
_____________________________________________________________________________________________________ 
 
++

 SMS; 
*Corresponding author: E-mail: iframir3@gmail.com; 
 
Int. J. Environ. Clim. Change, vol. 13, no. 8, pp. 324-343, 2023 

 
 

International Journal of Environment and Climate Change 
 
Volume 13, Issue 8, Page 324-343, 2023; Article no.IJECC.100243 
ISSN: 2581-8627 
(Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784)  

 

 

 

Remote Sensing as a Management and 
Monitoring Tool for Agriculture: 

Potential Applications 

 
Atufa Ashraf 

a
, Latief Ahmad 

b
, Khalid Ferooz 

c
,  

Shazia Ramzan 
d
, Ifra Ashraf 

e*
, Junaid N. Khan 

e
,  

Efath Shehnaz 
f
, Mifta Ul-Shafiq 

g
, Sabia Akhter 

h++
, 

Ambreen Nabi 
i++

, Rehana Rasool 
j
 and Shaista Nazir 

k
 

 
a
 Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of 

Kashmir, India. 
b
 Agromet Cell, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India. 

c
 Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of 

Kashmir, India. 
 d 

KVK, Anantnag, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 
India. 

e 
College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural 

Sciences and Technology of Kashmir, India. 
f 
Dryland Agricultural Research Station, Rangreth, SKUAST-Kashmir, India. 

g
 Climate and Cryoshpere Group, Department of Geography and Regional Development, University of 

Kashmir, India. 
h
 Agronomy, KVK, Budgam, India. 

i 
Vegetable Science, KVK, Budgam, India. 

j 
Division of Soil Science, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences 

and Technology of Kashmir, India. 
k 
Division of Soil Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences 

and Technology of Kashmir, India. 
 

Authors’ contributions 
 

This work was carried out in collaboration among all authors. Authors AA and LA conceptualized the 
manuscript, including method and approach to be used. Authors KF and SR outlined the manuscript. 

Authors IA, JNK and ES reviewed remotely sensed data. Author MUS contributed to the future 
recommendations of this manuscript. Authors SA, AN, RR and SN interpreted and drafted the 

manuscript vis-à-vis agriculture and revised it critically. All authors have read and agreed to the 
revised version of the manuscript. 

 

Article Information 
 

DOI: 10.9734/IJECC/2023/v13i81957 
 
 



 
 
 
 

Ashraf et al.; Int. J. Environ. Clim. Change, vol. 13, no. 8, pp. 324-343, 2023; Article no.IJECC.100243 
 
 

 
325 

 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer 

review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/100243 

 
 

Received: 14/03/2023 
Accepted: 17/05/2023 
Published: 24/05/2023 

 
 

ABSTRACT 
 

Remote sensing technology has revolutionized agriculture management and monitoring by 
providing valuable information on crop health, soil conditions, weather patterns, and overall land 
management. The reflectance data are progressively being exploited in agriculture with the 
momenta gained in ground-based, airborne, and satellite remote sensing. The agriculture systems 
when managed conventionally don’t facilitate the proper utilization of resources and productivity 
potential of the soil. However, taking the aid of remote sensing techniques helps in boosting the 
productivity potential of the soil and optimizing the inputs.  This paper aims to review the potential 
applications of remote sensing in agriculture and its role in improving productivity, resource 
efficiency, and sustainability. The paper discusses various remote sensing techniques, including 
satellite imagery, aerial photography, and sensor-based data collection, and their integration with 
advanced data analysis methods. The applications explored include biomass estimation, yield 
estimation, global food demand, salinity stress detection, drought monitoring, soil moisture content 
assessment, and change detection. The paper highlights the benefits and challenges associated 
with each application and provides insights into future research directions and technology 
advancements in the field of remote sensing for agriculture. 
 

 
Keywords: Agriculture; remote sensing; yield estimation; vegetation indices; satellite data; global 

food demand. 
 

1. INTRODUCTION 
 
Agriculture, which serves us with the most 
fundamental needs - food and fibre, has shown a 
transition from conventional to technology-
intensive in the past century. Despite the fact that 
the world's population has been doubled and 
food demand has been tripled since 1960, global 
food demand has been met with only a 30% 
increase in cultivated land [1,2] and 
intensification of the inputs like fertilizers, 
pesticides which have a negative impact on 
environment [3]. By 2050, the global population 
is estimated to reach 9.7 billion in 2050 after 
reaching 7.7 billion in 2019 [4], while global food 
demand is projected to increase by about 56% 
[5]. However boosting agricultural production 
should be complemented with the sustained use 
of available resources and minimizing the 
negative effects on environment. The conversion 
of intensive agriculture to sustainable one must 
take place while taking into consideration the 
global changes due to unanticipated climatic 
conditions (e.g. changing in precipitation and 

temperature patterns) or extreme weather events 
[6]. 

 
Remote sensing (RS), a technology that enables 
the acquisition of information about Earth's 
surface without coming in contact with the 
objects under surveillance [7], has emerged as a 
valuable tool for agricultural management                
and monitoring. Traditionally, agricultural 
management relied on manual observations, 
labor-intensive fieldwork, and subjective 
assessments. However, these methods often 
provided limited spatial coverage, lacked real-
time monitoring capabilities, and were prone to 
human biases. The integration of remote sensing 
techniques in agriculture has revolutionized 
traditional farming methods by providing a wealth 
of information at various spatial and temporal 
scales [8].  This technology allows for the 
collection of data from large agricultural 
landscapes, facilitating a comprehensive 
understanding of crop dynamics, environmental 
factors, and land use patterns, and can serve as 
an early warning system [9], thereby boosting 
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crop yield by increasing input efficiency [10] and 
hence reducing environmental footprint. 
 

The agricultural production is governed by many 
factors including seasonal changes, physical 
settings (type of soil, nutrient and water 
availability), and management practices [11], 
which exhibit huge spatial and temporal 
variability. Hence, timely monitoring of these 
factors along with raised crop is vital for 
maximising crop yield and preventing crop 
failure. Many problems are encountered while 
monitoring agricultural activities, not prevalent in 
other economic sectors, thereby making it 
imperative to exploit RS technology [12]. This 
can substantially contribute to provide an 
accurate and apt portrayal of the agricultural 
sector on account of its huge spatial coverage 
with high revisit frequency [13,14]. 
 
RS has found its applications in diverse areas 
encompassing resource mapping, land use 
pattern detection, geo-hydrological 
investigations, flood and drought monitoring [15]. 
The agro-meteorology has also benefitted from 
RS techniques in different ways which include 
ascertainment of cloud surface temperatures 
[16], land surface temperature [17,18], 
precipitation [19], radiation [20], soil moisture 
[21], crop yield [22], and so on. Moreover, this 
technology finds its utility even in monitoring the 
pest and disease incidence [23]. RS in 
conjunction with the crop simulation models are 
valuable instruments in forecasting crop yield 
[24,25].  
 
This review impresses upon the indispensable 
role of RS in agriculture. In first section (section-
2), the theoretical background of the application 
of remote sensing in agriculture is discussed in 
which vegetation indices are discussed in detail.  
A detailed sub-section has been devoted to 
vegetation indices, the reason being their high 
relevance with bio-physical features of plants, 
and lesser relevance to the factors impeding 
interpretation of RS data. In latter section 
(section-3), evolution of the different platforms 
employed for RS data acquisition have been 
discussed in detail. The applications of RS in 
agriculture have been reviewed in latter section 
(section-4) under proper headings. Seven 
important applications have been discussed: 1) 
Biomass estimation, 2) Yield estimation, 3) 
Global food demand, 4) Salinity stress detection, 
5) Drought monitoring, 6) Soil moisture content 
assessment, and 7) Change detection. The main 
focus has been devoted to sub-section “Yield 

estimation” because of its role in agricultural 
sustainability and global food demand.  
 

2. THEORETICAL BACKGROUND 
 
The theory basis of remote sensing applications 
in agriculture lies in the interaction between 
electromagnetic radiation and agricultural 
features such as vegetation, soil, and water. 
Understanding these interactions is crucial for 
extracting meaningful information from remotely 
sensed data and utilizing it for agricultural 
purposes. The information dispensed by RS is 
carried by electromagnetic (EM) radiation, which 
traverses its path in vacuum in the form of waves 
of varying wavelengths at the speed of light. RS 
exploits a portion of EM spectrum covering 
visible, Infra-red (IR) (shortwave – SWIR, near – 
NIR and thermal – TIR) and microwave bands 
[26]. Spectral signatures represent the unique 
reflectance patterns of different agricultural 
features across the electromagnetic spectrum 
[27]. These signatures are determined by the 
absorption and reflection properties of the 
features. They are used to distinguish vegetation 
from bare soil, water, and other similar features 
based on the responses of the targets to these 
wavelength regions (see Fig. 1). The spectral 
signature graph is stored in the spectral 
signature library in a digital database to avoid 
loss of the data and provide easy access to 
researchers worldwide [28]. By comparing the 
spectral signatures of vegetation, soil, and other 
agricultural components with known spectral 
libraries, RS can identify and discriminate 
between different land cover classes and monitor 
their changes over time. Another approach of 
tapping information from RS is Vegetation Index 
(VI). Vegetation Indices (VIs) are quite simple 
and effective algorithms for quantitative and 
qualitative evaluations of vegetation cover, visor, 
and growth dynamics, among other applications 
[29]. 
 

2.1 Vegetation Indices (VIs) 
 

The biological and physical characters of plants 
can be differentiated spectrally via VIs termed as 
unitless radiometric quantities [30]. They are 
computed in terms of differences/ratios of two or 
multiple bands of SWIR, NIR and visible 
wavelengths [29]. The expediency of VIs can be 
established on account of their high relevance 
with bio-physical features of plants, and lesser 
relevance to the factors impeding interpretation 
of RS data which include atmosphere, soil 
background, relief, viewing, illumination geometry 
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and non-photosynthesizing elements of plants 
[31]. 
 
The pioneer among VIs was proposed by [32], 
namely Ratio Vegetation Index (RVI). RVI, ratio 
of red to IR wavelength, being highly sensitive to 
vegetation and bearing good correlation with 
plant biomass, is broadly expended for 
monitoring and estimation of green biomass 
estimations explicitly at high vegetation coverage 
[29]. The Normalized Difference Vegetation 

Index (NDVI) which was proposed by [33] is the 
most frequently implemented index [34], and is 
computed as a ratio of the difference to sum of 
the NIR and Red reflectance [26]. NDVI time 
series data have been efficaciously employed in 
diversified applications encompassing global 
change detections, growth monitoring and yield 
prediction of crop, phenological studies, 
desertification and drought monitoring, wildfire 
assessment, and biogeochemical and climatic 
modeling [23]. 

 

 
 

Fig. 1. Typical spectral reflectance curves for dry bare soil, vegetation and water 
(Source: [7] 

 
Table 1. Repository of vegetation indices 

 
Index Formula Wavelengths [nm] Application 

Advanced 
Normalized 
Vegetation 
Index 

     
        

        
 

 

BLUE: 400 – 500 
NIR: 700 – 900 

Mapping Ridolfia segetum 
patches in sunflower crop 
[41]. 

Aphid Index 
   

         

         
 

RED1: 712 
RED2: 719 
NIR1: 761 
NIR2: 908 

Aphid infestation in wheat 
[42] and mustard [43] 

Chlorophyll 
Index 

   
   

     
   

GREEN: 520 -600 
NIR: 760 - 900 

Nitrogen status [44], Nitrogen 
status and productivity [45]. 

Continuum 
Removed (CR) 
Spectral Index 

                        

     
   

      
  

 

     

     

 

                             

 
              

    
      

 

 
 

NIR: 1116 – 1284 
NIR1: 1267 
NIR2: 1156 
NIR3: 1210 

Leaf and canopy water 
content in poplar 
[46], Leaf water content in 
Oak [47]. 

Damage 
Sensitive 
Spectral Index 

    

 
                  

                      
 

BLUE: 509 
GREEN: 537 
RED: 719 
NIR: 873 

Pest incidence on wheat [48]. 
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Index Formula Wavelengths [nm] Application 

Effective Leaf 
Area Index 

                 
   

   
 

RED: 610 – 680 
NIR: 780 – 890 

Yield prediction [49]. 

Green 
Normalized 
Difference 
Vegetation 
Index 

      
         

         
 

GREEN: 557–582 
NIR: 720 – 920 
and/or 
GREEN: 520 – 
600 
NIR: 760 – 900 

Corn yield prediction [50], 
Rice Yield [51], Disease 
detection [52]. 

Green Red 
Vegetation 
Index 

     
         

         
 

 

GREEN: 500 - 590 
RED: 620 - 700 

Phenological indicator [53], 
pest incidence [54]. 

Healthy-Index 
   

          

          
        

GREEN: 534 
RED1: 698 
RED2: 704 

Early disease detection [55]. 

Leaf Rust 
Disease 
Severity Index 1 
Leaf Rust 
Disease 
Severity Index 2 

          
    

    
     

 

          
    

    
      

 

BLUE: 455 
RED: 605 
RED: 695 

Diseased detection [56]. 

Modified Soil 
adjusted 
Vegetation 
Index 

      
           

                        

RED: 630 – 690 
NIR: 760 – 860 

Nitrogen content [57]. 

Normalized 
Difference 
Infrared Index 

     
        

        
 

NIR1: 845 – 885 
NIR2: 1650 –1700 

Canopy water content 
variation [58]. 

Normalized 
Difference 
Vegetation 
Index  
 

     
       

       
 

 

NIR: 700 – 900 
RED: 610-680 
 

Biomass estimation [59,60], 
Water stress in wheat [61], 
Disease incidence [62], Yield 
[63]. 

Normalized 
Difference 
Water Index 

     
         

         
 

NIR1: 841 - 876 
NIR2: 1230–1250 

Plant water content [64,65]. 

Normalized 
Pigment 
Chlorophyll 
Ratio Index 

     
          

          
 

BLUE: 460 
RED: 660 

Leaf chlorophyll content [66]. 

Optimized Soil-
Adjusted 
Vegetation 
Index 

      
       

            
 

RED: 640 – 720 
NIR: 770 – 880 
 

Nitrogen status [67]. 

Ratio 
Vegetation 
Index 

    
   

   
 

RED: 630 – 690 
NIR: 760 - 900 

Nitrogen status [68], Pest-
induced stress [69]. 

Red edge 
normalized 
difference 
vegetation 
index 

       
              

              
 

NIR: 760–850 
Rred edge: 690–730 
nm  

Yield [70] Irrigation 
management [71], disease 
[72]. 

Relative 
Reflectance 
Index 

    
         

         
 

Visible: 400 – 700 
NIR: 740 - 820 

Drought stress [73]. 

Shortwave 
Infrared Water 
Stress Index 

           
         

         
 

 

           
         

         
 

NIR1: 841 - 876 
NIR2: 1230 - 1250 
SWIR: 1628 - 
1652 

Canopy water content [74]. 

Simple Ratio 
   

   

   
 

RED: 648 
NIR: 747 

Pest infestation on regional 
scale [75] 



 
 
 
 

Ashraf et al.; Int. J. Environ. Clim. Change, vol. 13, no. 8, pp. 324-343, 2023; Article no.IJECC.100243 
 
 

 
329 

 

Index Formula Wavelengths [nm] Application 

Soil adjusted 
vegetation 
index 

  Yield [76], Biomass [77]  

Structure 
Insensitive 
Pigment Index 

     
        

       
 

BLUE: 445 
RED: 680 
NIR: 800 

Pest incindence on wheat 
[48]. 

 
Numerous researches have been conducted to 
frame more indices moderating the atmospheric 
and soil background influence on the outcomes 
of spectral measurements. SAVI (Soil Adjusted 
Vegetation Index) [35] is such an illustration of 
the VI restraining the sway of soil background on 
remotely detected vegetal cover. An example 
akin to this is index termed as VARI (Visible 
Atmospheric Resistant Index) [36]. This index 
intensely lessens the effect of the atmosphere. 
However, many indices have been established to 
deliberate differences in reflectance for the NIR 
and SWIR wavelengths, which designate the 
manifestation of deficiency of water in plants e.g. 
WI (Water Index) [37] and SIWSI (Shortwave 
Infrared Water Stress Index) [38]. In order to 
account for association of water stress with 
thermal characteristics of plant, the indices such 
as SI (Stress Index Water) [39] and WDI (Deficit 
Index) [40] have been established. More than 
hundred VIs derived from multi-spectral 
imageries have been reported [29]. The few VIs 
used for particular agricultural applications, which 
are reported in the literature are presented in 
Table 1. 
 

3. DEVELOPMENT OF PLATFORMS of 
RS TECHNOLOGY 

 

There are three different platforms of applying 
RS technology in agriculture [26]: 1) Ground-
based, 2) Airborne, and 3) Space-borne 
satellites. All of the platforms have some pros 
and cons, and the choice of the method is driven 
by the scale and purpose of survey [78]. 
 

The Ground-based RS method makes use of 
field-scale sensors, either handled by hand or 
mounted on any machine [3] to monitor both 
biotic and abiotic stresses in crop. Benefits of this 
method include a better temporal, spatial, and 
spectral resolution [26,3]. However, the limiting 
factors in this technique are the efficiency, scale 
and labour involved which limits its applicability 
to only lesser areal extents, while airborne and 
satellite-based RS methods are apt for larger 
areal extents [26]. 
 

The second platform is Airborne RS, which 
engage manned aircrafts and drones (unmanned 

aerial vehicles (UAVs)) to offer pictorial crop 
inventory on time. The choice of equipment to be 
used is governed by the budget allocations. A 
typical UAV comprises of a communication and 
navigation systems with several sensors on-
board [79]. UAVs are light weight, lesser cost 
intensive and low speed instruments; thereby 
replacing the manned aircrafts. There exist two 
types of UAVs: the first one being the ‘fixed wing’ 
and the other one ‘rotary wing’ [26], the flight 
time of each UAV depends on the payload 
weight. The former with light weight (300 gms) 
HD cameras as payload, can fly at high speed for 
longer duration (2 hours) and does not entail a 
pre-requisite of a launcher or a runway, whereas 
the latter can easily hover over an object with 
briefer flight time (15-25 min) due to its high 
battery power consumption for greater payload 
weight [79]. Table 2 tabulates various common 
UAVs employed for agricultural purpose, in 
particular for remote crop health monitoring

 
[80]. 

 
UAV platform is cost effective and flexible, 
thereby offers an excellent alternative to airborne 
and satellite. UAVs produce imagery of high 
resolution [81] because of its capability of 
covering target repetitively and faster at different 
altitudes and times. Consequently, the UAV can 
even discern variations among plants within the 
field [82]. The detailed information regarding the 
utility of UAVs in the agriculture has been 
thoroughly reviewed by [83,81,84,85 and 86]. 

 
The final platform is space-borne-based RS, 
which is being categorized on the basis of timing 
and orbit taken by a satellite [14]. The data 
sensed by this satellite is applicable for larger 
geographical regions [87], which can therefore 
monitor crops at both global and regional levels. 
Furthermore, it can be used locally for providing 
important crop coverage, mapping, classification, 
and yield forecasts [26]. The disadvantage of this 
method is that it is affected by the meteorological 
conditions [88], atmospheric noise [78], and can 
be cost ineffective. Moreover, satellites have an 
average high revisit time in days (e.g., 16 days 
for Landsat and 26 days for SPOT) which limits 
its applicability in agriculture, in particular nutrient 
and irrigation scheduling [29].  
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Table 2. UAV platforms used in agriculture [14] 
 

Model Manufacturer Aircraft 
Power/Type 

Power RS Sensors Weight 
(kg) 

Flight 
Time 
(min) 

Flight 
Speed 
(m/s) 

Aibot X6 Aibotix Hexacopter Electric Camera 4.6–
6.6 

30 14 

AeroHawk Hawkeye UAV Fixed-wing Electric Camera 5.1–
5.8 

90 16.5–
19.5 

Delta X8 Altus UAS Octocopter Electric Camera/LiDAR 9.5 10–
14 

12 

eBee RTK senseFly Fixed-wing Electric Camera 0.7 40 11–25 

Geocopter IGI Helicopter Gas Camera/LiDAR 90 120–
180 

NA 

Li-AIR TRGS Hexacopter Electric LiDAR 6.9–
9.5 

15 8 

MD4-1000 Microdrones Quadrocopter Electric Camera/LiDAR 6.0 90 12 

OnyxStar 
FOX-C8 
HD LiDAR 

Altigator Octocopter Electric LiDAR 9.2 20 14 

Puma AE AeroVironment Fixed-wing Electric Camera 6.1 210 23 

Phantom 2 DJI Quadrocopter Electric Camera 1.3 25 15 

Pteryx Trigger 
Composites 

Fixed-wing Electric Camera 5 120 12.5–
15 

Ricopter Riegl Octocopter Electric LiDAR/camera 25 30 22 

RS-16 American 
Aerospace 

Fixed-wing Gas Camera 38 720–
960 

33 

Scout B1-
100 

Aeroscout Helicopter Gas LiDAR 77 90 NA 

SIRIUS 
PRO 

Topcon Fixed-wing Electric Camera 2.7 50 18 

UX5 Trimble Fixed-wing Electric Camera 2.5 50 22 

 
Some satellites provide free data, while others 
offer commercial solutions. Pleiades-1, a 
commercial solution, generates high-resolution 
images having one day as temporal resolution. 
The most commonly used satellites for obtaining 
hyperspectral imagery are Sentinel and Landsat-
8 providing free solutions, and QuickBird 
providing commercial solution [14]. Even though 
the temporal resolution of Landsat-8 is larger 
than QuickBird, it provides multi-spectral images 
with 11 bands. Another widely used satellite, 
Sentinel has 3 missions, i.e., Sentinel-1, 
Sentinel-2 and Sentinel-3. 
 

Sentinel-1 has a great potential for mapping crop 
which is attributed to quick response of SAR to 
vegetal structure and water content, insensitivity 

to cloud cover, and high revisit frequency having 
6 days gap. By expending multi-temporal and 
dual-polarization feature of SAR data, Sentinel-1 
provides accurate (85% accuracy) crop maps. 
Among many products generated by this 
mission, the most exploited for agriculture is the 
IW Level-1 GRDH product, which needs 
intensive pre-processing procedure involving 
calibration, co-registration, multi-looking and 
geocoding

 
[89].  Sentinel-2 mission with its high 

spatial resolution (10 – 20 m), high revisit 
frequency (5 day), global coverage, and 
compatibility with Landsat series, has a great 
potential for monitoring agrarian fields both at 
regional and global level. The operational feature 
of this Sentinel-3 mission indicates highly 
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available data products with faster delivery time, 
which are its key design drivers

 
[90]. 

 
4. APPLICATIONS OF RS IN 

AGRICULTURE 
 
4.1 Evaluation of Biomass  
 
The spectral as well as structural properties of 
the target can be acquired by RS at various 
spatial and temporal scales, hence making it the 
best possible method for huge area biomass 
evaluation [91]. For crop growth monitoring, 
precise estimation of above ground biomass 
(AGB) is very essential [92]. Presently, satellite 
and/or ground based RS are utilized for AGB 
evaluation [91]. Scalability issues can arise while 
using ground-based RS as it being labour-
intensive and time-consuming. However, satellite 
RS may not make available adequate data 
resolution for its applicability in precision 
agriculture [92].  
 

Another technique used to estimate biomass is 
LiDAR (light detection and ranging). LiDAR data 
has grasped more consideration owing to its 
robustness in biomass estimation for the reason 
that it triumphs over the data saturation flaw of 
Landsat [93]. LiDAR provides a precise CSM 
(crop surface model) owing to its high spatial 
resolution, thereby permitting the biomass 
estimation using plant height [94], while its 
applicability is limited to small areas only as its 
processing requires intensive computational 
resources [95]. The gap existing between 
terrestrial and satellite has been filled by UAVs 
and lightweight sensors, the promising tools for 
precision agriculture. Recently, the physical plant 
factors, for instance plant height, have turned out 
to be focus of UAV-centered RS methods for 
crop monitoring. Plant height obtained from 
canopy surface models (CSMs) at different 
temporal scales has been deliberated as a robust 
parameter for biomass estimation [96].                    
Besides CSMs, multi- and hyper-spectral             
images and RGB images, obtained for UAV have 
been pooled with CSMs to evaluate biomass 
[97]. 
 

From 2D images overlapped in succession and 
acquired by an UAV using the Structure from 
motion (SfM) algorithm, three-dimensional (3D) 
point clouds are generated which offer new 
options for the acquirement of crop surfaces [92].  
SfM, a computer based technology, produces 3-
D geometry by repeated bundle adjustment and 
image matching techniques [98]. 3D point clouds 

which are derived from CSMs contain crop 
canopy vertical distribution information, which 
can be utilized for crop observance, e.g., plant 
height measurement [99], yield prediction [100] 
and biomass estimation [101].  
 
A type of digital elevation model (DEM) derived 
from point clouds is triangulated irregular network 
(TIN) which symbolizes the surface with a 
sequence of unremitting, non-overlapping, 
asymmetrical triangles by means of the Delaunay 
triangulation algorithm [102]. For crown volume 
extraction TIN can be utilized efficiently [103]. In 
contrast to gridded DEM, TIN is capable of 
showing surface structure particulars more 
precisely and more proficiently without the 
interruption process [104]. Moreover, the 
information deciphered by TIN is more detailed 
and not restricted to plant height only; signifying 
extra comprehensive structural information 
should be tapped for AGB assessment [92]. The 
performance of multispectral in conjunction with 
structural features for AGB assessment is better 
than using them alone, which is further enhanced 
by using meteorological features [92].  
 

4.2 Yield Estimation/ Prediction 
 
The yield estimation of crop is of great 
significance not only to farmers but also to 
government bodies and policy framers so as to 
boost the agricultural productivity and spot the 
abiotic and biotic threats affecting the crop 
productivity [105]. The site specific yield 
estimation of crop helps to discern the spatial 
variability of crop vigor within the plot and 
thereby, aids in optimizing management 
strategies and minimizing the crop threats

 
[106]. 

 
The forecasting of crop yield using RS 
technology is principally based on the 
empirical/statistical relationships existing 
between yield and VIs [107]. Of all the indices 
developed so far, NDVI being closely associated 
with the vegetation vigor [108], is most commonly 
used to ascertain the crop condition, 
developmental phases, biomass, and 
consequently yield [26]. The green leaf area 
index (LAI) of few crops has been reported to 
have asymptotic non-linear relationship with 
NDVI [109,110]. Different LAI values indicate 
dissimilar intercepted wavelengths which have 
direct bearing on the biomass generation which 
in turn are indicative of crop yield [108]. 
Moreover, NDVI entails most of the gen on 
precipitation and can explain most of the grain 
variability, e.g., in wheat [111].  
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However, the empirical models which                    
estimate yield tapping RS data are limited to 
those regions only where they have been 
calibrated [112]. But yet they are used commonly 
because they are less data intensive and easy to 
employ at regional level [113]. For an accurate 
estimation of crop yield at regional level, many 
researchers have integrated spectral data with 
crop growth simulation models [114,115], but 
these models are very data-intensive 
encompassing soil properties, crop management 
practices, crop parameters and agro-
meteorological data. 
 

The Ground-based RS apparatuses have been 
expended successfully for forecasting the yield of 
many crops- rice

 
[116], wheat

 
[117]. The 

determination of accurate yield predictions in 
heterogeneous agricultural landscapes using 
satellite data is dependent upon the resolution of 
sensors as well as other exogenous factors. The 
freely available sensors like the AVHRR 
(Advanced Very High Resolution Radiometer) 
are appropriate for detecting vegetation changes, 
on account of the high temporal resolution, 
however spatial resolution of these sensors is 
low of the order of >8 km which reduces its 
efficiency in estimating the crop yield in 
heterogeneous land settings. Moreover, most of 
the farmer land holdings are smaller than the 
pixel size of sensor, hence making AVHRR 
difficult to use for yield estimation. The significant 
advances in the field of RS technology gave rise 
to successor sensors such as MODIS, an 
improvement over AVHRR

 
[118], especially in 

terms of spectral and spatial resolutions. MODIS 
was explicitly aimed for land-related studies

 
[16] 

allowing foliage monitoring at regional level
         

[108]. 
 

The yield estimates using MODIS data have 
been found to be more precise than AVHRR 
data, when applied on the comparatively 
homogeneous fields [119]. The MODIS has an 
improved spectral resolution (36 spectral bands); 
however, 250 m spatial resolution is still coarser 
for heterogeneous settings. On account of these 
limitations, sensors with improved spectral, 
temporal and spatial resolutions like Landsat 
series were framed, which offered an apt 
substitute to MODIS and AVHRR for crop yield 
prediction. The Landsat 8 OLI having spatial 
resolution of 30 m is such an example. However, 
it suffers from the major drawback of fairly long 
temporal resolution, having periodicity of 16 
days, confining the number of observations taken 
in a crop growing season, which is further fuelled 

by cloud cover limiting the successful sensing 
[119]. In spite of this limitation, Landsat series 
(e.g. TM and ETM+) with revisit frequency akin to 
Landsat 8 OLI have been reported to provide 
fairly accurate yield estimation, when applied to 
the homogeneous agricultural systems [120,121] 
Landsat 8 OLI sensors have been even found 
suitable for heterogeneous African cropping 
systems for capturing phonological stages of 
maize [11]. 

 
The uninterrupted developments of multi-spectral 
remote sensors have geared the launch of the 
new technological generation of free sensors like 
Sentinel 2 with high temporal resolution of 5 
days, spectral resolution of 13 bands, and spatial 
resolution of 10 m resolution [12]. These can be 
applicable in highly fragmented cropping systems 
[122]. There are many more sensors having high 
spatial and temporal resolutions encompassing 
ASTER, ALI, IRS series, SPOT, EROS, KOMOS, 
CARTOSAT-1, GeoEye-1, WorldView-1, 
FORMOSAT-2, KOMPSAT-2  IKONOS, 
OrbView-3 and QuickBird. The highly fragmented 
cropping systems need higher spectral resolution 
data providing detailed information of crops 
which is provided by hyperspectral sensors, the 
review of which is provided in detail by [123]. 
However, it is incumbent here to mention though 
hyperspectral sensors have high spectral, spatial 
and temporal resolution, they generate 
voluminous data which limits its applicability to 
larger areal extents [124]. 

 
4.3 Global Food Demand 
 
Globally per capita food demand is strongly 
linked with per capita Gross Domestic Product 
(GDP) [125] (Fig. 2). For instance, the richest 
countries (group A e.g. US) consume 
approximately 8,000 kcal·day

−1
 in comparison to 

the groups C and D (Brazillian and Indonesian 
people, respectively) consuming 4,000 
kcal·day

−1
. While considering this and presuming 

that both GDP as well as global populace will 
endure to proliferate in the future, the earlier 
trend of intensely escalating food pressure is 
projected to persist for 3–4 decades [126]. [125] 
envisage that crop caloric/protein demand per 
head will duple between 2005 and 2050.  

 
The crop data procured using RS technology has 
great potential towards monitoring of food quality 
and demand, by affording well-timed, synoptic, 
cost effective and recurring gen [16].  The crop 
acreage and production are the two elements 
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Fig. 2. Yearly dependence of per capita crop caloric demand on per capita GDP for different 
economic groups  

[Source: 125] 

 
that can be assessed from the data procured 
from present RS satellites. Moreover, the crop 
phenology, stress conditions and disturbances 
can also be detected

 
[126]. The climatic 

extremities as expected in future have a greater 
sway on agricultural production, which need to 
be continuously monitored for risk assessment at 
both spatial and temporal scales, which is only 
possible by the aid of RS techniques. 

 
The two approaches of RS, microwave RS-
based backscattering and optical RS-based 
surface reflectance, are employed for both 
mapping as well as forecasting activities

 
[126]. 

The nation must have repository of fast and 
reliable food forecasts prior to the harvesting of 
the crop irrespective of the method employed 
(RS/ground-based). Food production forecasts 
employing RS techniques may aid governments, 
decision, and policy makers to devise suitable 
strategies- to quantify the amount of food to be 
imported in case of deficiency or the amount of 
food to be exported in case of surplus

 
[127] and 

to procure the food at cheaper rates from other 
nations without deciphering the information about 
the shortfall of food in near future.  

 
4.4 Salinity Stress Detection  
 
The saline conditions of the soil have negative 
bearing on soil and water quality causing land 
degradation which in turn impedes crop growth, 
and hence crop production. Not only crop 

mapping and monitoring is taken over by RS 
technology, but crop stresses induced due to 
saline conditions can also be figured out with RS 
[128]. The RS technology can help in 
identification of salt traits discernable on soil 
surface, e.g., white crust, a direct indicative of 
soil salinity [129]. Alternatively, indirect 
ascertainment of soil salinity is done using 
different indicators, e.g., presence of halophytes 
and active salt-tolerant crops [130,131]. Many 
researchers have attempted to monitor and map 
soil salinity areas using multispectral sensors 
[132,133] and hyperspectral sensors 
[134,135,136]. The hyperspectral sensors have 
precedence over multispectral sensors with 
respect to detection of salt characteristics on soil 
surface, and distinction between halophytes and 
non-halophytes on account of high spatial 
resolution of hyperspectral sensors [134]. 

 
4.5 Drought Monitoring and Assessment 
 
Drought is a complex hydro-meteorological 
phenomenon [137] occurring due to diminution of 
precipitation over prolonged period of time, 
causing reduction in the soil moisture [138]. 
Drought exhibits multiple manifestations and is 
classified into different types: meteorological 
drought, agricultural drought, and hydrological 
drought [139]. The most commonly used 
approach for characterization and monitoring of 
drought is drought index [140]. An inventory of 
drought indicators and indices, and their 
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applicability has been presented by World 
Meteorological Organization (WMO) and Global 
Water Partnership (GWP) [141]. The precipitation 
is a key meteorological factor that has a 
predominant effect on the occurrence and 
characterization of drought via drought indices 
[142]. Precipitation data embodies large spatial 
and temporal variation [143] which cannot be 
interpolated always exactly. The efficiency of 
drought indices is highly dependent on the 
number of rain gauging stations in an area [144] 
which hampers the drought assessment in 
regions with limited number of rain-gauges. The 
progresses of RS techniques have enabled the 
procurement of precipitation data at varying 
spatial and temporal resolutions and have been 
globally used for drought forecasting [143]. The 
deficiency in precipitation, i.e., meteorological 
drought, causes deficiency in soil moisture 
referred to as agricultural drought [145]. The 
agricultural drought can be monitored by RS 
either by assessing soil moisture status or by 
assessing the different indices based on 
vegetation [146] e.g., NDVI, Evaporative Stress 
Index (ESI), Enhanced Vegetation Index (EVI), 
Vegetation Health Index (VHI), Vegetation 
Condition Index (VCI) and Soil Adjusted 
Vegetation Index (SAVI) [147].  

 

4.6 Soil Moisture 
 

The estimation of soil moisture is imperative for 
water budgeting, agro-meteorological 
applications, and forecasting natural upheavals 
including droughts, floods, soil erosion and dust 
storms. Nevertheless, precise in-situ 
measurement of soil moisture is quite capital 
intensive and time consuming because it entails 
repetitive soil sampling to evaluate the continual 
vicissitudes in soil moisture. A better alternative 
to the conventional methods of soil moisture 
determination is RS approach which gives 
synoptic view of large areas along with the 
spatial and temporal variations [148]. 
 

The soil moisture content is remotely sensed 
employing near gamma radiation, microwave, 
TIR, IR and visible radiation. Nevertheless, owing 
to ground penetration and all-season proficiency 
of active and passive microwave radiations, they 
corroborate to be the most pledging techniques. 
The main hurdle in the functioning of rest 
techniques is hindrance due to cloud cover. 
Although, the data sensed remotely by 
microwave radiations is quite promising but its 
exposition is very complex owing to vegetal 
cover, surface roughness, textural and 
geometrical properties of soil [21]. 

 
 

Fig. 3. Land use land cover change of Southern Kashmir Himalaya, J&K, India at different 
temporal scales

 
[149] 
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4.7 Change Detection 
 
The land use on sustainable basis plays a vital 
role in food security. Change detection in purview 
of land use land cover (LULC) change has great 
implications on food security of a region because 
of frequent shifts of agricultural land to other land 
uses. The satellite-based RS data have been 
successfully employed for mapping LULC 
patterns and changes. LULC change studies can 
cater policy makers by serving as an input for 
devising an effectual land use policy for a region. 
An example of LULC change study for the 
Southern Kashmir Himalaya, J&K, India, is 
manifested in Fig. 3, in which the exorbitant shift 
of agricultural land to horticultural land has been 
corroborated over the period of 27 years

 
[149]. 

 
5. CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 
 
The review expounds the robust role being 
played by RS in the agricultural sector. By 
leveraging the power of remote sensing 
techniques, such as satellite imagery, aerial 
photography, and sensor-based data collection, 
farmers and agricultural stakeholders can 
optimize resource utilization, enhance 
productivity, and promote sustainability. One of 
the paramount pros in using remote sensing data 
is its efficiency to empower agricultural actors in 
addressing global issues such as biodiversity 
loss, land degradation, and climate change. This 
review paper provides a comprehensive 
overview of few potential applications of remote 
sensing in agriculture and highlights its 
significance in improving productivity, resource 
efficiency, and sustainability. It has explored the 
use of remote sensing for biomass estimation, 
yield estimation, addressing global food demand, 
detecting salinity stress, monitoring drought 
conditions, assessing soil moisture content, and 
detecting changes in agricultural landscapes. 
Each application has been discussed in terms of 
its benefits and challenges, highlighting the value 
that remote sensing brings to agricultural 
practices. RS technology has been effectively 
tapped by different researchers in gauging crop 
parameters and forecasting crop yield. RS data 
has capacitance of even gauging vegetation 
anomalies like drought conditions and salinity 
stress conditions which have significant effects 
on the crop yield. This information generated by 
RS plays a great role in global food demand 
forecasting which can help policy makers and 
government to devise plans for procurement of 

food supplies in case of dearth and managing 
agricultural productivity.  
 

The integration of remote sensing with advanced 
data analysis methods, such as artificial 
intelligence (AI) and machine learning (ML), 
holds significant promise for enhancing the 
capabilities of decision support systems in 
agriculture. This integration can bring about more 
accurate, efficient, and automated analysis of 
remote sensing data, leading to improved 
resource allocation and targeted interventions. 
There are many areas which still need major 
overhaul or changes in existing RS systems as 
well as methods and techniques to derive 
meaningful results from RS imageries. Modern 
satellites need an upgradation in terms of sensor 
specifications which can address the spatial and 
temporal crop yield estimation at much higher 
spatial scales addressing SDGs of poverty 
reduction, zero hunger, good health and 
wellbeing, and overall sustainability. Forecasting 
climate and crop yield has been a major problem 
in developing and under developed parts of the 
world which minimizes the resilience of societies 
towards impending disasters. Atmospheric 
disturbances in high altitude areas are very 
frequent which reduces their efficacy in 
agricultural studies, thus RS systems need more 
robust algorithms to reduce the atmospheric 
distortions. Furthermore, we suggest that to 
achieve UN SDGs, access to the RS data is 
necessary, which still is not available to most of 
the end users especially the high resolution data. 
Mechanisms need to be put in place for better 
and easy access of satellite data.    
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