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profitability. The main reasons for this scenario are the 
high demand for novel and higher quality products, the 
need to reduce costs, wastes and energy consumption, 
and the development of the pharmaceutical and 
bioethanol sectors (Sarrouh et al., 2012). 

Tannase (tannin acyl hydrolase, EC 3.1.1.20) is an 
inducible enzyme produced by a variety of microor-
ganisms in the presence of tannic acid or some of its 
derivatives (Aguilar et al., 2001). It is able to hydrolyze 
ester and depside bonds of hydrolysable tannins 
(Banerjee et al., 2001). Tannase has vast potential to be 
applied on food and pharmaceutical industries. However, 
tannase application is limited by the high cost of the 
enzyme purification and recovery. Progress had been 
achieved in the last years as a result of the efforts in 
isolation of newly strains with higher tannase production, 
the optimization of fermentation systems and the 
development of economically viable purification methods 
(Chávez-González et al., 2012). 

Lipase (triacylglycerol hydrolases, E.C. 3.1.1.3) 
catalyzes the hydrolysis of esters bonds of triglycerides 
into glycerol and free fatty acids in the water-oil interface 
(Singh and Mukhopadhyay, 2012). In a non-aqueous 
medium, lipase can catalyze the synthesis of acyl-
glycerol from free fatty acids and glycerol (Macrae and 
Hammond, 1985). Due to their chemo-, regio- and 
enantio- selectivity, lipases have been used in several 
areas of biotechnology as: chiral drug resolution, fat 
modification, biofuels, cosmetics, agrochemicals, oleo-
chemicals, flavor enhancers and detergents (Contesini et 
al., 2010). The search for new lipolytic strains is 
stimulated by the high demand for new sources of the 
enzyme and by the need of lipases with new catalytic 
characteristics and specific physical-chemical properties 
(Thakur, 2012). 

This work is aimed at isolating new strains that are 
capable of producing the extracellular lipases and 
tannases enzyme by solid state fermentation (SSF) from 
two Brazilian rainforests, as well as, to identify the 
selected microorganisms and to biochemically 
characterize the produced enzymes.  
 
 
MATERIALS AND METHODS 
 
Fungal isolation 
 
Strains were isolated from samples extracted from two Brazilian 
regions: the Amazon rainforest region at the State of Para (1°47'S, 
48°45' W) and the Atlantic rainforest region at the State of São 
Paulo (23°82'S, 45°34' W). Random samples of leaves, fruits, and 
seeds found on the litter fall were collected, and soil samples were 
taken from 5 cm deep. A portion of 1 g of each sample were diluted 
in 10 mL of distilled water. Plates containing potato dextrose agar 
(PDA), supplemented with chloramphenicol 50 ppm, were 
inoculated by streaking a loopful of the diluted sample across the 
medium surface. Plates were incubated at 30°C and observed at 
interval of 24 h each for fungal development. Pure strains were 
isolated and maintained on PDA slants at 30°C until they were well 
sporulated. Stock cultures were kept at 4°C on PDA medium under 
a layer of vaseline. 
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Plate screening 
 
All strains were inoculated in a selective medium which contained 
(g/L): Agar, 30.0; tannic acid (Tanal B- Prozyn), 10.0; NaNO3, 3.0; 
KH2PO4, 1.0; MgSO4. 7H2O, 0.5; KCl 0.5; FeSO4.7H2O, 0.01, pH 
4.5 (Bradoo et al., 1996). Point inoculations were carried out and 
plates were incubated at 30°C for 48 h. Tannase enzymatic activity 
was estimated by the enzymatic index (EI), which was determined 
by the ratio between the halo diameter and the colony diameter 
(Hankin and Anagnostakis, 1975). 

Plate assay to detect lipase production was conducted in a 
medium which contained (g/L): agar, 15.0; peptone, 10.0; NaCl, 
5.0; CaCl2.2H2O, 0.1 and 10 ml of Tween 80 (adapted from Sierra, 
1957). The above components were emulsified in a blender. 
Isolated fungi were incubated in the medium for 48 h at 30°C, next 
the plates were maintained at 4°C, approximately, for 48 h. The EI 
was determined by the same method as described above.  
 
 
Solid state fermentation 
 
The pre-inoculum was prepared by adding 1.0 ml of distilled water 
to remove the spores from the PDA medium. 

Wheat bran enriched with 10% (w/w) tannic acid was used as 
substrate for tannase production. An amount of 10 g of substrate 
and distilled water (1:1 v/v) was taken into 250 ml flasks and 
sterilized at 121°C for 20 min. After sterilization, the flasks were 
inoculated with 1 ml of the pre-inoculum suspension (5.0 ×107 
spores/ ml) and incubated at 30°C for 120 h. After fermentation, 40 
ml of 0.02 M acetate buffer (pH 5.0) was added to each flask, which 
was shaken at 200 rpm for 1 h. Solution was filtered and 
centrifuged at 10,000 rpm for 30 min at 4°C. The supernatant was 
used to determine the enzymatic activity. The enzymatic activity of 
a Paecilomyces variotii strain tannase (Battestin and Macedo, 
2007) was used for comparison. 

For lipase production, wheat bran and water (1:1 v/v) was used 
as the substrate. The flasks were inoculated as described above 
and incubated at 30°C for 96 h. 50 ml of distilled water was added 
in the flask; the solution was homogenized with a glass stick and 
shaken occasionally for 2 h. The enzymatic extract was obtained by 
filtering  the cultures. Rhizopus sp. lipase (Macedo et al., 2003) was 
used as a model for comparison. 
 
 
Enzymatic assay 
 
Tannase activity was determined spectrophotometrically at 520 nm 
according to the method of Pinto et al. (2001), with some 
modifications. The amount of gallic acid released in the reaction 
was determined through a standard curve of gallic acid. One unit 
(U) of enzyme activity was defined as the amount of enzyme 
required to liberate one micromole of gallic acid per minute under 
the defined reaction conditions. The enzymatic activity was 
expressed in units per enzyme milliliters (U/mL) and the specific 
activity was expressed in units per enzyme milligrams (U/mg). 

Lipase activity was determined using an emulsion which 
contained: 25 ml of olive oil and 75 ml of 7% Arabic gum solution. 
Lipase activity was measured in a system which contained: 5 ml of 
the emulsion, 2 ml of 0.1 M phosphate buffer (pH 7.0) and 1 ml of 
enzymatic extract. The reaction was carried out at 37°C for 30 min 
with orbital shaking and was stopped by adding 10 ml of an 
acetone- ethanol (1:1 v/v) mixture. Released fatty acids were 
titrated against 0.05 M NaOH using phenolphthalein indicator. The 
quantification was carried out with a standard oleic acid curve. One 
unit of lipase was determined as amount of lipase required to 
release one micromole of fatty acids per minute under assay 
conditions. Protein concentration was determined by Bradford 
(1976) method.  
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Table 1. Enzymatic activity (U.mL-1) of tannase and lipase produced by filamentous by SSF. 
 

Tannase Lipase 

Strain Enzymatic activity (U.mL-1)* Strain Enzymatic activity (U.mL-1)* 

CL255 1.35 ± 0.03a Rhizopus sp. 30.5 ± 0.5a 
IB31c 0.93 ± 0.05b CL316 18.7 ± 2.9b 

P. variotii 0.83 ± 0.23b IB28a 13.0 ± 3.3bc 
IB34a 0.79 ± 0.24bc IB38d 7.3 ± 4.8cd 
CL43 0.79 ± 0.07bc CL307 4.9 ± 2.4 cd 
IB27a 0.72 ± 0.12bcd CL406 3.2 ± 0.0d 
IB13a 0.70 ± 0.02bcd CL374 1.5 ± 2.3d 
CL148 0.69 ± 0.21bcd CL264 1.5 ± 0.5d 
IB14a 0.67 ± 0.10bcd CL458 0.6 ± 0.9d 
IB33a 0.68 ± 0.04bcd CL143 0.5 ± 0.0d 
IB08b 0.43 ± 0.29cde   

AM1049 0.40 ± 0.05def   
IB31a 0.28 ± 0.06efg   
CL263 0.19 ± 0.04efg   
CL188 0.12 ± 0.01efg   
VL64 0.10 ± 0.05efg   
IB38d 0.04 ± 0.04fg   
IB25a 0.02 ± 0.02g   

AM1817 0.01 ± 0.02g   
 

*Results are presented as the mean (n= 3) ± SD, and those with different letters are 
significantly different, with P < 0.05 (Tukey test). 

 
 
 
Enzyme production by SSF 
 
Among 105 strains selected on agar plates for tannase 
production, all positive strains from the rainforests (n=27) 
and strains from the laboratory stock cultures randomly 
chosen, with enzymatic index (EI) greater than 3.0 (n=8), 
were submitted to SSF. Results of tanninolytic activity of 
enzymes produced by SSF are shown in Table 1. It was 
observed that the highest activities were reached by 
strain CL255 (1.35 ± 0.03 U/ml) and strain IB31c (0.93 ± 
0.05 U/ml). Enzymes produced by these strains showed 
higher activity than the enzyme from the already known 
tannase producer P. variotti (0.83 ± 0.23). Moreover, 
tannase produced by strain CL255 showed specific 
activity approximately 34% higher (2.14 ± 0.04 U/mg) 
than the one produced by P. variotti (1.41 ± 0.32 U/mg).  

All positive strains for lipase production in agar plate 
assay (n=26) had their capacity of producing the enzyme 
by SSF tested. It can be observed in Table 1 that the 
highest activity occurred with the Rhizopus sp. strain 
(30.5 ± 0.5 U/mL) strain, which was used as the 
standard, followed by strain CL 316 (18.7 ± 2.9 U/ml) and 
strain IB28a (13.0 ± 3.3 U/ml). 
 
 
Comparison between agar plate assay and 
quantitative assay 
 
Regarding  the  tanninolytic  strains, 51.4% of the  strains 

selected by agar plate screening gave detectable results 
using the enzymatic assay. Furthermore, detectable 
lipase production was found in 34.6% of the strains 
previously selected on agar plates. 

The correlation between the EI measured in agar plate 
and the enzymatic activity, evaluated by spectropho-
tometry for tannase and by titration for lipase, was 
evaluated. No correlation was observed for the tannase 
assays. However, Pearson coefficient indicated a strong 
and positive correlation (0.96; p=0.000) between the EI 
evaluated in agar plates containing Tween 80 and the 
lipase activity measured by titration (only strains with EI 
higher than 1.0 U/ml were evaluated) (Figure 2). 
 
 

Identification of the selected lipase producing strains 
 

Strain IB28a developed a white cottony mass on PDA 
after 3 days of grown. Microscopy revealed the presence 
of highly branched hyphae and cylindrical conidia. 
Molecular identification based on ITS region revealed that 
strain IB28a showed high similarity with Colletotrichum 
theobromicola JX010285, C. fragariae JX258785 and 
Colletotrichum sp. JN390867 (Figure 3). Therefore, it was 
not possible to identify the strain at the species level.  
 
 

Biochemical characterization of lipase from 
Colletotrichum sp. strain 
 
The results of the assays for the activity of lipase from
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Table 4. Environments for the isolation of fungal strains capable of producing enzymes with technological application. 
 

Region Microorganism Sample Enzymes Reference 

Atlantic Rainforest 

Bacteria Soil Lipase Faoro et al. (2012) 
Yeast Rotting wood β-Glucosidase Santos et al. (2011) 
Yeast, yeast- like strains Water, soil, insects, plants Esterase,lipase, protease Buzzini and Martini (2002) 
Filamentous fungi Soil Cellulase Simoes and Tauk-Tornisielo (2005) 
Basidiomycetous fungi Basidiomes Ligninolytic enzymes Machado et al. (2005) 

     

Amazon Rainforest  

Bacteria 
Soil, water Cellulase, xylanase Heck et al. (2002) 
Soils, roots Lipase Willerding et al. (2011) 

Yeast Rotting wood  Xylanase Cadete et al. (2012) 

Filamentous fungi 
Rotting wood  Xylan-degrading enzymes Garcia Medeiros and Hanada (2003)
Soil, rotting wood  Cellulase Delabona et al. (2012) 
- β-Galactosidase Tonelotto et al. (2014) 

     

Atlantic and Amazon Rainforest  

Gram-negative bacteria Soil Keratinolytic protease Bach et al. (2011) 

Yeast 
Flowers, fruits, soil  Lipase Goldbeck and Maugeri Filho (2013) 
Flowers, fruits  Fructosyl transferase Maugeri and Hernalsteens (2007) 

Yeast-like strains Flowers, fruits, soil  Cellulase Goldbeck et al. (2012) 
 
 
 

The use of simple plate assays for lipase and 
tannase detection is highly recommended since 
they are rapid and low cost methods (Gopinath et 
al.,  2013; Jana et al., 2012). Murugan et al. (2007) 
isolated 10 fungal strains from tannery effluent, 
which were subjected to screening on agar 
medium containing tannic acid. The formation of 
clear halos around the colony, demonstrating 
tannase production was observed in half of the 
assays. A lower percentage (30.2%) was observed 
in this study probably because tannery effluent 
was a favorable environment to the presence of 
tanninolytic microorganisms due to its high 
concentration of tannins. Cardenas et al. (2001) 
screened 960 microorganisms in agar plate con-
taining olive oil to identify lipase producers. The 
authors found that 9.6% of the strains had the 
potential to produce the enzyme, while in the 
present study, a lower value was found (7.5%). 

Not all strains pre-selected by simple agar assay 
were able to produce the enzyme by SSF, most 
likely because the use of Tween as substrate can 
result in false positive, since it can also be 
hydrolyzed by esterases. However, Tween con-
tinues to be widely applied because of its capacity 
to rapidly incorporate into the medium and to 
promote optimal contact between cells and sub-
strate, as well as, to provide easily visible halos of 
hydrolysis, avoiding the use of possibly toxic dyes 
(Shelley et al., 1987). The use of agar plate 
containing Tween was shown to be an efficient 
method to isolate filamentous fungi capable of 
producing lipase, since 34.6% of the strains 
selected by the simple agar assay in our work 
were able to produce this enzyme by SSF. Similar 
results were found in the study of Colen et al. 
(2006) where 59 fungal strains were isolated from 
Brazilian savanna. They tested these strains in 

agar medium containing tributyrin or olive oil and 
found that 21 were positive, and that 52.4% of the 
positive strains were considerate good lipase 
producers by SSF and SmF.   

Correlation between data obtained from simple 
plate assay for lipase and more sensitive assays 
such as titration and spectrophotometry was 
observed in several studies. Kouker and Jaeger 
(1987) found that the logarithm of lipase activity 
from cell-free culture supernatants measured by 
titration was linearly correlated with the diameter 
of halos evaluated in a medium containing 
trioleoylglycerol and the fluorescent dye rhodamine 
B. Pereira-Meirelles et al. (1997) observed high 
correlation between EI of lipases, estimated in 
agar plate containing olive oil or babassu oil, and 
data obtained through spectrophotometric method 
using p-nitrophenyl laurate as substrate. Con-
flicting results were observed by Griebeler et al.
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(2011); they compared lipases EI obtained by tributyrin 
agar plate assay and the enzymatic activity of lipases 
produced by soil bran fermentation measured by titration. 
The authors found that five filamentous fungi were all 
selected as good lipase producers by SSF and by using 
tributyrin as substrate, however there was one strain not 
screened by the simple plate assay that presented high 
lipase activity. 

Griebeler et al. (2011) selected filamentous fungi 
capable of producing lipase by FES, and enzymes 
showed activity varying from 10.4 to 21.9 U/ml. Contesini 
et al. (2009) optimized the production of lipaseAspergillus 
niger by surface response analysis and were able to 
reach an enzymatic activity of 28.9 U/mL. Rivera-Munoz 
et al. (1991) studied several fungal strains regarding their 
lipase producing capacity such as: A. niger (2.9 U/ml), 
Geotrichum candidum (1.1 and 1.4 U/ml) and Penicillium 
sp. (1.7 to 36.5 U/ml).  

Regarding tannase, it was observed that highest 
activity was reached by strain CL255 (2.14 ± 0.04 U/mg). 
A similar result was found in the study of El-Fouly et al. 
(2010) on tannase production by A. niger which showed 
enzymatic activity of 3.37 ± 0.17 U/mg.  

Studies regarding lipase production by Colletotrichum 
sp. are rare. Balaji and Ebenezer (2008) tested diverse 
residual cheap oil substrates for lipase production by C. 
gloeosporioides and reached 2,560 U/g of dry matter 
using pongamia oil cake. In this study, enzyme produced 
by strain IB28a identified as C. gloeosporioides showed 
maximum activity of 13.0 ± 3.3 U/ml without optimization. 
Similar results were found in the study of Colen et al. 
(2006) where a C. gloesporioides strain was found to be 
the best alkaline lipase producer from 59 strains isolated 
from Brazilian savanna soil. They optimized the enzyme 
production up to 27.7 U/ml and observed its capacity to 
hydrolyze a wide variety of substrates such as lard, 
natural oils and tributyrin. In contrast, Amirita et al. (2012) 
did not observe lipase production by the entophytes: C. 
gloeosporioides and Colletotrichum crassipes in agar 
medium containing Tween, but the strain of 
Colletotrichum falcatum was positive for lipase activity. 
The authors proposed that the absence of certain active 
enzymes in entophytes could occur to prevent the host 
plant from damage.  

Studies concerning the biochemical characteristics of 
Colletotrichum sp. lipase were not found. However, 
Maccheroni et al. (2004) evaluated the effect of the 
ambient pH on lipase secretion by several strains of 
Colletotrichum sp. using plate clearing assays. They 
concluded that, in general, lipase was secreted at neutral 
and alkaline pH. Fungi ensure that enzymes are secreted 
mostly at ambient pH values equivalent to their optimal of 
activity (Maccheroni and Azevedo, 1998). Therefore, the 
data found in the study mentioned above corroborates 
with our findings on Colletotrichum sp. lipase optimum pH 
values (6.5 to 7.5).  

Different research groups use diverse methodologies to  

 
 
 
 
determine enzyme activity, therefore the comparison 
between distinct studies is limited. However, it is evident 
that the present work has a significant contribution to 
studies regarding production, characterization and 
application of lipase and tannase. It was possible to 
isolate from Amazon and Atlantic rainforests regions, 
several strains of filamentous fungus capable of 
producing extracellular lipase and tannase by 
fermentation of wheat bran. Strain IB28a, identified as 
Colletotrichum sp., isolated from the Atlantic Rainforest 
can be considered an interesting producer of lipase by 
SSF. Lipase from Colletotrichum sp. reached high 
enzymatic activity without optimization and presented 
higher activity at neutral pH and room temperature.  
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