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Abstract

In this paper, we derive a new quarter-step hybrid block method for the solution of first-order
Ordinary Differential Equations (ODEs). We employ the approach of interpolating the power
series and collocating the differential system within a quarter-step interval of integration. The
evaluation is carried out at off grid points within the step of the method to produce various
discrete schemes to form our block method. The basic properties of the new hybrid block
method were further investigated. The new method was also tested on some problems and the
results obtained were found to compete favorably with those of the existing ones.
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1 Introduction

In this paper, we consider the numerical solution of first-order ordinary differential equations of the
form,

y'=1(x), Y(x)=y,, a<x<b )
where f:RxR" =>R",y,y, e R", f is assumed to satisfy Lipchitz condition.

Most of the problems in Sciences, Medicine, Agriculture, e.t.c. are modeled in the form of (1), the
few that are modeled in higher order are first reduced to systems of first order before appropriate
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method of solution is applied, [1]. Scholars have proposed different numerical methods for the
solution of (1), these methods can be in the form of single step or multistep methods. Multistep
method can be in the form of k-step method or hybrid method. Hybrid method has been reported to
have circumvented Dahlquist barrier condition through the introduction of off step points, though
this method is difficult to develop but it gives better approximation than the k-step method
especially when the method is of low step-length, [2]. Hybrid method is equally reported to give
better stability condition especially when the problem is stiff or oscillatory, [3], [4] and [5].

In this paper, we develop a new method called the quarter-step method which gives results at a
non-overlapping interval. The paper is organized as follows; introduction has been given in section
one, section two discusses the derivation of the new method, in section three we analyze the basic
properties of the method derived. Section four considers the numerical experiments and the
discussion of results. Finally, section five gives conclusion and necessary recommendations.

Theorem 1 [1]: Let f(x,y) be defined and continuous for all points (x,y) in the region D
defined bya < x<b, —wo < y<w, a and b finite, and let there exists a constant L such that,

for every x,y,y" such that (x,y) and (x,y")are both inD;
fCay) = fy )| < Ly - yH

Then, if y, is any given number, there exists a unique solution y(x) of the initial value problem

(1), where y(x) is continuous and differentiable for all (x,y)in D .
2 Methodology

2.1 Derivation Technique of the Quarter-step Method

Consider the power series approximate solution of the form;

r+s—1

y(x)= Y ax’ )
Jj=0

where r and s are the number of interpolation and collocation points respectively. The first
derivative of (2) is given by,

r+s—1
Y=, jax" 3)
j=1
where a, € R for j=0(1)7 and y(x)is continuously differentiable. Let the solution of (1) be

sought on the integration interval [a,b] with a constant step-size %, defined by, h=x,, —x
n=0,1,.,N

n
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Substituting equation (3) in (1) gives,

r+s-1

fe,y=Y jax"" (4)
j=0

We interpolate equation (2) at point x . ,s=0 and collocate equation (4) at points

n+s?

1 11 51 , , .
x,.r=0 —,—,—,— |. This leads to the following system of equations,

b b b b b
24 8 6 24 4
X4=U ®)
where
_ T
A=la, a, a, a; a, a; a, a,]
r T
U=\y, i f o S o Fo f s [
n+— n+— n+— n+—  on+— T n+—
L 24 12 8 6 24 4
and
B 2 3 4 5 6 7 ]
1 x"l x"l x"l xn xn xn x"l
2 3 4 5 6
0 2x 3x; 4x; 5x, 6x Tx,
2 3 4 5 6
1 2x |, 3x, 4, 5x, o6x , Tx°,
n+— n+— n+— n+— n+— n+—
24 24 24 24 24 24
2 3 4 5 6
01 2x , 3x 4x” | S5x7, 6x Tx° |
n+— n+— n+— n+— n+— n+—
12 12 12 12 12 12
2 3 4 5 6
X=|01 2x , 3x, 4, S5x*,  6x, Tx7,
n+— n+— n+— n+— n+— n+—
8 8 8 8 8
2 3 4 5 6
01 2x , 3x°, 4x" | Sx 6x 7x°
n+— n+— n+— n+— n+— n+—
6 6 6 6 6 6
2 3 4 5 6
01 2x . 3x" 5 4x 5, 5x 5, O6x 5 Tx |
n+— n+— n+— n+— n+— n+—
24 24 24 24 24 24
2 3 4 5 6
01 2x , 3x, 4, S5x", o6x , TIx°,
n+— n+— n+— n+— n+— n+—
L 4 4 4 4 4 4 i

Solving (5), for the a;'s, j =0(1)7 and substituting back into (2) gives a linear multistep hybrid
method of the form:

BOf,+BOF L +BOF

24 +24 12 12
(6)

— h
ORI s 0r A0S B0f B0

- +
8 6 24 24

where
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a, =1
B, = ﬁ(39813 12¢7 — 40642561° +16934401° —370440t* +454721° —30871> +105¢)

B, = 7% (796262417 —T741440¢° +29998081° — 584640¢* + 584641° —25201%)
24

B = %(1990656&7 —18385920¢° +6628608¢° —1161720¢* +98280¢* —3150¢%)
12

B = 7%(79626240/ —69672960¢° + 234178561 —3749760¢* + 284480¢" —8400¢°)
8

6

B, = % (19906560¢” —16450560¢° +5177088¢° — 773640¢* + 55440¢° —1575¢%)
B, = 73—15(7962624/ —6193152¢° +18385921° —262080¢* +181441> —504¢*)
24

B = é(39813 1247 —2903040¢° + 822528¢° —113400¢* +7672¢* —210¢%)
%

(7)
. 1 111 5 1 , .
where ¢ =(x—x,)/h . Evaluating (6) at t=| —,—,—,—,—,— | gives a discrete block
24712 8 6 24 4
scheme of the form:
A"Y, =Ey, +hdf(y,)+hbF(Y,) (8)
where
T T
Y=V YV VY Y sV s YSY s Y Y Y Y oY,
Y n+E n+§ n+g n+£ n+Z "4 B e T 4
T

- n——

+
12 12 24

A T N A VAT

_ _ _ _ 00 0 0 o 19087
100000 000001 1??;320
o0 00 0 —]|m
010000 000001 50720
001000 000001
AQ = , E= ’ 00 00 O 137
000100 000001 g 10752
000010 000001 00 00 0 i%§%6
000001] 000001] 3715
00 00 0
290304
00 0 0 O i
L 3360
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(2713 —15487 293 —6737 263  —863
60480 483840 11340 483840 60480 1451520
47 1 8  —269 1 37
756 30240 5670 30240 3780 90720
27 387 17 243 9 29
,_| 448 17920 420 17920 2240 53760
58 16 9 29 2 -1
945 945 1120 3780 945 2835
725 2125 125 3875 235 275
12096 96768 2268 96768 12096 290304
9 9 17 9 9 41
1140 1120 210 1120 140 3360 |

It is important to note that the quarter-step method has 6 function evaluations per step.
3 Analysis of Basic Properties of the Quarter-step Method

3.1 Order of the Quarter-step Method

Let the linear operator L {y(x);h} associated with the block (8) be defined as,

Liy(x);h} = A"Y, - Ey, —h"df (y,)—h*bF (Y,) €)

where p is the order of the differential equation. Expanding (9) using Taylor series and comparing

the coefficients of /& gives,
L{y(x);h} = cy(x)+chy'(x)+ c,h°y "(x) +...+ c,h’y? (x)+ cp+1h"+]y"+] (x)+... (10)

Definition 3: The linear operator L and the associated linear multistep method (6) are said to be
oforder pif ¢, =¢, =¢,=...=c, = 0 and Cpoy # 0, see [6]. ¢, is called the error constant and

the local truncation error is given by,

t = cpﬂh(”“)y(”“)(xn) +O(h"*?) (11)

n+k

For our quarter-step method,

L [19087 2713 15487 293 6737 263 863 |

Vo v, 1451520 60480 483840 11340 483840 60480 1451520 || /.

. = 139 47 11 83 —269 1l 37 ||f
10000047, 1 000001y, 90720 756 30240 5670 30240 3780 90720 ||
010000 "1 00000t " 37w % 17 a3 9 9 f"*?
Liy):h)= 001000|/7m | 10000011 Y, 1| 170752 448 17920 420 17920 2240 53760 ‘L
: 000100y , | |000001f, 143 58 16 929 2 a1 e
000010 "% | [000001||""E| [11340 945 945 1120 3780 945 2835 |
000001) %3] l000001][” .+ 3715 725 2125 125 3875 235 275 || %
) Wl [290304 1209 96768 2268 96768 12096 290304 ||/ s
7, », 41 9 9 17 9 9 41 o

[3360 140 1120 210 1120 140 3360 ,»ﬂf,,u; | (12)

Expanding (12) in Taylor series gives,
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o R

—h
2(24 j O 190874 727 2713 L)/, 15487 L)/,, 293 (1) __6737 fl)/ 263 (5 863 (1] ro7
S T asis20™ T4 (o080l 24) T 4s3s40012) T11340\8) 483840\ 6) " c0as0\24) 14515201 % |
) , , , , , , ,
sz ), 11394 ‘727 Y, 1 (1Y 8 1) 269 (1Y, 11 (5Y__37 1] 0
S T om0t T & 7561 2a) Ta0aa0l12) se70\s) “30240\6) 3780024 ) “9072014 |

1
D 8 ) o, 137 ZL)"” 27 L)+ 387 (1Y, 17 (1Y _ 243 1) 5) 1y 0
& T s AT s\ 2a) Te20li2) Ta20ls) T17920(6) T2240(24 53760 4
() , iy e
o5 (L) 5508 e ) (3 sl °
S0 T 113400 71 945\24) Toas\12) T1120(8) T3780\6) Toas\24) 28354 |

5

=i
i(241j S _3715h "‘Z* a) 725 (Lj’+2125 [L)’+125 [i)'+3875 [l)',, 235 [ij’_ 275 (i)’l 0 (13)
S T 00304 I 12006\ 24) T96768\12) 2268\ 8) T96768\6) 120304\ 24) 2003044 |

/

(S o ; ; ; ; ; ; 0
=\ 41 & o (1 9 (1 17 (1 9 (1Y 9 (5 41 (1Y] LoJ
Zf.,y,,—y,.-fy,,—z 5057 Tl a0l ) TTaol ) tiaol ez TRl 3
=L 3360 ! 140(24) "1120\12) "210(8) "112006) 140\ 24) "3360(4) |

Equating the coefficients of the Taylor series expansion to zero yields,

o |

[

Therefore, the quarter-step method is of uniform order 6.

48(-011) 9.91(-012) 1.37(-011) 7.23(-012) 6.58(-011) 2.17(-010)]'

3.2 Zero Stability of the Quarter-step Method

Definition 4 : The block integrator (8) is said to be zero-stable, if the roots z_,s =1,2,...,k of the
first characteristic polynomial p(z) defined by p(z)=det(zA'"” —E) satisfies |zX| <1 and every
root satisfying |zs| <1 have multiplicity not exceeding the order of the differential equation, see [6].

Moreover, as h — 0, p(z)=z"*(z—1)" where u is the order of the differential equation, r is

the order of the matrices A and E , see [7] for details.

For our quarter-step method,

[100000] [00000T1]
010000/ (000001
<l 0 010 00| 00000 a4
000100/ (000001
000010/ (000001
000001 (000001

p(2)=2(z-1)=0,=z=2,=2,=2,=2,=0,z, =1.

zero-stable.

Hence, the quarter-step method is

3.3 Consistency of the Quarter-step Method

The quarter-step method is consistent since it has order p=62>1.
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3.4 Convergence of the Quarter-step Method

The quarter-step method is convergent by consequence of Dahlquist theorem below.

Theorem 2 [8]: The necessary and sufficient conditions that a continuous LMM be convergent are
that it be consistent and zero-stable.

3.5 Region of Absolute Stability of the Quarter-step Method

Definition 5 : Region of absolute stability is a region in the complex z plane, where z = Ah. Itis
defined as those values of z such that the numerical solutions of y'=-A1y satisfy

Y, = 0 as j — oo for any initial condition, see [9].

We shall adopt the boundary locus method to determine the region of absolute stability of the
quarter-step method. This is achieved by substituting the test equation,

y'=-Ay (15)
into the block formula gives (8). This gives,

AY (w)=Ey, (w)—hiDy, (w)—hiBY, (W) (16)
Thus,

(17)

iow) = _(A@Ym (w)~Ey, (w)}

Dy, (w)+BY, (w)

since Z is given by h=Ah and w=e". Equation (17) is our characteristic/stability polynomial.
For the new quarter-step method, equation (17) is given by,

13376773560729600 " 9364045824000 2140283769716736000 v 73156608000
4 772779871 W 907343 A 79135273807 W 3749 W
116117826048000 146313216000 371577043353600 15052800
+h2( 155480573 W 17561 Wsj*/’l[l

LSWINLILNEN I
20479334400 2822400 8 1120

i;(w):h"( 16911563 . 5047 w*j—hs( 96010940393 o, 6233 WS)
(18)

This gives the region of absolute stability shown in the figure below.

From Fig. 1, the RAS is L-stable because it contains the left-half of the complex plane and the
stability polynomial in (18) tends to zero as w — . Matlab software was used to plot the RAS.

4 Numerical Experiments

We shall apply the newly developed quarter-step method on some first-order initial value problems
which have appeared in literature and compare the results with solutions from some methods of
similar derivation. The following notations shall be used in the tables below;

ERR - |Exact Solution-Computed Solution|
ERJ - Error in [10]

275



Sunday et al.; BIMCS, 6(4): 269-278, 2015; Article no.BJMCS.2015.078

4.1 Numerical Examples
Problem 1
Consider the ODE

y'=x—-y,y(0)=0,0<x<1, h=0.1
which has the exact solution,

y(x)=x+e -1
Problem 2
Consider the ODE,
y'=xp, y(0)=1,0<x<1, h=0.1

with the exact solution,

1,

y(x)=e*
150
/_/ﬁ\
100
50
N
E 0
-50
-100
K_//
-150
-50 0 50 100 150

Re(z)

Fig. 1. Showing the region of absolute stability of the quarter-step method

(19)
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Table 1. Showing the results for problem 1

X Exact solution Computed solution ERR ERJ

0.10 0.00483741803596 0.00483741803596 1.0899(-14) 1.7443(-11)
0.20 0.01873075307798 0.01873075307798 3.6577(-14) 1.5786(-11)
0.30 0.04081822068172 0.04081822068172 4.4761(-14) 1.4283(-11)
0.40 0.07032046035649 0.07032046035649 6.1209(-14) 1.2924(-11)
0.50 0.10653065971263 0.10653065971263 6.1209(-14) 1.1694(-11)
0.60 0.14881163609403 0.14881163609403 7.0592(-14) 1.0581(-11)
0.70 0.19658530379141 0.19658530379141 7.9268(-14) 9.5739(-12)
0.80 0.24932896411722 0.24932896411722 8.3601(-15) 8.6613(-12)
0.90 0.30656965974060 0.30656965974060 9.4146(-15) 7.8396(-12)
1.00 0.36787944117144 0.36787944117144 9.7071(-15) 7.0906(-12)

Table 2. Showing the results for problem 2

X Exact solution Computed solution ERR ERJ

0.10 1.005012520887401 1.005012520887400 1.2473(-13) 1.6554(-11)
0.20 1.020201340026755 1.020201340026753 2.4989(-13) 4.3981(-11)
0.30 1.046027859908716 1.046027859908711 4.0149(-13) 7.8451(-11)
0.40 1.083287067674958 1.083287067674951 5.7196(-13) 1.2662(-11)
0.50 1.133148453066826 1.133148453066819 7.5116(-13) 1.9709(-10)
0.60 1.197217363131810 1.197217363131801 9.2698(-13) 3.0180(-10)
0.70 1.277621313204886 1.277621313204855 3.0572(-12) 4.5771(-10)
0.80 1.377129776433595 1.377129776433564 3.1135(-12) 6.8954(-09)
0.90 1.499302500056767 1.499302500056705 6.1995(-12) 1.0336(-09)
1.00 1.644872127070013 1.644872127069923 6.6348(-12) 1.5435(-09)

4.2 Discussion of Results

We considered two numerical examples in this paper. The two problems were earlier solved by the
authors in [10], where they applied an order seven hybrid block method. We applied a new order
six quarter-step hybrid block method to solve these two problems and from the results obtained,
the quarter-step method performed better than the existing method with which we compared our
results. It was also observed that our uniform order six method performed better than the order
seven method developed by authors in [10].

5 Conclusion

We have developed a new method called a quarter-step method for the solution of first-order
ordinary differential equations. The method was applied on some problems and from the results
obtained it shows that the method is more computationally reliable than the existing one. The
method was also found to be zero-stable, consistent and convergent. This method is therefore
recommended for the solution of problems of the form (1).
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