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ABSTRACT 
 

The adsorption isotherms and kinetics of acrylic acid modified walnut shell (AA-WNS) for Pb(II) 
were investigated in the temperature range of 288-308K. Scanning electron microscope (SEM) was 
utilized for evaluation of the developed walnut shell. Adsorption isotherm data were better 
interpreted by Langmuir isotherm model, and the maximal adsorption capacity was 238.65 mg g-1 
at 308 K. The adsorption kinetic data were well correlated by pseudo-second-order model. The 
adsorption process was governed by both film and intraparticle diffusion, with film diffusion at the 
fast stage followed by intraparticle diffusion. A Boyd kinetic plot confirms that the slowest step of 
Pb(II) adsorption by AA-WNS is film diffusion. The thermodynamic parameters ∆G, ∆H and ∆S 
were determined. Recycling properties of AA-WNS were studied, indicating that it can be reused for 
Pb(II) adsorption. 
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1. INTRODUCTION 
 
Water pollution caused by heavy metals has 
been of great concern due to its toxicity and non-
biodegradability. As a frequently-used heavy 
metal ion, lead can be assimilated and stored in 
living organisms, causing deleterious effects on 
the nervus, brain, kidney, cardiovascular and 
other vital organs [1,2]. Hence, various 
techniques for Pb(II) removal have been 
developed, such as precipitation, ion-exchange, 
electrochemical, and adsorption [3-5]. Among 
them, adsorption is a widely applied technique [6]. 
In particular, biosorption is a promising 
ecofriendly technique due to its low-initial cost, 
environmental benign, regeneration, and 
availability of biomass [7,8]. Recently, a wide of 
the efficient adsorbents from agricultural residues 
have been used for Pb(II) removal from 
wastewater including Imperata cylindrica leaf 
powder [9], cotton [10], Pinus sylvestris [11], 
Nipah palm shoot [12], Azolla filiculoides [13], 
sugarcane bagasse [14], peanut husk [15], Rosa 
centifolia petals [16], banana stem [17], spent 
grain [18], etc. 
 
Walnut (Juglans regia), the fruit of walnut trees, 
belongs to Juglandaceae. According to 
FAOSTAT, the major producers of walnuts 
include China, Iran, United States, Turkey, 
Mexico, Ukraine, India, Chile, France and 
Romania, and a total of 3.4×106 tonnes of 
walnuts were produced in 2013 [19]. Walnut shell 
(WNS) makes up about 30 - 50% of walnut fruit, 
and it is an abundant agricultural waste in China 
with high mechanical strength, non-toxicity, well-
functionalized surface property, chemical 
inertness, easy regeneration and biodegradability. 
Thus, it can be made into activated carbon, and 
the ground WNS can be used for the cleaning of 
aviation parts. Moreover, it could be used for 
removing metal ions such as Cr(VI) [20], Cu(II) 
[21], Pb(II), Cd(II) and Ni(II) [22]. However, raw 
WNS has low metal removal and slow process 
kinetics. The adsorption capacity of WNS could 
be enhanced by chemical modification. For 
example, the citric acid treated WNS was used 
for Cr(VI) removal, and its adsorption capacity 
was 0.596 mmol L

-1
 which is nearly four times 

than that of raw WNS [23]. However, studies on 
WNS modification for the removal of metal ions 
are still insufficient, especially for Pb(II) removal. 
 
The objective of this work is to explore a new 
economic method for WNS utilization and to 
improve the treatment capability for wastewater 
containing lead ions. Thus, acrylic acid modified 

walnut shell (AA-WNS) was synthesized and 
used for Pb(II) removal. Adsorption isotherms, 
kinetics and mechanism of Pb(II) adsorption on 
AA-WNS were discussed. Moreover, the 
reusability of AA-WNS was studied. 
 

2. EXPERIMENTAL 
 

2.1 Reagents and Instruments 
 

Acrylic acid (AA), acetone, and n-hexane were 
obtained from Shanghai Chemical Reagent Co. 
Ltd (China) and used as received. HNO3 (98%), 
NaOH, HCl (35%) and KMnO4 were supplied by 
Shanghai Lingfeng Chemical Reagent Co. Ltd. 
Pb(NO3)2 was supplied by Sinopharm Chemical 
Reagent Co. Ltd. All the chemicals were 
analytical grade. The surface morphology of the 
samples was performed on a TM3030 scanning 
electron microscope (SEM) (Hitachi, Japan). 
 

2.2 AA-WNS Preparation 
 

WNS obtained from Xinjiang (China) was 
crushed and sieved to select the particles with 
diameter between 500 μm and 1000 μm. The 
sample was washed with water until the water 
became clear, and then dried to a constant 
weight. The clean WNS (30 g) was immersed in 
NaOH solution (1 mol L-1) for 24 h, and dried at 
90°C for 48h after being washed to neutral. The 
grafting process of AA was carried out by the 
method reported in the literature [24]. In brief, the 
treated WNS (15 g) was preactivated with 250 
mL KMnO4 solution (0.016 mol L-1) at 25°C for 30 
min followed by filtration and washing, and then 
the grafting reaction was carried out by 
dispersing the above product in 250 mL AA/n-
hexane solution with 0.825 mol L

-1 
AA at 69°C for 

1.5 h. The mixture was treated with 100 mL 
acetone for 10 h to remove the homopolymer 
followed by filtration, and then washed with hot 
deionized water and acetone, respectively. 
Finally, the product (AA-WNS) was obtained by 
drying. 
 

2.3 Graft Yield (GY) Determination 
 

The graft yield of AA-WNS was determined by 
soaking AA-WNS (1 g) into 100 mL NaOH 
solution (0.01 mol L-1) for 24 h. Then, three 
aliquots (25 mL) of the residual solution were 
back-titrated with hydrochloric acid solution 
(0.01mol L-1). The graft yield can be expressed 
as follows 
 

Na( 4 )
(%) 100OH NaOH HCl HCl

AA

C V C V
GY M

w

 
     (1)           
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where w (g) is the mass of AA-WNS, MAA is the 
molecular weight of AA, VNaOH (L) and VHCl (L) 
are the volume of NaOH and HCl, and CNaOH 
(mol L

-1
) and CHCl (mol L

-1
) are the concentration 

of NaOH and HCl, respectively. The graft yield of 
AA-WNS is 17.73%. 
 

2.4 Adsorption Experiments 
 
Static adsorption experiments of Pb(II) on AA-
WNS were conducted to study the isotherms, 
kinetics and mechanism. In the adsorption 
equilibrium tests, 25 mL Pb(II) solutions               
(pH = 5.0) with different initial concentrations 
(0.3-6.0 mmol L-1) were mixed with 45 mg AA-
WNS at different temperatures. After equilibrium, 
the residual Pb(II) concentration in solution was 
analyzed by centrifuging and then measuring 
with ethylene diamine tetra acetic acid disodium 
salt (EDTA) using xylenol orange as indicator. 
The adsorption capacity of Pb(II), qe (mg g

-1
), 

was estimated by 
 

w

VCC
q

e

e

)( 0                                          (2)                      

 
where C0 (mg L-1) and Ce (mg L-1) are Pb(II) 
concentration at initial and at equilibrium, w (g) is 
the mass of AA-WNS, and V (L) is metal ion 
solution volume. 
  
According to the above method, the adsorption 
capacity of WNS was determined in 25 mL 5.0 
mmol L-1 Pb(II) solution at 298K and it is 11.08 
mg g

-1
. 

 
The adsorption kinetics were determined by 
placing 45 mg AA-WNS in 25 mL 5 mmol L-1 

Pb(II) solution (pH=5.0) at a constant 
temperature (288, 298 or 308K). At 
predetermined time, the residual Pb(II) 
concentration in solution was measured by 
titration with EDTA using xylenol orange as 
indicator. The amount of Pb(II) adsorbed onto 
AA-WNS at time t, qt (mg g

-1
), was calculated as 

follows: 

 

w

VCC
q t

t

)( 0                                          (3)                                

 

where Ct (mg L
-1

) is Pb(II) concentration at time t. 
All the tests were performed for three times and 
the mean values were reported. 

 

2.5 Desorption and Regeneration 
 
To regenerate the used AA-WNS, Pb(II)-loaded 
AA-WNS (45 mg) was treated with 20 mL HNO3 
solution (1 mol L

-1
) at 25°C for 24 h. Then the 

regenerated adsorbent was filtered, washed and 
dried for the adsorption-desorption tests. 
Adsorption percentage for each cycle is equal to 
the ratio of the adsorption amount of regenerate 
adsorbent for Pb(II) to that of fresh adsorbent. 

 

3. RESULTS AND DISCUSSION 
 
3.1 SEM Analysis 
 
Fig. 1 shows the SEM images of WNS and AA-
WNS. From Fig. 1, there appeared rougher 
texture and more irregular porous on the surface 
of AA-WNS compared with WNS, indicating AA-
WNS is favorable for Pb(II) adsorption. 

 

 
 

Fig. 1. SEM images of (a) WNS and (b) AA-WNS 
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3.2 Adsorption Isotherms 
 
The isotherm for the removal of Pb(II) by AA-
WNS at 288-308 K was shown in Fig. 2. From 
Fig. 2, the adsorption capacity of AA-WNS 
increased with the increase in temperature, 
suggesting the endothermic nature of Pb(II) 
adsorption onto AA-WNS. At a fixed temperature, 
the adsorption capacity increases with the 
increase of Pb(II) concentration. 
 
In this work, Langmuir [25] and Freundlich [26] 
models were selected to fit the equilibrium data, 
and they were expressed as  
 

Langmuir isotherm: 
Le

Lme
e

KC

KqC
q



1

            (4) 

 

Freundlich isotherm: 
/n

eFe CKq 1               (5) 

 
where qm (mg g

-1
) is the adsorption capacity of 

saturation, KL is Langmuir constant, and KF and n 
are Freundlich constants reflecting adsorption 
capacity and adsorption intensity, respectively. 
 

 
 

Fig. 2. Adsorption isotherms of AA-WNS for 
Pb(II) at different temperatures 

 

The adsorption isotherm parameters were shown 
in Table 1. By comparing correlation coefficient, 
the adsorption of Pb(II) onto AA-WNS obeys 
Langmuir isotherm model and the process is a 
monolayer adsorption. The values of KL are 
positive, indicating it is a favorable adsorption 
[27]. Favorability of adsorption can be further 
predicted using the separation factor (RL) defined 
as RL = 1/(1+KLC0). If RL> 1, unfavorable; RL = 1, 
linear; 0 <RL< 1, favorable; RL = 0, irreversible. 
The RL values were in range of 0-1, implying that 
Pb(II) was adsorbed favorably by AA-WNS. 
 
On the other hand, the theoretical maximum 
adsorption capacity (qmax) can be calculated by 
the value of GY as follows 
 

 
 

where MPb and MAA are the molecular weight of 
Pb(II) and AA. Based on Eq. (6), when 
GY=17.73 %, qmax is 255.12 mg g

-1
 which is 

larger than those (204.15-238.65 mg g-1) 
obtained by Langmuir isotherm, indicating that 
only a part of functional groups of AA-WNS 
works. 
 
The comparison of maximum adsorption capacity 
of various adsorbents for Pb(II) was listed in 
Table 2. From Table 2, the AA-WNS used in this 
work has larger adsorption capacity. 
 

3.3 Adsorption Kinetics 
 

The effect of contact time on Pb(II) adsorption 
was shown in Fig. 3. From Fig. 3, the adsorption 
process of AA-WNS for Pb(II) involves three 
stages: Fast, slow and equilibrium. In the fast 
stage (0-120 min), the AA-WNS surface is vacant 
and adsorption is controlled by the diffusion 
process. While in the slow stage (120-480 min), 
Pb(II) uptake is limited due to insufficiency of 
available adsorption sites. Fig. 3 also illustrated 
that a high temperature is favorable to Pb(II) 
uptake.

Table 1. Adsorption isotherm constants for Pb(II) adsorption onto AA-WNS 
 

T 

(K) 

Langmuir Freundlich 

KL 

(L mg
-1

) 

qm 

(mg g
-1

) 

RL R
2
 KF 

(mg g
-1

)/(g L
-1

)
1/n

 

n R
2
 

288 0.0082 204.15 0.647-0.094 0.9938 0.6420 1.3850 0.9791 

298 0.0128 212.54 0.540-0.063 0.9960 1.4097 1.5416 0.9755 

308 0.0156 238.65 0.491-0.052 0.9938 2.0751 1.6041 0.9715 
 

max /Pb AAq GY M M  (6) 
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Table 2. Comparison of adsorption capacity of Pb(II) onto various adsorbents 
 

Adsorbents qm mg g-1 Modifying agent(s) References 
Walnut shell 238.65 Acrylic acid This work 
Walnut shell 11.08  This work 
Imperata cylindrica leaf powder 13.5 Sodium hydroxide [9] 
Cotton 28.67 Thioglycolic acid [10] 
Pinus sylvestris 22.22 Formaldehyde in  

Sulfuric acid 
[11] 

Nipah palm shoot 52.86 Mercaptoacetic acid [12] 
Azolla filiculoides 228 Hydrogen eroxide-Magnesium [13] 
Sugarcane bagasse 189 Succinic anhydride and 

NaHCO3 solution 
[14] 

 313 Succinic anhydride, and 
Triethylenetetramine 

 189 Succinic anhydride and 
Ethylenediamine 

Peanut husk 29.14 Formalin [15] 
Rosa centifolia petals 135.14 Sodium hydroxide [16] 
Banana stem 91.74 Formaldehyde [17] 
Spent grain 35.5 Sodium hydroxide [18] 

 
To analyze the adsorption rate of Pb(II) onto AA-
WNS, the pseudo-first-order, pseudo-second-
order [28] and Elovich [29] models were used to 
fit the adsorption data. They are expressed 
respectively as  
 

Pseudo-first-order model: )1( 1tk
et eqq 

   
(7) 

 

Pseudo-second-order model: 
tqk

tqk
q

e

e
t

2

2
2

1
       (8) 

 

Elovich model:             (9) 

 
where k1 (min

-1
) and k2 (g mg

-1 
min

-1
) are the 

adsorption rate constants of pseudo-first-order 
and pseudo-second-order model, respectively. α 
(mg g

-1
 min

-1
) is the initial adsorption rate, and β 

(g mg-1) is the desorption constant. 
 
The parameters obtained from the fits of these 
kinetic models were listed in Table 3. From  
Table 3, the adsorption process of Pb(II) onto 
AA-WNS obeys pseudo-second-order model due 
to the higher correlation coefficient (R2>0.9883). 
The increasing of k2 values with temperature 
indicated the adsorption of Pb(II) onto AA-WNS 
is endothermic [27,30]. Besides, Elovich model 
also fitted the experimental data well, indicating 
the Pb(II) adsorption onto AA-WNS is not only 
chemisorption, but also an ion exchange reaction 
[29]. 

 
 

Fig. 3. Adsorption kinetics of Pb(II) on AA-
WNS at different temperatures 

 
3.4 Controlling Step 
 
In order to obtain the information of diffusion 
mechanism, the adsorption data were fitted by 
intraparticle diffusion model [6,31]. 
 

                                       (10)                          

 

where kid (mg g
-1 

min
-0.5

) is intraparticle diffusion 
rate constant. The plots of qt against t0.5 were 
shown in Fig. 4. From Fig. 4, the plots are multi-
linear, suggesting the adsorption rate is limited 
by more than one diffusion mechanism [26,30]: 
Film diffusion and intraparticle diffusion. The 
initial portion of the plot indicated Pb(II) 

tqt ln
1

)ln(
1







0.5
t idq k t C 
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Table 3. Kinetic parameters for Pb(II) adsorption onto AA-WNS 
 

T 
(K) 

qe,exp 
(mgg

-1
) 

Pseudo-first-order Pseudo-second-order Elovich 
k1 
(min

-1
) 

qe,cal 

(mgg
-1

) 
R2 k2×103 

(gmg
-1

 
min-1) 

qe,cal 

(mgg
-1

) 
R2 α 

(mgg
-1 

s
-1

) 
β 
(gmg

-1
) 

R2 

288 81.02 0.0095 78.78 0.9827 0.1107 94.70 0.9963 2.907 0.0558 0.9787 
298 87.21 0.0120 85.03 0.9913 0.1395 99.55 0.9971 3.873 0.0528 0.9760 
308 90.99 0.0232 86.83 0.9377 0.3567 94.91 0.9883 12.28 0.0643 0.9833 

 
adsorption onto AA-WNS is effected by boundary 
layer, and the second portion indicated the 
intraparticle diffusion effect. The last portion is 
the equilibrium stage. 

 

 
 

Fig. 4. Plots of qt versus t0.5 for Pb(II) 
adsorption onto AA-WNS 

 

 
 

Fig. 5. Plots of Bt versus t for Pb(II) 
adsorption onto AA-WNS 

 

The actual control step of Pb(II) adsorption onto 
AA-WNS was further investigated using Boyd 
equation [32]. 

)1ln(4977.0 FBt                          (11) 

                          
With 
 

e

t

q

q
F                                                      (12) 

 
where F is the fraction of Pb(II) adsorbed at time 
t. The values of Bt and F at each time t can be 
obtained from Eq.(11) and (12). If the plots of Bt 
against time t are linear passing through the 
origin, the intraparticle diffusion is the rate-
controlling step, or otherwise film diffusion is the 
rate-controlling step [31]. As shown in Fig. 5, the 
line Bt versus t did not pass through the origin, 
indicating the process for Pb(II) adsorption by 
AA-WNS is dominated by the film diffusion. 
 

3.5 Thermodynamic Parameters 
 
Thermodynamic parameters such as Gibbs free 
energy change (∆G), enthalpy change (∆H) and 
entropy change (∆S) were obtained using the 
following equations [3,23,31] 
 

                                                (13)                                   

 

cKRTG lnΔ                                       (14)                                 

 

RT

H

R

S
Kc

303.2

Δ

303.2

Δ
log                  (15)                           

 
where Ce,s (mg L

-1
) is the solid phase 

concentration at equilibrium. Kc is the equilibrium 
distribution coefficient. R (8.314 J mol-1 K-1) is the 
gas constant, and T is the temperature in kelvins. 
The values of ∆H and ∆S were obtained from the 
slope and intercept of the linear plot of lnKc 
versus 1/T, and the thermodynamic parameters 
were listed in Table 4. From Table 4, the 
negative ∆G indicated the Pb(II) adsorption 
process by AA-WNS is a spontaneous. 

e

se
c

C

C
K ,
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Table 4. Thermodynamic parameters of Pb(II) adsorption onto AA-WNS 
 

∆G (kJ mol-1) ∆H (kJ mol-1) ∆S (J K-1 mol-1) 
288 K 298 K 308 K   
-9.12 -9.65 -10.11 5.05 49.25 

  
The positive ∆H indicated that the adsorption of 
Pb(II) by AA-WNS is endothermic, suggesting a 
higher temperature is favorable for Pb(II) 
adsorption. The positive ΔS suggested an 
increase in randomness at the solid/solution 
interface during the Pb(II) adsorption. 
 

3.6 Recycling Properties of AA-WNS 
 
To evaluate the regeneration capability of AA-
WNS, the recovery tests were conducted and the 
results were listed in Table 5. From Table 5, the 
recovered AA-WNS does not show significant 
decrease in efficacy, maintaining high removal 
efficiency of 89.82% for Pb(II) despite four cycles. 
Thus, the adsorbent can be reused in Pb(II) 
removal.  
 

Table 5. The regeneration capacity of                 
AA-WNS 

 
Cycle number I II III IV 
q (mg g

-1
) 81.45 79.50 78.67 78.33 

Adsorption 
percentage (%) 

93.40 91.16 90.21 89. 82 

 

4. CONCLUSION 
 
In this work, AA-WNS was prepared and used as 
an effective adsorbent to improve Pb(II) 
adsorption process. The samples of WNS and 
AA-WNS were characterized by SEM analysis. 
The adsorption data are well interpreted by 
Langmuir model, and the maximum adsorption 
capacity for Pb(II) is 204.15, 212.54 and 238.65 
mg g

-1
 at 288, 298 and 308 K, which is less than 

the theoretical maximum adsorption capacity 
(qmax), suggesting that only a part of functional 
groups works. The pseudo-second-order model 
can well describe the adsorption kinetics of Pb(II) 
onto AA-WNS and the adsorption process was 
governed by both film and intraparticle diffusion. 
A Boyd kinetic plot suggested that the controlling 
step of Pb(II) adsorption by AA-WNS is film 
diffusion. The values of ∆G, ∆H and ∆S for Pb(II) 
adsorption process suggested the process is 
spontaneous, endothermic and an increase in 
randomness. Moreover, the recovered AA-WNS 
maintained high removal efficiency of 89.61% for 
Pb(II) despite four cycles. Based on the research 

results, AA-WNS is an effective low-cost 
adsorbent for Pb(II) removal from aqueous 
solution. 
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