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This paper is concerned with the inverse eigenvalue problem for singular rank one perturbations of a Sturm-Liouville operator. We
determine uniquely the potential function from the spectra of the Sturm-Liouville operator and its rank one perturbations.

1. Introduction

Consider the boundary problem

~Ly≔ −y′′ + q xð Þy + αδ x − x0ð Þy x0ð Þ = λy ð1Þ

on ð0, 1Þ with

y′ 0ð Þ = y 1ð Þ = 0, ð2Þ

where qðxÞ ∈ L2ð0, 1Þ is real valued, α ∈ℝ \ f0g, x0 ∈ ð0, 1Þ,
and δðxÞ are the Dirac delta function. It is well known [1]
that the operator ~L is a self-adjoint operator in L2ð0, 1Þ,
which is a singular rank one perturbation of the Sturm-
Liouville operator Ly≔ −y′′ + qðxÞy.

The goal of this paper is to deal with the inverse problem
of recovering the potential qðxÞ in (1) from the spectra of L
and ~L, by applying the method in [1] and the perturbation
theory for linear operators [2]. Note that in [3], the boundary
problem

−y′′ + q xð Þy = λy, ð3Þ

with (2) and the discontinuous conditions

y x0 + 0ð Þ = y x0 − 0ð Þ = y x0ð Þ, ð4Þ

y′ x0 + 0ð Þ = y′ x0 − 0ð Þ + αy x0ð Þ ð5Þ
can be regarded as the problem (1)-(2). The research of this
paper can be a variation of Borg’s two-spectra theorem [4]
for the second spectrum that is obtained by attaching the
interface conditions (4) and (5) to the problem (3) and (2).
Our immediate motivation is a recent research of del Rio
and Kudryavtsev [5, 6], who considered the inverse problem
for Jacobi matrices and recovered the original matrix from
the spectra of it and its interior mass-spring perturbation;
they indicated that the uniqueness for the inverse problem
does not remain valid in general; however, under certain con-
ditions, there exists at most a finite number of matrices cor-
responding to the two spectra.

Such operator ~L appears not only in electronics but in
other areas such as the theory of diffusion processes, see the
related references in [7, 8]. Some spectral and inverse spectral
problems for the Sturm-Liouville operator with rank one per-
turbations have been investigated in [1, 3, 9–20]. In particu-
lar, Albeverio, Hryniv, and Nizhnik [3] considered the
inverse eigenvalue problem for the Sturm-Liouville operator
with the point potential vðxÞðy, δÞL2 and the perturbation δ
ðx − x0Þðy, vÞL2 where vðxÞ ∈ L2ð0, 1Þ and x0 = 1. Later, Nizh-
nik [16] continued the problem with x0 ∈ ð0, 1Þ. However, we
consider the inverse problem for the operator (1) with the
potential qðxÞ ∈ L2ð0, 1Þ and the perturbation δðx − x0Þ
ðy, δÞL2 . And the potential may not be determined uniquely
just by the spectra; so, we employ the addition information.
Moreover, the approach we use can also solve the problem
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with the perturbation cðxÞðy, cÞL2 , cðxÞ ∈ L2ð0, 1Þ in the
research [18]. In the paper, we establish the expression of
the characteristic function of ~L which provides a necessary
preliminary for treating with its inverse eigenvalue problem.
The approach we use to prove our results can convert the
problem (1) and (2) into three spectra inverse problem in
[21, 22]. Actually, the spectra of L and ~L may not determine
the potential uniquely (see Remark below for details). The
key difficulty encountered is to identify the eigenvalues of
two Sturm-Liouville problems defined on ½0, x0� and ½x0, 1�
from the knowledge of the spectra of L and ~L, for which we
have to employ addition information of the number of zeros
of the eigenfunctions, and the condition two spectra are
disjoint.

The main result asserts that, if the spectra of L and ~L are
disjoint, the potential qðxÞ can be determined uniquely by the
spectra of L and ~L and the numbers of zeros, contained in ð
0, x0Þ, of all eigenfunctions of L. We will state and prove it
in the next section.

2. The Main Theorem and Proof

We describe some preliminaries which will be needed subse-
quently, due to [1]. One defines the scale of spaces H±1ðLÞ
associated to L as follows. The space H+1ðLÞ is DðL1/2Þ with
the norm

φk kH+1
= L + 1ð Þ1/2φ�� ��

L2 0,1ð Þ, ð6Þ

in which H+1 is easily seen to be complete. For H−1ðLÞ, take
L2ð0, 1Þ with the norm given by

φk kH−1
= L + 1ð Þ−1/2φ�� ��

L2 0,1ð Þ ð7Þ

and complete it. Note that H+1ðLÞ and H−1ðLÞ are dual in
such a way that φ ∈H−1 is associated to the function y ∈
H+1 given by

Ð 1
0φðxÞyðxÞdx. A Sobolev estimate shows that,

for any y ∈H+1ðLÞ,
ð1
0
y xð Þδ x − x0ð Þdx

� �2
= y x0ð Þj j2 ≤ c y, L + 1ð Þyð Þ <∞; ð8Þ

that is, δðx − x0Þ lies inH−1ðLÞ. Hence, by Section 2 in ([1], p.
115) Simon, one can find a spectral measure dμL such that

F zð Þ =
ð1
0
δ x − x0ð Þ, L − zð Þ−1δ x − x0ð Þ� �

dx ≡
ð1
0

dμL xð Þ
x − z

:

ð9Þ

By (I.15) and (I.16) in ([1], p. 116), it follows that

Tr L − zð Þ−1 − ~L − z
� �−1h i

= α dF zð Þ/dzð Þ
1 + αF zð Þ : ð10Þ

The following preliminaries are due to ([2], p. 245-250).
The multiplicity index for αFðzÞ + 1 is given by

v ζ ; αF zð Þ + 1ð Þ =
k, if ζ is a zero of αF zð Þ + 1 of order k,
−k, if ζ is a pole of αF zð Þ + 1 of order k,
0, for all other ζ ∈ℂ:

8>><
>>:

ð11Þ

The multiplicity function for a closed operator T is
defined by

~v ζ ; Tð Þ =
0, if ζ belongs to the resolvent set,
m, if ζ is a neigenvalue of T withmultiplicitym,
+∞,for all other ζ ∈ℂ:

8>><
>>:

ð12Þ

Let λn be the eigenvalue of L, n ≥ 0. Then,

~v ζ ; Lð Þ =
1, ζ ∈ λnf g∞n=0,
0,ℂ \ λnf g∞n=0:

(
ð13Þ

Using the same way as the proof of the W-A formulas in
([2], p. 248), by (10), we deduce

~v ζ ; ~L
� �

= v ζ ; αF zð Þ + 1ð Þ + ~v ζ ; Lð Þ

=
1 + v ζ ; αF zð Þ + 1ð Þ, ζ ∈ λnf g∞n=0,
v ζ ; αF zð Þ + 1ð Þ, ζ ∈ℂ \ λnf g∞n=0:

( ð14Þ

In the following lemma, we give the spectrum and a char-
acteristic function of ~L.

Lemma 1. The spectrum of ~L consists of real eigenvalues. The
characteristic function of ~L is

~Δ λð Þ = Δ λð Þ αF λ + i0ð Þ + 1ð Þ, ð15Þ

where ΔðλÞ is the characteristic function of L.

Proof. By (9),

F zð Þ =G x0, x0, zð Þ, ð16Þ

where Gðx, y, zÞ is Green’s function for L. From ([23], p. 15,
p.29), Gðx0, x0, zÞ is meromorphic with simple poles in the
points z = λni . Then, for λ ∈ℝ \ fλnig

∞
i=0, it follows

F λ + i0ð Þ = F λð Þ, ð17Þ

dF λ + i0ð Þ
dλ

=
ð
dμL yð Þ
y − λð Þ2

= dG x0, x0, λð Þ
dλ

<∞: ð18Þ

Notice that the spectrum of L consists of simple real
eigenvalues. Combining with Theorem I.6 in [1], we see
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Im F λ + i0ð Þ =
∞,λ ∈ λnf g∞n=0,
0, λ ∈ℝ \ λnf g∞n=0,

(
ð19Þ

Thus, by Theorem II.2 in [1] and (18), the spectrum of ~L con-
sists of real eigenvalues, denoted by fμng∞n=0.

By (14), each zero of αFðzÞ + 1 is an eigenvalue of ~L.
Hence, the zeros of αFðzÞ + 1 are real and consist of the zeros
of αFðλ + i0Þ + 1. Let faig∞i=0 be the zeros set of αFðλ + i0Þ
+ 1. Then, we have the multiplicity function

v ζ ; αF zð Þ + 1ð Þ =
1, ζ ∈ aif g∞i=0,
−1, ζ ∈ λni

� �∞
i=0,

0, for other ζ ∈ℂ:

8>><
>>: ð20Þ

Using (14), it follows

~v ζ ; ~L
� �

=

2, ζ ∈ aif g∞i=0 ∩ λnf g∞n=0,
1, ζ ∈ aif g∞i=0 \ aif g∞i=0 ∩ λnf g∞n=0

� �
,

1, ζ ∈ λnf g∞n=0 \ aif g∞i=0 ∩ λnf g∞n=0 ∪ λni
� �∞

i=0

	 

,

0, for other ζ ∈ℂ:

8>>>>>><
>>>>>>:

ð21Þ

Hence, by the definition of ~vðζ ; ~LÞ, we have

μnf g∞n=0 = aif g∞i=0 ∪ λnf g∞n=0 \ λni
� �∞

i=0

	 

: ð22Þ

Now, we prove that, for x0 ∈ℝ, ~Δðx0Þ = 0, if and only
if x0 ∈ fμng∞n=0. In fact, if x0 ∈ fμng∞n=0, it is easily seen that
~Δðx0Þ = 0. We just prove that if ~Δðx0Þ = 0, then x0 ∈
fμng∞n=0. Suppose that ~Δðx0Þ = 0 and x0 ∉ fμng∞n=0, then
x0 ∈ fλnig

∞
i=0, i.e., x0 is a pole of FðzÞ. By Theorem 1.1.2

in [23], all zeros of ΔðλÞ are simple; so,

dΔ
dλ

x0ð Þ ≠ 0: ð23Þ

By (15), (16), and ([23], p. 15), ~ΔðλÞ is derivable; thus,

d~Δ
dλ

x0ð Þ = dΔ
dλ

x0ð Þ αF x0 + i0ð Þ + 1ð Þ <∞, ð24Þ

which is contradictory to that x0 which is the pole of FðzÞ.
Then, x0 ∈ fμng∞n=0.

For

d2~Δ

dλ2
μnð Þ ≠ 0, ð25Þ

we also need to prove that x0 is an eigenvalue of ~L of multi-
plicity 2 if and only if x0 is a zero of FðλÞ of multiplicity 2.
Actually, if x0 is an eigenvalue of ~L of multiplicity 2, then

by (21), there is x0 ∈ faig∞i=0 ∩ fλng∞n=0, and it is easily to get

~Δ x0ð Þ = d~Δ
dx

x0ð Þ = 0: ð26Þ

Now, we suppose that x0 is a zero of FðλÞ of multiplicity 2,
i.e., (26) holds. By ~Δðx0Þ = 0, there is Δðx0Þ = 0 or αFðx0 +
i0Þ + 1 = 0. Combining with

d~Δ
dλ

x0ð Þ = dΔ
dλ

x0ð Þ αF x0 + i0ð Þ + 1ð Þ

+ Δ x0ð Þ d
dλ

αF x0 + i0ð Þ + 1ð Þ = 0,
ð27Þ

there is Δðx0Þ = 0 and αFðx0 + i0Þ + 1 = 0 which mean x0
∈ faig∞i=0 ∩ fλng∞n=0. Then, x0 is an eigenvalue of ~L of multi-
plicity 2. The proof is complete. ☐

The main result in this paper is as follows.

Theorem 2. Let fλng∞n=0 and fμng∞n=0 be the spectrum of L and
~L, respectively. If fλng∞n=0 ∩ fμng∞n=0 =∅, the potential qðxÞ
can be determined uniquely by fλng∞n=0, fμng∞n=0 and the
numbers of zeros, contained in ð0, x0Þ, of all eigenfunctions
of L.

Proof. By Theorem 1.1.4 in [23], the characteristic function of
L can be calculated by

Δ λð Þ =
Y∞
n=0

λn
π/2ð Þ + nπð Þ2 1 − λ

λn

� �
: ð28Þ

In the same way of the proof of Theorem 1.1.4 in [23], by
Hadamard’s factorization theorem [24], the characteristic
function of ~L can be calculated by

~Δ λð Þ =
Y∞
n=0

μn
π/2ð Þ + nπð Þ2 1 − λ

μn

� �
: ð29Þ

From the given spectra fλn, μng∞n=0, we can determine the
function Fðλ + i0Þ by

F λ + i0ð Þ = 1
α

~Δ λð Þ
Δ λð Þ − 1

 !
: ð30Þ

From (16), ([23], p. 15) and (2) in [23],

F λ + i0ð Þ = −
φ x0, λð Þψ x0, λð Þ

Δ λð Þ , ð31Þ

where φðx, λÞ and ψðx, λÞ are the solutions of (3) under the
initial conditions φð0, λÞ = 1, φ′ð0, λÞ = 0 and ψð1, λÞ = 0, ψ′
ð1, λÞ = 1. Then, we get the zeros of φðx0, λÞψðx0, λÞ, denoted
by fγng∞n=0. It should be noted that
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γnf g∞n=0 ≔ γ−nf g∞n=0 ∪ γ+nf g∞n=0, ð32Þ

where fγ−ng∞n=0 and fγ+ng∞n=0 are the spectra of the following
problems

L−y = −y′′ + q xð Þy on 0, x0ð Þ,
y′ 0ð Þ = y x0ð Þ = 0

(

L+y = −y′′ + q xð Þy on x0, 1ð Þ,
y x0ð Þ = y 1ð Þ = 0,

( ð33Þ

respectively.
If fλng∞n=0 ∩ fμng∞n=0 =∅, λn is the pole of Fðλ + i0Þ, and

γn is the zero of Fðλ + i0Þ. Using (18), it implies that Fðλ +
i0Þ is monotonically increasing on ℝ \ fλng∞n=0. By (16) and
([23], p. 29, [30]),

lim
λ⟶λ−n

F λ + i0ð Þ = +∞,

lim
λ⟶λ+n

F λ + i0ð Þ = −∞,

lim
λ⟶−∞

F λ + i0ð Þ = 0:

ð34Þ

Consequently, there is no zero of Fðλ + i0Þ in ð−∞, λ0Þ
and exactly one zero in ðλn, λn+1Þ. That means

λn < γn < λn+1: ð35Þ

We identify fγ−ng∞n=0 and fγ+ng∞n=0 from fγng∞n=0 by virtue
of the number of the zeros of the eigenfunction contained in
ð0, x0Þ. As is known ([25], p. 15) that the eigenfunction φðx,
λiÞ has exactly i zeros in ð0, 1Þ, we suppose that the eigenfunc-
tion φðx, λiÞ hasm (m ≤ i) zeros in ð0, x0Þ. By comparison the-
orem in ([25], p14), there are not fewer than m zeros of the
eigenfunction φðx, λi+1Þ contained in ð0, x0Þ. From Lemma
1.3.1 in [25], the roots of φðx, λÞ depend continuously on λ.
Combining with Corollary 1.3.2 in [25], φðx, λi+1Þ has m + 1
zeros in ð0, x0Þ only if there exists γ−p ∈ ðλi, λi+1Þ such that φ
ðx0, γ−p Þ = 0. Therefore, if φðx, λi+1Þ has m + 1 zeros in ð0,
x0Þ, then γi ∈ fγ−ng∞n=0; otherwise, γi ∈ fγ+ng∞n=0. Then, we
obtain fγ+ng∞n=0 and fγ−ng∞n=0 from fγng∞n=0 with the informa-
tion of the number of zeros of the eigenfunctions φðx, λiÞ
contained in ð0, x0Þ.

Next, we prove that fλng∞n=0, fγ−ng∞n=0, and fγ+ng∞n=0 deter-
mine qðxÞ. By (35) and Theorem 3.2 in [21], we see that
fλng∞n=0, fγ−ng∞n=0, and fγ+ng∞n=0 can uniquely determine qðxÞ,
a.e., on ð0, 1Þ. The proof is therefore complete. ☐

Remark 3. Based on the proof of Theorem 2, we know that
two disjoint spectra fλng∞n=0 and fμng∞n=0 determine
fγng∞n=0 uniquely rather than fγ−ng∞n=0 and fγ+ng∞n=0. Thus, in
order to obtain the uniqueness of qðxÞ, we need to identify
fγ−ng∞n=0 and fγ+ng∞n=0 from fγng∞n=0. To this end, we have to
employ the number of zeros of eigenfunctions, and the con-
dition two spectra are disjoint, if not, we may not guarantee

the uniqueness of qðxÞ. For example, if x0 = 1/2, then the
eigenvalues of L and L± have the following asymptotic
expressions:

ffiffiffiffiffi
λn

p
= n + 1

2

� �
π + w

n
+ κn

n
,

ffiffiffiffiffi
γ−n

p = 2n + 1ð Þπ + w−

n
+ κ−n

n
,

ffiffiffiffiffi
γ+n

p
= 2n + 2ð Þπ + w+

n
+ κ+n

n
,

ð36Þ

where w = 1/2
Ð 1
0qðxÞdx,w− =

Ð 1/2
0 qðxÞdx,w+ =

Ð 1
1/2qðxÞdx

and fκng, fκ−ng, fκ+ng ∈ l2. It is easy to see that there exists a
positive integer N such that, for n >N ,

λ2n < γ−n ≔ γ2n < λ2n+1 < γ+n ≔ γ2n+1 < λ2n+2, ð37Þ

while we cannot identify fγ−ng∞n=0 and fγ+ng∞n=0 from fγng∞n=0
for n ≤N , which means that there will be at most a finite
number of qðxÞ corresponding to two spectra fγng∞n=0 and
fλng∞n=0 in virtue of Theorem 3.2 in [21]. Hence, we employ
the number of zeros of eigenfunctions, and the condition
two spectra are disjoint to guarantee the uniqueness of qðxÞ.
And we have not found an example that the joint spectra
determine the potential uniquely.
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