
_____________________________________________________________________________________________________ 
 
*
Corresponding author: Email: zyrnick@rambler.ru; 
 

 Physical Science International Journal 
5(1): 18-25, 2015, Article no.PSIJ.2015.003 

ISSN: 2348-0130 

 
SCIENCEDOMAIN international 

             www.sciencedomain.org 

 

 

Electromagnetic Fields of Eigenmodes in Spherical 
Resonators 

 
Yuriy N. Zayko1* 

 
1
Russian Presidential Academy of National Economy and Public Administration, Stolypin Volga 

Region Institute, Russia, 410031, Saratov, Sobornaya st, 23/25, Russia. 
 

Author’s contribution 
 

The sole author designed, analyzed and interpreted and prepared the manuscript. 
 

Article Information 
 

DOI: 10.9734/PSIJ/2015/12727 
Editor(s): 

(1) Ognyan Ivanov, Bulgarian Academy of Sciences, Bulgaria. 
(2) Stefano Moretti, School of Physics & Astronomy, University of Southampton, UK. 

Reviewers: 
(1) Francisco Bulnes, Department of Research in Mathematics and Engineering, Technological Institute of High Studies of 

Chalco, Chalco, Mexico. 
(2) Anonymous, Hunan University of Science and Technology, P.R.China. 

(3) Anonymous, Ukraine. 
Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=679&id=33&aid=6352 

 
 
 

Received 15
th

 July 2014  
Accepted 16

th
 September 2014 

Published 17
th

 October 2014 
 

 

ABSTRACT 
 

In this article a physical theory of eigenmodes of electromagnetic resonators is presented. It is 
known, that Maxwell equations predict non-physical singular behavior of eigenmodes in spherical 
resonators. This shows that Maxwell theory is incomplete. For the improvement of the theory this 
problem is treated with the help of Maxwell-Einstein theory. Maxwell-Einstein equations take into 
account space-time curvature. Regular implementation of this approach permits to avoid the 
influence of singularity. Another result consists of that eigenmodes with large values of orbital 
angular momentum are not observable. An analogy with CMB in the Universe is made. 
 

 
Keywords: Resonator; eigenmode; singularity; cosmic microwave background. 
 

1. INTRODUCTION  
 
Field in the electromagnetic resonators is usually 
described using the solutions of Maxwell's 
equations, which are superimposed by 

appropriate boundary conditions. These solutions 
look like standing waves corresponding to the 
eigenmodes of resonators. If the resonator is 
exited by external sources it creates a field that 
can be represented as a series expansion in 
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eigenmodes which form a complete orthogonal 
system. Below we are interested only in 
eigenmodes. In an empty cavity they are excited 
by radiation emitted by atoms of the cavity walls. 
Consider radiation of atoms located at one of the 
walls of resonator. For a qualitative analysis of 
the field of the resonator eigenmode we use the 
Huygens-Fresnel principle [1]. Suppose that 
each atom emits independently of the other, and 
thus the total radiation is a combination of waves 
of incoherent sources. Front of such a wave does 
not correspond to the shape of the cavity walls 
and the wave reaching the opposite wall, and 
reflected from it, will come to the original wall 
with random phase, which does not correspond 
to phase of the emitted wave. Thus, the reflected 
wave, having interacted with the original one, 
destroys it. This will not happen if the atoms 
radiate in phase. Then, the wave front shape 
corresponds to the shape of cavity wall, the 
reflected wave coming from the emitting panel 
having at each point the same phase shift, and if 
it is a multiple 2π

1
, the resultant wave will not be 

destroyed and will comply with eigenmode of the 
resonator. In general, this situation is typical for 
the formation of eigenmodes for cavities of any 
shape. Of course, the condition for the survival of 
mode can’t be considered as a reason for 
causing the wall atoms radiate coherently. The 
essential reason may be the synchronization 
atoms by eigenmode itself. 
 

The above picture is consistent with the definition 
of the eigenmode field using Maxwell's equations 
for rectangular resonators, when their solutions 
have no singularities and have simple 
interpretation. Solutions of Maxwell equations for 
resonators of spherical shape have a singularity 
at r = 0, what requires assumptions about the 
nonphysical infinite energy density at the origin, 
which is located in the center of the cavity. When 
one tries to give a physically meaningful 
interpretation of the eigenmodes of spherical 
resonators this fact must be taken into account 
and requires going beyond the Maxwell theory. 
First physically reasonable solution to this 
problem was proposed in the paper [2], devoted 
to the definition of the metric of space-time, 
curved by spherical electromagnetic waves 
(SEMW). This requires along with Maxwell's 
equations also use the Einstein equations for the 
Riemann tensor, which describe the curvature of 
space-time, and which right side contains 

                                                           
1

For the eigenmodes with a sufficiently large number 
(spherical cavity) 

energy-momentum tensor of SEMW. This is 
justified, at least by two reasons: 
 

1. The metric tensor of the problem [2,3] 
contains a component that is independent 
of the amplitude of the electromagnetic 
wave and is significant at distances of the 
order of the wavelength. 

2. Generally, solutions of Einstein's equations 
have singularities, which can be proved 
with the help of specific solutions 
(Schwarzschild metric), so as with the help 
of the theorems on the global structure of 
space-time [4]. 

 
An attempts were made to interpret the singular 
solutions using the Maxwell equations alone (or 
methods of geometrical optics) for the fields in 
the cavities or open optical systems, focusing the 
incident field at the point (focus), but did not give 
conclusive results [5]

2
. These failures can be 

considered as a third reason justifying the use 
Maxwell-Einstein equations to solve the problem. 
 

2. ANGULAR DISTRIBUTION OF THE 
EIGENMODES OF SPHERICAL 
RESONATORS 

 

Solutions of the Maxwell equation which was 
used in [2]

3
 obey degeneration, connecting with 

arbitrariness of z – axis’ of co-ordinate system 
direction. If direction of z – axis is fixed the initial 
spherical symmetry of problem is lowered. 
 
In quantum mechanics recovery of breaking 
symmetry is due to so-called zero modes [7]. In 
our problem all directions of z – axis are 
equivalent: all solutions corresponding to its 
different directions are possible and have the 
same energy. In order to eliminate zero modes, 
one must explicitly take into account the 
transitions between degenerate states. For the 
simplicity one can do this in quantum description. 
A possibility to do this is connected with fact that 
angular behavior of photon wave function so as 
of classical SEMW is just the same. Let us 
calculate the probability of transition from the 
state with orbital quantum number l, which 
angular behavior is described by Pl(cos(θ)) in co-
ordinate system with given axis  z, to the state 
with the same quantum number in co-ordinate 

                                                           
2
In [5] a notion of an effective sources for divergent SEMW so 

as sinks for convergent ones are introduced. 
3
So as all similar solutions, which can be found in scientific 

literature (see [6], for example). As a consequence, field 
distribution in spheroidal electromagnetic resonator has axial 
symmetry. 
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system with axis  z’ deviating from z on angle ∆θ. 
In this latter co-ordinate system angular behavior 
of wave function is described by Pl(cos(θ+∆θ))

4
. 

The amplitude of the interested probability is 
equal to the projection of the shifted state Pl 

(cos(θ+∆θ)) on the unshifted one Pl(cos(θ)) (both 
normalized): 
 

   (1) 
 
The amplitude of transition probability Ik(∆θ) one 
can find with the help of addition theorem for 
spherical functions [8]: 
 

      (2) 

 
Due to orthogonality of associated Legendre 
polinomials [8], we receive: 
 

    (3) 
 
Symbol [x] means integer value of x. We give 
below expressions for the first five values Il(∆θ): 
 

 (4) 
  
Interested probabilities look as wl = (Il(∆θ))

2 

 

Fig. 1 represents results of calculation wl(∆θ) for 
different values of  l. 
 
These results show that angular region ∆θс, 
where fraction of “shifted” harmonic 
Pl(cos(θ+∆θ)) in the “basic” one Pl(cos(θ)) is 
significant, is comparable with scale θc of angular 
dependence of Pl(cos(θ)), which has order of  
value 1/l. Mathematically it is due to the 
interference of different terms in (3) and (4). 
Physically this can be assigned to effect of zero 

                                                           
4
Plare Legendre polinomials, Pl

k
- are associated Legendre 

polinomials. 

modes, because both abovementioned 
harmonics have the same energy. Of course, this 
effect vanishes when direction of z axis is fixed 
physically, for instance, with the help of external 
field.  
 
Recall that the field of electrical oscillations in a 
spherical cavity is defined by the function U, 
which has the form [6].  
 

 (5) 
 

А – is a constant, Pl
m
– associated Legendre 

polynomial, r, θ, φ – spherical coordinates, Ψl(kr) 
–radial part of the field, k – wavenumber. 
Equations for U are given in [6]. We have already 
mentioned that the expression (5) is valid only for 
the modes excited by an external source 
(antenna), which specifies the direction of the OZ 
axis of coordinate system. Question about the 
arbitrariness of the choice of direction of the axis 
OZ is also discussed in [6], but the answer 
seems unconvincing. 
 
In the spirit of this approach the correct 
expression for the eigenmode field U of a 
spherical cavity must take into account the 
degeneracy of the directions the axis OZ. 
Simplify the problem by putting m = 0. This 
means that we fix a plane in which the axis OZ 
lies so it is perpendicular to the angular 
momentum of the wave. As mentioned above, all 
directions θ0n = πn/l, 0≤n≤ l – 1 in this plane, 
measured from some arbitrary reference 
direction θ00 = 0, may be taken on the same 
ground as the orientation of axis OZ. 
 
Desired expression for U must be of the form (in 
the general case m ≠ 0) 
 

    (6) 
 

B – is a constant defined so as A in (5) by the 
normalization condition. Due to linearity of 
Maxwell's equations (6) is a mode of a spherical 
cavity, but in contrast to (5), it corresponds for 
the maximum degree to symmetry of the 
problem.  
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Fig. 1. Plot of  wl(∆θ). Ordinata: points – (Pl(cos(θ)))
2
, solid curve – wl(∆θ); Abscissa: angles θ 

and ∆θ from 0 to π; a) l = 1 (curves coincide), b) l = 2, c) l = 3, d) l = 4 
 
Expression (6) was used in [2,3] when recording 
energy-momentum tensor of SEMW before 
averaging it over the angle θ. Such a procedure 
is always applied when considering the free-
oriented systems [9]. 
 

3. ELECTROMAGNETIC FIELDS OF THE 
EIGENMODES OF SPHERICAL 
RESONATORS5 

 
Eigenmodes in the spherical cavity also are 
excited by atoms of wall which are synchronized 

                                                           
5
 Some subsequent material were published in summary form 

at the conference Saratov Fall Meeting, SFM’13 as Internet 
report [10] 

by radiated wave. When one traditionally 
considers the spherical cavity eigenmodes within 
Maxwell's theory he will receive for the radial 
parts of the complex field amplitudes well-known 
expressions of the form of standing waves ~ 
Jn+1/2(kr)/(kr)

3/2
e

iωt
, containing the above-mention 

singularity [6] (J - Bessel function, r - radial 
coordinate, k - wave number, ω - the angular 
frequency, n - integer). Physically reasonable to 
present them as the sum of a convergent 
(~e

i(kr+πn/2+ωt)
) and divergent (~e

i(-kr+πn/2+ωt)
) 

waves
6
. The radiation of the atoms of walls 

excites convergent wave, which converges to the 
point r = 0, passes it some way, then is 

                                                           
6
Given expressions are valid for kr>> 1. 
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transformed into a divergent one, reaches the 
walls of the cavity and, in the case of a phase 
shift is a multiple 2π  creates a stable 
eigenmode. The latter condition determines the 
mode spectrum, i.e. a set of allowed values 
ω=ωn

7
. This is reminiscent of the argument given 

above for the rectangular cavity. There is, 
however, a subtle place associated with the 
passage of the convergent wave the point r = 0. 
As was shown in [3], convergent wave is partially 
captured by the curvature of the metric at r = 0 in 
the domain which size is of the order of the 
wavelength λ=2π/k and can’t conventionally, i.e. 
classically be transformed into divergent one. For 
this to happen, it is necessary to involve 
solutions of the M-E equations of another, non-
wave type, i.e. instantons, which existence was 
proved in [2]

8
. This reminds the tunneling 

process in quantum mechanics: a convergent 
electromagnetic wave is transformed into an 
instanton, and from it - into the divergent wave. 
This process occurs with probability w ~ exp(-
Λ0/ħ), where ħ = h/2π, h – is Plank constant, Λ0 -  
finite pseudo-euclidean action of the instanton  
[2,11]. Thus, each eigenmode of spherical cavity 
has a probability w = w(ω)

9
. Electromagnetic field 

of the instanton and the magnitude Λ0 were 
calculated in [2,11]. The results of both papers 
agree qualitatively. In [2], the action of the 
instanton Λ0 was determined from the equations 
for the electromagnetic field produced by a 
variation of the action S of the field on the 
independent components of the field tensor Flk. 
In [11] action Λ  was recorded taking into account 
ties imposed on components Flk, arising out of 
the field equations, and then the variation δΛ was 
calculated and action Λ0 was determined from 
the condition δΛ= 0.  
 
According to the results of [11] the instanton field 
is exponentially small at the vicinity of r = 0, that 
is corresponding to the nature of the tunneling, 
and solves the problem of singularity of field of 
spherical electromagnetic wave at the point r = 0, 
although the metric is singular at this point. 
 
 

                                                           
7
In electromagnetic theory eigenmode spectrum is obtained 

from boundary condition on the wall of the resonator at r = R, 
R – is the radius of resonator which leads to an equation 
Jn+1/2 (kR)=0. 
8
In [2] they were called as instanton-like solutions 

9
Coincidence of mode’s frequency distribution with Plank one 

permits to connect instanton parameters with temperature of 
equilibrium radiation in cavity. 
 

4. ISOTROPISATION OF EIGENMODES IN 
SPHERICAL RESONATORS 

 
Space-time metric, curved by the presence of a 
SEMW was found in [3] and looks as follows 
  

(7) 

 
G - the amplitude of the electromagnetic wave, l - 
an integer specifying the orbital angular 
momentum of the SEMW, K - the gravitational 
constant. Eigenmodes of the spherical cavity, as 
was shown in [3], can be divided into scattered 
by curvature of metrics and captured by it. 
Scattered modes in terms of geometrical optics 
are associated with rays, which are 
corresponding to the areas of the front of the 
SEMW satisfying conditions θ<θ*orπ>θ>π - θ* , 
where θ- polar angle, and 
 

            (8) 
 
ρ* - is impact distance of the ray, at which 
capture takes place for the first time, m  – integer 
which defines projection of orbital angular 
momentum on axis OZ, –l < m < l [3]. All other 
modes are captured by the curvature of the 
metric. Here we consider the scattered modes 
and clarify their role in shaping the field of 
eigenfields of the spherical electromagnetic 
resonators. 
 
As is known from electromagnetic theory, 
electromagnetic fields in spherical resonators 
have axial symmetry [6]. This is due to the fixed 
direction of axis OZ, from which the angle θ is 
measured. This is true for forced oscillations in 
resonators excited by an external source, such 
as an antenna, which sets the preferred 
direction. However, for eigenmodes none of the 
preferred directions as the orientation of the axis 
OZ among others can be selected. The only 
thing that can be observed in the experiment - is 
the angular distribution of the eigenmodes. It 
doesn’t permit to determine unequivocally the 
direction of axis OZ. For example, for l = 1 
(dipole mode) directions corresponding to θ=0 
and θ=π are equivalent and both may be 
selected as the orientation of axis OZ. For l > 1 
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the situation becomes even more ambiguous: all 
directions θ=mπ/l are equivalent (see Fig. 1). 
The situation is exacerbated when one considers 
modes scattered by curved metric. To 
summarize, for l >> 1 any direction can be 
selected with an equal basis as the axis OZ, 
because the angular distribution of the higher 
modes becomes completely isotropic and gives 
no basis for choosing a particular direction for  
the axis OZ. This can be illustrated with the 
following considerations. Mode of the order l has 
an angular distribution (in the angle θ), which is 
characterized by the maximums of width 1/l. 
Near each maximum scattered modes are 
concentrated, the maximum deviation angle

10
 of 

which is determined by the formula 
*/2 ρδϑ cr≈  

(if one neglects the amplitude of SEMW
11

) [3]. 
For the impact distance ρ* , with which the 
capture begins, one can take a value 

2/27* cr=ρ which is corresponding to SEMW 

of small amplitude              [3,12]. Then, one 

receives 77.027/4max ≈=δϑ . Overlapping of 

neighboring peaks occurs when the inequality  

ll //1 max πδϑ ≥+ will be valid, what takes place 

for 3≥l . Thus, the observation of non-uniform 

angular distribution of the eigenfields of the 
spherical resonator is possible only for small l =1, 
2. This corresponds to values of j, defining full 
angular momentum of SEMW j  =l±1=  1, 2, 3 
(value j = 0 is forbidden). For the eigenfields of 
higher order electromagnetic fields are isotropic 
because peaks of angular distribution of them 
are overlapping. Recall that we are talking about 
the amplitude of oscillation, it phase retains the 
dependence on the azimuthal angle φ. 
 

5. APPLICATION TO COSMIC 
MICROWAVE BACKGROUND  

 
It is interesting that these results are applicable 
in cosmology. Indeed, the cosmic microwave 
background (CMB) shows features characteristic 
of eigenmodes of spherical resonators: a high 
degree of isotropy and Planck frequency 
distribution [13]. To reinforce the analogy, we 
note two facts. First, there is a model of the 
universe

12
, representing it as a spherical cavity 

with a radius increasing with time [14,15]. The 
role of the walls of that cavity plays so-called 

                                                           
10

Defined by the angle of deflection of the ray corresponding 
to a small part of the front of the SEMW 
11

What can be done for the entire observable universe. 
12

Closed model of the universe 

surface of last scattering. CMB radiation in this 
model is represented as a standing 
electromagnetic waves - the eigenmodes of the 
cavity. This model predicts the correct 
dependence of the radiation frequency on the 
radius of the Universe

13
 [14]. It should be noted 

that, despite the different nature of the sources of 
the eigenmodes of the resonator and the relict 
radiation of the universe, the analogy between 
them is permissible, because the received 
radiation is likely not the primary born as a result 
of annihilation processes in lepton-baryon 
plasma that filled the universe immediately after 
Big Bang. Between the birth of the primary 
photons of the CMB and their detection by 
devices considerable time has passed, during 
which in the “universe – resonator” transients 
formed the standing waves, taken as a relict by 
devices could finish. 
 
Secondly, it follows from the experimental data, 
that CMB radiation in the long wave limit can be 
described as classical electromagnetic waves. 
According to generally accepted ideas CMB – is 
a photon gas which is formed in the Big Bang 
and is currently in thermal equilibrium at 
temperature ~ 2,7º К [13]. This gas fills the 
universe, which is described by one of the 
cosmological models, which are based on 
Einstein's equations. CMB is observed in the 
range from 0.33 Sm to 73.5 Sm [13]. In long 
wave diapason of the CMB quantum numbers of 
photonic levels occupation Nk= <E

2
>c

3
/ ћω

4 
>> 1 

[12], <E
2
> - the average energy density of the 

microwave radiation, which is equal to  4·10
-20

 
J/Sm

3 
[16]. This allows one to use classical 

equations for its description. Shortwave portion 
of CMB radiation for which Nk<< 1, by contrast, 
allows one to apply the concepts of geometrical 
optics. 
 

6. CONCLUSION 
 
Results of this paper have revealed the role 
which plays the curvature of space-time metric 
due to the electromagnetic field of the waves in 
the cavity on the nature of the eigenmodes in the 
cavity. It gives the possibility to overcome the 
shortcomings of a purely mathematical approach 
to solving the problem of the study the 
eigenmodes in a spherical electromagnetic 
resonator based on the solution of Maxwell's 

                                                           
13

Rigorously speaking, in these arguments the role of the 
radius of the universe should play radius of the sphere of last 
scattering 
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equations and develop a physical theory of 
eigenmodes in spherical cavity. 
 
The study of the electromagnetic eigenmodes of 
a spherical cavity using Einstein-Maxwell 
equations leads to elimination of the non-physical 
singularity of the wave field in the center of the 
cavity. This was made possible thanks to the fact 
that the process of transformation of a 
converging spherical electromagnetic waves 
(SEMW) in diverging one occurs through 
instanton which is a non-wave solution of 
Einstein-Maxwell equations [11]. Instanton 
parameters can be expressed in terms of the 
temperature of the radiation in the resonator. 
Another consequence of the physical approach is 
that every eigenmode has a probability which 
defines its existence. 
 
Capture rays corresponding to SEMW with large 
values of the orbital angular momentum l leads to 
that only modes corresponding to small values of 
l=1,2 can be observed. Eigenmodes with large 
values of l will not be observed. 
 
This result relating to cosmology, give reason to 
assume that the observed anisotropy of CMB 
associated with harmonics with low values of the 
orbital angular momentum and attributed to 
Intergalactic movements may actually be the 
property of the CMB caused by the influence of 
the curvature of space-time metric, created by 
them.  
 
Another result concerns the focusing of rays in 
the lens system. We have already mentioned 
about trying to solve this problem using fictitious 
sinks and sources [5]. Consideration of this 
problem in the curved space-time allows us to 
give another solution. Following analogy with 
solutions of Einstein's equations, near the space-
time singularity is permissible. It is known that 
the minimum area of a sphere of radius r in the 
space-time possessing a Schwarzschild metric is 
Smin= 4πrg

2
, rg– gravitational radius [17]. In our 

problem with the metric (7), the role of 
gravitational radius plays the rc

14
 . Instanton 

allows sphere (spherical front of the SEMW) after 
reaching the minimum area to expand in the 
same region I, from which it began its 
convergence, but not in the unphysical region I' 
[17]

15
. 

                                                           
14

At distances r ~ rc last term in (7) can be neglected, so there 
is a complete analogy with the Schwarzschild problem [15]. 
15

The latter is a figure of speech [17], because there is no 
time- like geodesic going from I toI'. 
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