l2 J2

4~r4+

 !
+⋯

( )
d~r+

= 4π~r+ + 2π
ffiffiffi
θ

p
ln ~r+ð Þ − πr2h

ffiffiffi
θ

p

~r2+
−
πr2hl

2 J2
ffiffiffi
θ

p

12~r6+
+ 2πl2 J2

ffiffiffi
θ

p

8~r4+

+ 3πl4 J4
ffiffiffi
θ

p

64~r8+
+ S0+⋯,

ð43Þ
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where S0 is an integration constant, and by rewriting in
terms of r+, we have

Ŝ = 4πr+ +
2πr2h

ffiffiffi
θ

p

r2− − r2+ð Þ + 2π
ffiffiffi
θ

p
ln r+ð Þ − πr2h

ffiffiffi
θ

p

r2+
−
πr2hl

2 J2
ffiffiffi
θ

p

12r6+

+ 2πl2 J2
ffiffiffi
θ

p

8r4+
+ 3πl4 J4

ffiffiffi
θ

p

64r8+
+ S0+⋯:

ð44Þ

For θ = 0 in (44), we have S = 4πr+, which is the
entropy of the commutative rotating BTZ black hole. On
the other hand, for the case J = 0, we have r+ = rh, and
the entropy becomes

Ŝ = 4π rh −
3
ffiffiffi
θ

p

2

 !
+ 3π

ffiffiffi
θ

p
+ 2π

ffiffiffi
θ

p
ln rhð Þ + S0+⋯: ð45Þ

Note that we have obtained a logarithmic correction for
the noncommutative BTZ black hole. Besides, our metric cor-
responds to that of Ref. [6] with the equivalence

ffiffiffi
θ

p
≡ B and

which is given for the nonrotating case (J = 0) by

f B rð Þ = −M + MB
r

+ r2

l2
, ð46Þ

where B is a finite constant parameter introduced by a
dilaton/scalar field. Hence, the horizon radius can be com-
puted from equation (9) as above by taking the approxima-

tion B/
ffiffiffiffiffiffiffiffi
l2M

p
= B

ffiffiffiffiffiffiffiffiffiffi
Λ/M

p
≪ 1. So, we find

rhb = rh −
B
2 +⋯: ð47Þ

Thus, from equation (40), a logarithmic correction is
obtained for entropy, given by

SB = 4πrhb + 2πB ln rhbð Þ+⋯, ð48Þ

with ΔS ≡ SB − S = 2πB ln rh +⋯ associated with small
(thermal) fluctuations. This approach could also be consid-
ered in [2–5].

3. Quantum Correction to the Entropy

In this section, in order to derive quantum corrections to the
Hawking temperature and entropy of the noncommutative
BTZ black hole, we will apply tunneling formalism using
the Hamilton-Jacobi method. So, we will adopt the following
GUP [39], [40–49]:

ΔxΔp ≥
ℏ
2 1 −

αlp
ℏ

Δp +
α2l2p
ℏ2

Δpð Þ2
 !

, ð49Þ

where α is a dimensionless positive parameter and lp is the
Planck length.

In sequence, without loss of generality, we will adopt the
natural units G = c = kB = ℏ = lp = 1, and by assuming that
Δp ~ E and following the steps performed in [24], we can
obtain the following relation for the corrected energy of
the black hole:

Egup ≥ E 1 − α

2 Δxð Þ +
α2

2 Δxð Þ2 +⋯
" #

: ð50Þ

Thus, performing the same procedure as previously
described, we have the following result for the probability
of tunneling with corrected energy Egup given by

Γ ≃ exp −2Im Ið Þ½ � = exp
−4πEgup

a

� �
, ð51Þ

where a is the surface gravity. Again, we compare with the
Boltzmann factor and we obtain the corrected Hawking
temperature of the noncommutative BTZ black hole

T ≤ ~TH 1 − α

2 Δxð Þ + α2

2 Δxð Þ2 +⋯
" #−1

: ð52Þ

Here, for simplicity, we will consider the case J = 0.
The temperature ~TH is given by equation (22). Further-
more, since near the event horizon of the BTZ black hole
the minimum uncertainty in our model is of the order of
the radius of the horizon, so the corrected temperature
due to the GUP is given by

Tgup ≤ ~TH 1 − α

4~rh
+ α2

8~r2h
+⋯

� �−1

= 2~rh
4πl2

1 − r2h
ffiffiffi
θ

p

2~r3h

 !
1 + α

4~rh
−

α2

8~r2h
+⋯

� �
:

ð53Þ

We can also write the result above in terms of rh = lffiffiffiffiffi
M

p
as follows:

Tgup ≤
2rh
4πl2

1 −
ffiffiffi
θ

p

2rh

 !2

1 + α

4rh
1 +

ffiffiffi
θ

p

2rh
+⋯

 !"

−
α2

8r2h
1 +

ffiffiffi
θ

p

rh
+⋯

 !
+⋯
#
:

ð54Þ

Next, we will compute the entropy of the noncommu-
tative BTZ black hole by using the following formula:

Sgup =
ð 1
Tgup

∂M
∂~rh

d~rh, ð55Þ
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where from equation (11), we have

∂M
∂~rh

= 2~rh
l2

1 +
ffiffiffi
θ

p

2~rh

 !
: ð56Þ

So, now we can obtain the corrected entropy

Sgup = 4π
ð

1 +
ffiffiffi
θ

p

2~rh

 !
1 + r2h

ffiffiffi
θ

p

2~r3h

 !
1 − α

4~rh
+ α2

8~r2h
+⋯

� �
d~rh

= 4π~rh + 2π
ffiffiffi
θ

p
ln ~rhð Þ − πr2h

ffiffiffi
θ

p

~r2h
− πα ln ~rhð Þ − πα2

2~rh

+ πα
ffiffiffi
θ

p

2~rh
−
πα2

ffiffiffi
θ

p

8~r2h
+ πr2hα

ffiffiffi
θ

p

6~r3h
−
πr2hα

2 ffiffiffi
θ

p

16~r4h
+ S0+⋯,

ð57Þ

or by expressing the result above in terms of the rh we have

Sgup = 4π rh −
3
ffiffiffi
θ

p

2

 !
+ 2π

ffiffiffi
θ

p
ln rhð Þ + 3π

ffiffiffi
θ

p
− πα ln rhð Þ

−
πα2

2rh
+ 2πα

ffiffiffi
θ

p

3rh
−
3πα2

ffiffiffi
θ

p

16r2h
+ S0+⋯:

ð58Þ

Therefore, by analyzing the result, we have obtained
corrections to the entropy due to the effects of GUP and also
noncommutative correction. Note that due to the effect of
noncommutativity and GUP, we have found logarithmic cor-
rections for the entropy of the BTZ black hole. For α = 0, we
have precisely the noncommutative correction to the entropy
given by (45). In [50], the authors analyzed the thermody-
namics of the charged rotating BTZ black hole, and logarith-
mic corrections were also obtained for entropy in the
presence of the GUP and thermal fluctuations (for small var-
iations in β = 1/T). The logarithmic corrections to entropy
become important for very small black holes and negligible
for very large black holes. Further studies addressing these
issues were also considered in Refs. [51–54]. In our case, log-
arithmic corrections are due to the presence of GUP and/or
the noncommutativity of spacetime that mimic small ther-
mal fluctuations by properly identifying the corresponding
parameter to values normally found in thermal fluctuations
as well discussed in Refs [50–54].

At this point, we will compute the Helmholtz free
energy, which can be determined by using the following
relationship:

Fgup = −
ð
SgupdTgup: ð59Þ

So, from equations (53) and (57), we get

Fgup = −
1

2πl2
ð

1 + r2h
ffiffiffi
θ

p

~r3h
+ α2

8~r2h
+ 3r2hα

ffiffiffi
θ

p

8~r4h
−
r2hα

2 ffiffiffi
θ

p

4~r5h

 !
Sgupd~rh

= −
~r2h
l2

+ 3r2h
ffiffiffi
θ

p

2l2~rh
+ 5r2hα

ffiffiffi
θ

p

12l2~r2h
−
29r2hα2

ffiffiffi
θ

p

96l2~r3h
−

ffiffiffi
θ

p
~rh

l2
ln ~rhð Þ

+
ffiffiffi
θ

p
~rh

l2
+ α2

ffiffiffi
θ

p
ln ~rhð Þ

8l2~rh
+ α2

ffiffiffi
θ

p

16l2~rh
+ α~rh

2l2
ln ~rhð Þ − α~rh

2l2

−
r2hα

2 ffiffiffi
θ

p
ln ~rhð Þ

16l2~r3h
−
α
ffiffiffi
θ

p
ln ~rhð Þ
4l2

+ F0+⋯,

ð60Þ

where F0 is an integration constant.
For α = 0 (in the absence of the GUP), the Helmholtz free

energy becomes

Fθ = −
~rh
l2

~rh −
ffiffiffi
θ

p� �
+ 3r2h

ffiffiffi
θ

p

2l2~rh
−

ffiffiffi
θ

p
~rh

l2
ln ~rhð Þ + F0+⋯,

ð61Þ

or rewriting in terms of rh, we have

Fθ = −
1
l2

rh −
ffiffiffi
θ

p

2

 !
rh −

3
ffiffiffi
θ

p

2

 !
+ 3rh

ffiffiffi
θ

p

2l2

−
ffiffiffi
θ

p
rh

l2
ln rhð Þ + F0+⋯:

ð62Þ

The correction of the specific heat capacity is given by

Cgup =
∂M
∂Tgup

= ∂M
∂~rh

∂Tgup
∂~rh

� �−1

= 4π~rh 1 +
ffiffiffi
θ

p

2~rh

 !
1 −

ffiffiffi
θ

p

~rh
−

α2

8~r2h
−
3α

ffiffiffi
θ

p

8~r2h
+ α2

ffiffiffi
θ

p

4~r3h
+⋯

 !
:

ð63Þ

Now if α = 0 in equation (63), we have

Cθ = 4π~rh 1 +
ffiffiffi
θ

p

2~rh

 !
1 −

ffiffiffi
θ

p

~rh

 !
+⋯, ð64Þ

which in terms of rh, becomes

Cθ = 4πrh 1 +
ffiffiffi
θ

p

2rh

 !
1 − 3

ffiffiffi
θ

p

2rh

 !
+⋯: ð65Þ

For θ = 0, we have C = 4πrh, which is the specific heat for
the commutative BTZ black hole. Note that the specific heat
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vanishes at the point rh = 3
ffiffiffi
θ

p
/2 (or ~rh =

ffiffiffi
θ

p
in equation

(64)). In this case, we have a minimum radius

rθ min =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Mθ min

q
= 3

ffiffiffi
θ

p

2 , ð66Þ

and then the noncommutative black hole reaches a mini-
mum mass given by

Mθ min =
9θ
4l2

: ð67Þ

Thus, this result indicates that the black hole ceases to
evaporate completely and becomes a remnant. Next, we
obtain the temperature of the remnant of the black hole by
replacing the rh ⟶ rθ min in (23):

Tθrem ≈
~TH

3 = rθ min
6πl2

=
ffiffiffi
θ

p

4πl2
: ð68Þ

Furthermore, from equations (45) and (62) for rh ⟶
rθ min = 3

ffiffiffi
θ

p
/2, we find

Srem ≈ 3π
ffiffiffi
θ

p
+ 2π

ffiffiffi
θ

p
ln 3

ffiffiffi
θ

p

2

 !
+ S0 ≈ 0,

 S0 = −3π
ffiffiffi
θ

p
− 2π

ffiffiffi
θ

p
ln 3

ffiffiffi
θ

p

2

 !
,

Frem ≈ 0 + O θð Þ + F0, F0 = 0:

ð69Þ

Hence, we have that the entropy and the Helmholtz free
energy are zero for the remnant of the noncommutative
BTZ black hole.

Now, to analyze the effect of the GUP, we consider the
case where θ = 0 and α ≠ 0. Thus, from equation (63), we
have the following contribution to specific heat:

Cα = 4πrh 1 − α2

8r2h

� �
+⋯, ð70Þ

and the specific heat vanishes at the point rh = rα min = α/2
ffiffiffi
2

p
.

Hence, the BTZ black hole with GUP becomes a remnant
with a minimum mass, Mα min = α2/8l2, and a temperature
given by

Tαrem =
Tgup
	 
��

θ=0
2 = α

8πl2
: ð71Þ

Moreover, the entropy and the Helmholtz free energy
are zero for the remnant of the BTZ black hole with
GUP with

Sαrem ≈ −πα ln
ffiffiffi
2

p
α

4

 !
+ S0 ≈ 0, S0 = πα ln

ffiffiffi
2

p
α

4

 !
,

Fαrem ≈ − 1 +
ffiffiffi
2

p� � α2

8l2
−

ffiffiffi
2

p
α2 ln

ffiffiffi
2

p
α

4

 !
+ F0 ≈ 0,

 F0 = 1 +
ffiffiffi
2

p� � α2

8l2
+

ffiffiffi
2

p
α2 ln

ffiffiffi
2

p
α

4

 !
:

ð72Þ
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Figure 1: Specific heat capacity (equation (63)). For θ = α = 0, we have the result for the specific heat of the commutative BTZ black hole. We
also show the result when θ ≠ 0 and α ≠ 0.
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For θ ≠ 0 and α ≠ 0, we can write equation (63) as
follows:

Cgup = 4π~rh 1 +
ffiffiffi
θ

p

2~rh

 !
1 − rm+

~rh

� �
1 − rm−

~rh

� �
+⋯, ð73Þ

where

rm± =
ffiffiffi
θ

p

2 ± 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ +

α α + 3
ffiffiffi
θ

p� �
2

s
: ð74Þ

Note that for ~rh = rm+ (or rh =
ffiffiffi
θ

p
/2 + rm+), the specific

heat vanishes. The results obtained previously are recovered

when θ ≠ 0 and α = 0 (or θ = 0 and α ≠ 0). For the condition
of forming a remnant of a noncommutative BTZ black
hole, we can write the following approximations for the
minimum radius:

rmin =
ffiffiffi
θ

p

2 + rm+

=
r1 min =

3
ffiffiffi
θ

p

2 + 3α
8 + O α2

	 

,

r2 min =
α

2
ffiffiffi
2

p +
3
ffiffiffi
2

p
+ 8

� �
8

ffiffiffi
θ

p
+ O θð Þ:

8>>>>><
>>>>>:

ð75Þ
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Figure 2: Specific heat capacity. (a) For θ ≠ 0 and α = 0, we have the result for the specific heat of the noncommutative BTZ black hole. (b) For
θ = 0 and α ≠ 0, we have the result for the specific heat of the commutative BTZ black hole with GUP.
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By applying the minimum radius rmin, the specific heat,
entropy, and Helmholtz free energy are null, and by (54) the
temperature is given by

Tαθrem = Tgup
	 
��

rh=rmin
= rmin

2πl2
−

ffiffiffi
θ

p

2πl2

 !

� 1 + α

4rmin
+ α

8r2min

ffiffiffi
θ

p
− α

� �
−
α2

ffiffiffi
θ

p

8r3min
+⋯

" #
:

ð76Þ

We can obtain approximate expressions for the temper-
ature of the remnant of the noncommutative BTZ black
hole by expanding it in α and θ. So, by applying the mini-
mum radii r1 min and r2 min, the temperatures are given,
respectively, by

T1rem = Tgup
	 
��

rmin=r1 min
=

ffiffiffi
θ

p

4πl2
+ 35α
144πl2

+ O α2
	 


,

T2rem = Tgup
	 
��

rmin=r2 min
= α

8πl2
+

ffiffiffiffiffi
2θ

p

4πl2
+

ffiffiffi
θ

p

πl2
+ O θð Þ:

ð77Þ

Then, by doing α = 0 in T1rem, we obtain the result of
(68), and for θ = 0 in T2rem, we recover the result of (71).

Now in order to verify the stability of the black hole,
we show in Figures 1 and 2 the specific heat behavior.
In Figure 1, we show that the specific heat is positive for
θ = 0:001 and α = 0:1, and so the noncommutative BTZ
black hole with GUP is stable. In addition, we observed
that the specific heat vanishes to a critical radius. Further-
more, for θ = 0:03 and α = 0:1, one achieves two points
where the specific heat vanishes, with an unphysical region
in between.

In Figure 2(a), we verify the behavior of the specific heat
for θ ≠ 0 and α = 0, and in Figure 2(b) for θ = 0 and α ≠ 0.
Note that the specific heat vanishes before entering into an
unphysical zone. The BTZ black hole decreases its size until
it achieves a critical radius where it ceases to evaporate and
becomes a remnant of the noncommutative BTZ black hole.

4. Conclusions

In summary, we have considered the metric of a noncommu-
tative BTZ black hole implemented via the Lorentzian mass
distribution. Thus, applying the Hamilton-Jacobi approach
and the WKB approximation, we have obtained noncommu-
tative corrections to the Hawking temperature and entropy.
In addition, we have found a logarithmic correction to the
entropy of the BTZ black hole due to the effect of noncom-
mutativity. We also have verified the stability of the BTZ
black hole by calculating the specific heat capacity and have
shown that the noncommutative BTZ black hole becomes a
remnant with a minimum mass Mθ min = 9θ/4l2. Therefore,
the contribution of the noncommutative corrections intro-
duces a GUP effect. We also investigated the effect of GUP

by calculating the Hawking temperature and entropy of the
noncommutative BTZ black hole. Due to the effect of non-
commutativity and GUP, we have found logarithmic correc-
tions for the entropy of the BTZ black hole, in the form of
Sgup ~ S + ðc1 + c2Þ ln S +⋯, where the “species” ci = ð−α, θÞ
are essentially related to each corresponding parameter of
correction.
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